
Shifting Gears : Changing Algorithms On the Fly to Expedite Byzantine
Agreement

Amotz Bar-Noy *

	

Danny Dolev t

	

Cynthia Dwork *

	

H. Raymond Strong §

August 8, 1990

Abstract

We describe several new algorithms for Byzantine agreement . The first of-these is a simpli-
fication of the original exponential-time Byzantine agreement algorithm due to Pease, Shostak,
and Lamport, and is of comparable complexity to their algorithm . However, its proof is very
intuitively appealing . A technique of shifting between algorithms for solving the Byzantine
agreement problem is then studied . We present two families of algorithms obtained by apply-
ing a shift operator to our first algorithm . These families obtain the same rounds to message
length trade-off as do Coan's families but do not require the exponential local computation
time (and space of his algorithms . We also describe a modification of an O(/)-resilient al-
gorithm for Byzantine agreement of Dolev, Reischuk, and Strong . Finally, we obtain a hybrid

algorithm that dominates all our others, by beginning execution of an algorithm in one family
and shifting first into an algorithm of the second family and finally shifting into an execution
of the adaptation of the Dolev, Reischuk, and Strong algorithm .

0

`IBM T. J. Watson Research Center, P . 0. Box 704, Yorktown Heights, NY 10598. This work was carried out
while this author was a Ph .D . student of the Hebrew University, Jerusalem, Israel .

tIBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 and the Computer Science Department,
Hebrew University, Jerusalem, Israel .

$IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 .
§IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 .

1 Introduction

In designing fault tolerant distributed algorithms it is often impossible to combine different algo-
rithms for the same problem; while the hope is that the strengths reinforce, the reality is that the
weaknesses conspire . In this paper we present three Byzantine agreement algorithms, of resilience
roughly 31 , 11, and (n/2) 1 /2 respectively, for which it is possible to shift, mid-execution, from
one to another . Here, n is the total number of processors in the system, and the resilience of
an algorithm is the maximum number t such that the algorithm runs correctly despite arbitrary
(faulty) behavior of t processors. Using our three algorithms, we construct a hybrid algorithm
tolerating faults, which begins by executing the relatively inefficient --resilient algorithm,
and then, after a predetermined number of rounds of communication, shifts to an execution of
a more efficient algorithm of resilience "41 , and finally shifts into an execution of an optimally
efficient 2-resilient algorithm . The first two algorithms are actually families of algorithms ; the
third algorithm is an adaptation of an algorithm of Dolev, Reischuk, and Strong [7] . Specifically,
we prove the following theorem .

Theorem 1 (Main Theorem) Let t satisfy n > 3t + 1 . For 2 < b < t, there is a t-resilient
algorithm for Byzantine agreement among n processors requiring

t + 2 [2 /2_i] +
[t/2-\/(t +1)/2 +

1]
+ 4

b-2

	

b-1

rounds of communication, using messages of 0(nb) bits . Furthermore, the amount of local com-

putation time at each processor is 0 (nb+ b-21 (t=i))

Thus, for any choice of b in the given range, the algorithm requires at most

t

	

t

	

t
t+b-2+ 2(b-1)

-D (b_i)	 V/,_

	

t+0 (b)

rounds of message exchange .

We assume the reader is familiar with the Byzantine agreement problem . An informal descrip-
tion of the model and statement of the problem appear in the next section . The rest of the paper is
organized as follows. In Section 3, we describe a new algorithm for Byzantine agreement . We call
this algorithm Exponential Information Gathering with Recursive Majority Voting, or simply, the
Exponential Algorithm . The Exponential Algorithm is a simplification of the original Byzantine
agreement algorithm due to Pease, Shostak, and Lamport [11] and is of comparable complexity
to their algorithm . However, its proof is very intuitively appealing . The data structures defined
in this new algorithm are the same as those used in our later algorithms and hybrids . We have
identified three key properties shared by all our algorithms that in combination capture our intu-
ition of why it is possible to shift between the algorithms . We prove that a simple modification
of the Exponential Algorithm enjoys all three properties . In Section 4, we present two families

1

of linearly resilient algorithms interesting in their own right, as they achieve the rounds versus
number of message bits trade-of exhibited by Coan's families [4, 5] but avoid the exponential
local computation of his algorithms . These families are essentially obtained by applying a shift
operator to the local states of the processors executing the Exponential Algorithm . We also de-
scribe a modification of an O(/)-resilient algorithm for Byzantine agreement of Dolev, Reischuk,
and Strong [7] . Recent developments are mentioned in Section 5 . Concluding remarks appear in
Section 6 .

2 Description of the Model and Statement of the Problem

We assume a completely synchronous system of n processors connected by a fully reliable, com-
plete network . Each processor has a unique identification number over which it has no control .
The processor identifiers are common knowledge . At any point in the execution of the protocol
processors may fail . There is no restriction on the behavior of faulty processors, and we do not
assume the existence of authentication mechanisms . However, a correct processor can always
correctly identify the source of any message it receives . This is the standard "unauthenticated
Byzantine" fault model .

Processing is completely synchronous . Not only do the processors communicate in synchronous
rounds of communication, but they all begin processing at the same round . We refer to this round
as round 1 .

In the Byzantine agreement problem, one distinguished processor, called the source, begins
with a single initial (input) value v drawn from a finite set V. Without loss of generality we
assume 0 E V . We view V 1 as constant . (If IV I is very large we may apply techniques of Coan [5]
to convert the set to two elements, at the cost of two rounds .) The goal is for the source to
broadcast v and for all other processors to agree on the value broadcast . That is, at some point
in the computation each correct processor must irreversibly decide on a value . The requirements
are that no two correct processors decide differently, and that if the source is correct then the
decision value is the initial value of the source .

An n-processor algorithm for Byzantine agreement has resilience t if correct processors fol-
lowing the algorithm are guaranteed to reach Byzantine agreement provided the number of faulty
processors does not exceed t . No noncryptographic protocol for Byzantine agreement can tolerate

rs] faults [11] . Thus, since the problem is trivial for t = 0, we will assume from now on that the
resilience to be achieved is at least 1 and the number of processors is at least 4 .

2

3 The Exponential Algorithm

In this section we describe an algorithm similar to the original Byzantine Agreement algorithm
of Pease, Shostak, and Lamport [11] . A descriptive, but cumbersome, name for our algorithm
is "Exponential Information Gathering with Recursive Majority Voting ." Henceforth we refer to
this algorithm as "the Exponential Algorithm." The algorithm requires n > 3t + 1 .

In the Exponential Algorithm each processor maintains a dynamic tree of height at most t
(each path from root to leaf contains at most t + 1 nodes), called the Information Gathering

Tree . The nodes of the Information Gathering Tree are labelled with processor names as follows .
The root is labelled s, for source . Let a be an internal node in the tree . For every processor
name p not labelling an ancestor of a, a has exactly one child labelled p . With this definition no
label appears twice in any path from root to leaf in the tree . Thus, we say this tree is without

repetitions . Henceforth, a sequence is an ordered list of at most t + 1 distinct processor names,
beginning with s . We use Greek letters to denote (possibly empty) sequences and Roman letters
to denote individual processors . We often refer to a node in the tree by specifying the sequence
of labels encountered in traversing the path from the root to the node . Let a be such a sequence .
The length of a, denoted jal, is the number of names in the sequence . Note that if a is an internal
node then a has n - lal > 2t + 1 children. The processor corresponding to node a is the processor
whose name labels node a, i .e ., the last processor name in the sequence a . The Information
Gathering Tree maintained by processor p is called Creep .

The exponential Algorithm is split into two phases : Information Gathering, and Data Con-
version .

Information Gathering :

In the first round of the Exponential Algorithm the source sends its initial value to all n - 1 other
processors, decides on this value, and halts . We now describe the protocol for processors other
than the source . For each 1 < h < t + 1, the Information Gathering Tree at the end of round h
is called the round h tree, and is of height h - 1 . 1

Let p be a correct processor . When p receives its message from the source, it stores the received
value at the root of its tree . A special default value of 0 E V is stored if the source failed to send
a legitimate value in V . For 1 < h < t, at round h + 1 processor p broadcasts the leaves of its
round h tree . Upon receipt of these messages, each processor adds a new level to its tree, storing
at node s . . . qr the value that r claims to have stored in node s . . . q in its own tree . Again, the
default value 0 is used if an inappropriate message is received . Thus, intuitively, p stores in node
s . . . qr the value that "r says q says . . . the source said" (see Figure 1) . We refer to this value as
treep(s . . . qr), eliminating the subscript p when no confusion will arise. Information is gathered

'By convention, the height of an empty tree is -1 .

3

Figure 1 : The Information Gathering Tree

for t + 1 rounds . This completes the description of the Information Gathering phase . The value
stored in treep (s) (i .e ., at the root) is called the preferred value of p.

Data Conversion :

During this phase each correct processor p applies a recursive function to Creep to obtain a new
preferred value . The value obtained by applying the conversion function to the subtree rooted at
a node a is called the converted value for a . The specific data conversion function, resolve, used
in the Exponential Algorithm is essentially a recursive majority vote and is defined as follows for
all sequences a :

tree(a) if a is a leaf;
resolve(a) =

	

v

	

if v is the majority value of resolve applied to the children of a ;
0

	

if a is not a leaf and no majority exists .

The value obtained by processor p in computing resolve(a) is denoted resolve p (a) . We occasion-
ally drop the subscript p when no confusion will arise . Summarizing, we have :

The Exponential Algorithm :

1 . Gather information for t + 1 rounds ;

4

2 . Compute the converted value for s using the data conversion function resolve ;

3 . Decide on this converted value .

We now give a proof of correctness for this algorithm . After data conversion, a node a is
said to be common if each correct processor computes the same converted value for a . Thus, the
algorithm is correct if and only if both of the following conditions are satisfied :

•

	

node s is common in every execution, i.e ., for all correct p and q, resolve p(s) = resolve q(s) ;

•

	

when the source s is correct, resolvep(s) = treep(s) for every correct processor p .

Recall that if p is correct, then treep (s) is precisely the value received from the source during
the first round . Thus, the second condition implies that if the source is correct then all correct
processors, including the source, decide on the source's initial value .

The following lemma is more general than is necessary to prove correct the Exponential Al-
gorithm so that we can use it later, in the proofs of correctness of our families of algorithms .

Lemma 1 (Correctness Lemma) For any 1 < h < t + 1, consider the Information Gathering

Tree after h rounds of Information Gathering., Let a = 8q be a sequence of length at most h

in which 1,81 > 0 and q is correct . If data conversion is applied to the h-round tree, then there

is a value v such that a is common with converted value v and, for every correct processor p,

treep(a) = v .

Proof: Throughout the proof, let p be a correct processor . Note that since q is correct, treep (a) =
tree q (,3) . If ,Q is empty then q = s . In this case, we interpret tree,(,3) to be the source's initial
value .

The lemma is proved by reverse induction on the length of a . If lal = h then, since a is a
leaf, resolvep(a) = tree p (a) for all correct processors p . Thus, a is common .

Assume the lemma for sequences of length k, where 1 < k < h . Let a be a sequence of length
k - 1 . Let r 0 a be a correct processor . By induction, resolvep(ar) = treep (ar) . Moreover, since
p, q, and r are all correct,

treep(ar) = tree,.(a) = tree q(f3) = treep (a) .

Thus, all but t of the children of a in treep have common converted value equal to treep(a) .

However, since a is internal it has at least 2t + 1 children, hence resolvep(a) = treep (a) . This
completes the proof .

From the Correctness Lemma (with h = t + 1 and a = s) we immediately have

5

Claim: If the source is correct then after data conversion s is common and Tesolvep(s) = tree p (s)

for all correct processors p .

There are at most t faulty processors and every path in the Information Gathering Tree is of
length t + 1, so every path from root to leaf contains a correct processor . It therefore follows by
the Correctness Lemma that every path contains a common node, independent of the correctness
of the source . When every root-to-leaf path contains a common node we say the Information
Gathering Tree has a common frontier . It remains to show that the existence of a common
frontier guarantees agreement. This is immediate from the following lemma .

Lemma 2 (Frontier Lemma) If there is a common frontier, then s is common .

Proof : To prove the Frontier Lemma, we prove the following, more general, claim :

Claim : Let a be a node . If there is a common frontier in the subtree rooted at a, then a is

common (i .e ., a itself constitutes a common frontier of the subtree) .

To prove the Claim, suppose it failed in some execution of the algorithm and suppose a were
a counterexample of maximal length : thus a would not be common but the subtree rooted at
a would have a common frontier . If the subtree rooted at a leaf has a common frontier, then
the leaf is common . Hence, a cannot be a leaf. If a subtree has a common frontier, either its
root is common or the subtree rooted at each child of its root has a common frontier . Hence,
by the length maximality of a, each of its children is common . But then every correct processor
computes the same value for resolve(a), and a is common, contradicting the assumption that a

is not common .

In light of the above discussion we have the following proposition .

Proposition 1 The Exponential Algorithm reaches Byzantine agreement in t + 1 rounds provided

n>3t+1 .

We have shown that this simple variant of the original algorithm of Pease, Shostak, and Lam-
port reaches Byzantine agreement in the optimal number of rounds [9] . Despite the simplicity of
the algorithm, the message size and the amount of local computation required grow exponentially
in t . More specifically, for any 1 < h < t+1, the h-round Information Gathering Tree has O(nh-1)

leaves, yielding messages of size O(nh-1) in round h + 1 . Later, we will show how, for any chosen
bound nk on message length, 2 < k < t, we can modify the Exponential Algorithm to require
message length, local space, and local computation at most O(nk) . The main idea is to run the
Exponential Algorithm for k rounds, and then to apply a shift operator involving data conversion
to reduce message size and tree size back to O(1) . This is repeated roughly k_o(1) times. Thus,
there is a penalty paid in time, but message length, local storage, and local computation time are
all bounded by nk . However, before we can apply shifting, we must modify the algorithm and
prove that the modified algorithm exhibits three important properties, persistence, fault detection,

6

and fault masking, which we now describe .

Recall that treep (s) is called the preferred value of processor p . In the Exponential Algorithm,

a processor's preferred value changes at most once . However, this will not be the case in our

later algorithms . Persistence says that if sufficiently many correct processors prefer v, then

this situation persists, and moreover, the eventual decision value will be v . In the case of the

Exponential Algorithm this says merely that if sufficiently many correct processors prefer a value

v then v will be the decision value .

During the execution of our algorithms, it may sometimes be possible for a correct processor p

to deduce that some other processor q is faulty. In the modified Exponential Algorithm and in all

our future algorithms, each processor p maintains a list Lp of processors known to be faulty. Exact

details of when processors are added to these lists are discussed below . We say a faulty processor is

globally detected if all correct processors have discovered it to be faulty . (We distinguish between

discovery, which describes the action of a single processor, and global detection, in which all

correct processors have discovered the same faulty processor . These discoveries need not take

place simultaneously .) A fault that has not been globally detected is said to be undetected .

Processor p ignores messages from processors it knows to be faulty (i.e ., processors in the list

Lp) . Thus, the actions of globally detected processors are essentially masked. Later we will see

that the global fault detection and fault masking properties allow us to shift from an algorithm of

high resilience down to one of lower resilience if many faults have occurred early in the execution,
while the persistence property allows us to shift down if there were few faults early, despite the

fact that more faults may occur later .

Lernma 3 (Persistence Lemma) For any h such that 1 < h < t + 1, if all correct processors

have the same preferred value v, then after conversion is applied to the h-round tree, s is common

and has converted value v .

Proof: By the Correctness Lemma, children of s corresponding to correct processors with pre-
ferred value v will be common with converted value v after conversion using resolve . Thus, all

correct processors will compute resolve(s) = v .

The value v described in the Persistence Lemma is called a persistent value. We remark that,

due to the specific choice of conversion function resolve, the Persistence Lemma holds even if the

correct processors sharing the same preferred value simply constitute a majority of all processors .

We refer to this fact as the Strong Persistence Lemrna . The Strong Persistence Lemma will

be used in proving correct our hybrid algorithms .

We modify the Exponential Algorithm by giving each processor p an extra data structure, Lp

(the subscript is omitted when no confusion will arise) . Lp , initially empty, contains the names of

processors that p has discovered to be faulty by applying the Fault Discovery Rule stated below .

We note that if a processor misbehaves in a way not discussed in the Fault Discovery Rule, then

7

p can "observe" this fact ; our algorithms simply do not take advantage of this extra information .

Let p be any processor . For every internal node ,Q in Creep , a value stored at a strict majority
of the children of ,6 is called the majority value for ,Q .

Fault Discovery Rule : Let p be a correct processor . During Information Gathering, a processor
r not already in LP is added to Lp if for some internal node ar in Creep

a there is no majority value for ar or

•

	

a majority value for ar exists but values other than the majority value are stored at more
than t - l Lp l children of ar corresponding to processors q ~ Lp.

Processor r is added to LP in the round in which the conditions of the Fault Discovery Rule
are first satisfied, specifically, at the end of round larl + 1 (before round larl + 2 of Information
Gathering) .

If at most t processors fail and LP contains only faulty processors, then any processor added
to LP under the Fault Discovery Rule is necessarily faulty . Since the Lp are initially empty, no
correct processor p ever puts the name of a correct processor into Lp .

Lemma 4 (Hidden Fault Lernma) Let p be a correct processor and let ar be any internal node

in Creep . Let Ic = larl . If all the processors in ar are faulty, but r ~ Lp after round k + 1 (i.e .,

after p stores values at the children of ar), then there exists a majority value for ar, and the

set of children of ar at which its majority value is stored contains at least n - 2t + ILp l nodes

corresponding to correct processors .

Proof: By assumption, correct processor p does not put r into Lp after it stores values at the
children of ar . Hence p has a majority value v for ar, and v is stored at all children of ar not
corresponding to processors in Lp, except for at most t - lLp l processors . Since all processors in
ar are faulty, there are at least n - t correct processors corresponding to children of ar. Since
no correct processor is in LP, there are at most t - ~ Lp I children arq of ar such that q is correct
and treep(arq) 0 v . Thus the number of children of ar with stored value v that correspond to
correct processors is at least n - t - (t - lLpl) = n - 2t + I Lp l .

Let p be a correct processor and q a faulty processor . An agreement protocol must be able to
tolerate any behavior of q, provided the resilience of the protocol is not exceeded . In particular,
if q were always to send zeros to p, regardless of what q should be sending, the protocol should
still work . We exploit this property in the following Fault Masking Rule .

Fault Masking Rule : If q is added to L in round k, then any messages from q in round k and
any subsequent round are replaced by messages in which each value is the default 0 .

8

It is worth commenting on the relative ordering of Fault Discovery and Fault Masking . When
the round k messages are received, messages from processors added to Lp before round k are
masked. Fault Discovery is performed on the resulting round k tree . Newly discovered faulty
processors are added to Lp . Finally, the round k messages of these newly discovered processors
are also masked . Note that although p masks the round k messages of q, it does not change any
portion of its round k - 1 tree. (Thus, it only changes the portion of its tree that it has not yet
sent to other processors .)

Intuitively, once a processor p discovers that q is faulty, it "acts as if" q sends only zeros . Under
the Fault Masking Rule, once a processor has been globally detected, it is essentially forced to
send the same values (zeros) to all correct processors . We assume for the rest of this paper that
the fault discovery and fault masking rules are applied in each round of Information Gathering .
Since s never sends after round 1, Fault Masking is never used to fill in the root, tree(s) (although
if s fails to send in round 1 the default value is assumed) .

4 Shifting

Roughly speaking, shifting involves changing, mid-execution, from running one algorithm to run-
ning a different algorithm, or to running the same algorithm but from a different point or round
number. Thus,

Definition 1 A shifting is an operator shi ftk_ 3 that uses some conversion process to change

a subset of the data structures appropriate to the end of round k of one algorithm into those

appropriate to the end of round j of another (possibly the same algorithm .

To specify a shift operation she ft k,j we need only specify the original algorithm, the conver-
sion process, and the target algorithm . Each of our families of algorithms is obtained by repeated
shifting into the same algorithm . The hybrid algorithms are obtained by shifting from a member
of one family to a member of the second family .

Henceforth, by "Exponential Algorithm" we mean the Exponential Algorithm modified for
fault discovery and fault masking . All our algorithms are derived from the Exponential Algo-
rithm by applying the shifting technique . In each case there is a principal data structure, the
Information Gathering Tree, and some auxiliary data structures (e.g . the lists E P of faulty pro-
cessors discovered by p), all of which tend to get larger as execution progresses . The strategy is to
run the Exponential Algorithm for some specified number k of rounds (k is usually a parameter
of the algorithm), building the principal and auxiliary data structures . The round k principal
data structure (generally large) is then converted to a round j data structure, where j < k, so

that during conversion the structure shrinks . The auxiliary data structures generally remain un-
changed. After conversion, we execute the Exponential Algorithm from round j + 1 but using the

9

unconverted auxiliary data structures, possibly shifting again when the principal data structure
again is as in round k .

Our algorithms are proved correct by showing that in any phase (i.e ., between successive
shifts), either a persistent value is obtained or some number of new faults are globally detected
and thereafter masked . This part makes use of the Hidden Fault Lemma and some of its corol-
laries. Intuitively, the algorithm need only be run for sufficiently many phases for all t faults to
be detected, since globally detected faults cannot prevent the emergence of a persistent value .
Persistence Lemmas are used to show that, once obtained, a persistent value remains persistent .

Our two families of algorithms require n > 3t + 1 and n > 4t + 1, respectively, to tolerate t

faults. Since we wish to keep n fixed, we define

tA=
L n 3 1J

	

tB=
Ln 4 1J

	

tc=

Theorem 2 For 2 < b < t, Byzantine agreement can be achieved in the presence of t < to faults

in t + 2 + 2
Lb2,

rounds of communication, using messages of O(nb) bits. Furthermore, the

amount of local computation time at each processor is 0 (nb+ b-21 (t_i))

Theorem 2 is proved by constructing a family of algorithms, indexed by b, by repeatedly applying
shi ftb+i,i to the Exponential Algorithm . In this family, if a persistent value is not obtained in
a given block of b rounds, then the number of new faults globally detected is at least b - 2 (this is
why the time bound is infinite when b = 2, since in this case there is no guarantee of progress) . In
the family of algorithms constructed for the next theorem, the number of faults globally detected
in a block of b rounds is at least b - 1 (the theorem therefore only holds for b > 1), but the overall
resilience is lower .

Theorem 3 For 1 < b < t, Byzantine agreement can be achieved in the presence of t < tB faults

in t+1+ 1 b-1 1 rounds of communication, using messages of O(nb) bits. Furthermore, the amount

of local computation time at each processor is 0 (nb+ b-1
1
(t-1

))

In Subsection 4.3, we will describe a third algorithm, based largely on the algorithm of Dolev,
Reischuk, and Strong [7], but recast in terms of the techniques developed in this paper . Blocks of
this third algorithm consist of single rounds, and at each round if no new fault is globally detected,
then something that functions like a persistent value is obtained . However, the resilience is very
low .

Theorem 4 Byzantine agreement can be achieved in the presence of 2 < t < tc faults in t +
1 rounds of communication, using messages of 0(n) bits . Furthermore, the amount of local

computation time at each processor is at most 0(n 2 .5) .

We first describe Algorithm B, the family of algorithms of Theorem 3, since it is most easily
obtained from the Exponential Algorithm . Algorithm A, the family of Theorem 2, is similar, but
its analysis is more subtle .

10

Algorithm B(b) :
Execute the Exponential Algorithm for 1 round ;
DO

Lb-1
times

Execute rounds 2 through b + 1 of the Exponential Algorithm ;
{ comment shi f tb+1-+1 f

tree(s) = Tesolve(s) ;

OD
IF b - 1 does not divide t - 1 then

Execute rounds 2 through 1 + t - (b - 1)
Lb-1 J

of the Exponential Algorithm ; FI

Decide resolve(s) ;

	 Figure 2 : AlgorithmBwith Parameterb < t (tand n Fixed)

4 .1 Algorithm B

Let t < tB = Ln41J . Algorithm B has parameter b, which is the maximum number of rounds
(after round 1) in any block. We require 1 < b < t . If b = t, then Algorithm B is just the
Exponential Algorithm . Henceforth, we assume b < t . In this case, Algorithm B is simply the
repeated application of shi ftb+1,1 to the Exponential Algorithm until the total number of rounds
of communication completed is t + l + L bb11 (one fewer round is needed when (b -1) (t -1)) . The
algorithm appears in Figure 2 . Data conversion is accomplished by applying the resolve function
of the previous section to obtain a converted value for s .

After the initial round, Algorithm B repeats blocks of b rounds. We could use 4111 such
blocks ; but we optimize the number of rounds in the last block so that Algorithm B uses an
initial round, Lb1 blocks of b rounds, and, if b - 1 does not divide t - 1, one final block with

t - (b - 1) Lb=i1 rounds. The total number of rounds is therefore in the worst case

1+b lb-1J +t-(b-1) [b-1J =1+t+ lb-1J

Claim 1 The proofs of the Correctness, Frontier, Persistence, and Hidden Fault Lemmas (Lem-
mas 1-4 respectively) hold verbatim for executions of Algorithm B .

If the number of faults is bounded by tB, then the Hidden Fault Lemma has an important corollary .

Corollary 1 Let ar be an internal node in an Information Gathering Tree of Algorithm B and

let q be a correct processor . If all processors in ar are faulty, and if, when the children of ar are

stored in tree q , q does not discover r by the Fault Discovery Rule, then ar is common .

1 1

I

Proof : If correct processor q does not discover r to be faulty, then, by the Hidden Fault Lemma,
there is a majority value for ar in tree, and it is stored in at least

n - 2tB + JL q J > n - 2tB > (n - 1)/2

children of ar corresponding to correct processors, (recall, n > 4tB) . Thus, by the Correctness
Lemma and the definition of resolve, ar must be common .

Later, in constructing the hybrid algorithms, we will want Corollary 1 to hold after shifting
into Algorithm B . The hybrid algorithm must tolerate up to to > tB faults, but the proof of the
Corollary relies on the fact that t < tB . Note, however, that if 1L q 1 is sufficiently large, then
n - 2t,y + JLg I > (n - 1)/2 . The trick will be to shift into Algorithm B only after sufficiently
many faults have been globally detected (and hence, the sets Lq are large), or a persistent value
has already been obtained . In the latter case the Strong Persistence Lemma will ensure that the
persistent value remains so after the shift .

Proposition 2 Algorithm B achieves Byzantine agreement with the bounds on resiliency, message

length, local computation time, and number of rounds of communication stated in Theorem 3 .

Proof : The bound on number of rounds is proved in the discussion immediately preceding
Claim 1 . We now argue correctness . Consider the (b + 1)-round Information Gathering Tree
of any block. If there is a common frontier, then, by the Frontier Lemma, after conversion s
is common and its converted value is persistent . By the Persistence Lemma, a persistent value
remains so even in subsequent blocks . In particular, if the source is correct then at the end of
round 1 all correct processors prefer the same value, to wit, the value that the source broadcasts
in round 1, so this value is persistent .

If, in the (b + 1)-round Information Gathering Tree of some block there is no common frontier,
then by definition there is a path p from root to leaf containing no common node . By the
Correctness Lemma, all processors corresponding to nodes in p are faulty . By Corollary 1, the
faults corresponding to internal nodes of p are all globally detected .

Except for the source, which is repeatedly detected, once a processor is globally detected, nodes
corresponding to it in the Information Gathering Trees of subsequent blocks will be common . This
is because faults other than the source are masked according to the Fault Masking Rule .

Note that after the initial round, Algorithm B repeatedly runs b rounds of Information Gath-
ering followed by conversion using resolve . Each block of b rounds that produces trees without a
common frontier results in the global detection of at least b - 1 new faults besides the source .

There are two cases, according to whether or not b - 1 divides t - 1 . If b - 1 does not divide
t - 1 then let us write t - 1 = (b - 1)x + y, where x and y are nonnegative integers and y < b - 1 .

(Note that x = Lb-i J is the number of iterations of the main loop .) After the first 1+bx rounds of
Algorithm B, if no persistent value has been obtained, then 1 + (b - 1)x faults have been globally

1 2

detected . Rewriting the last equation we have t - y = 1 + (b - 1)x . Thus, after 1 + bx rounds,

if no persistent value has been obtained then t - y faults have been globally detected . Therefore,

after an additional y + 1 rounds followed by conversion using resolve, s must be common by the

Persistence and Frontier Lemmas . Since in this case Algorithm B uses exactly 2 + bx + y rounds,
algorithm B reaches Byzantine agreement in the presence of up to i faults .

Suppose b - 1 divides t - 1, and consider the final iteration of the loop in an execution of
Algorithm B . If on beginning this iteration the source is already common, then by the Persistence
Lemma s will be common at the end of the iteration . If the source is not common, then at most

b - 1 faults other than the source are not globally detected before the final iteration begins. Thus,

including the source (which is undetected if b = t and will be redected otherwise) there can be at
most b undetected faults just before this last iteration begins . But the tree constructed in the last

iteration is an h + 1 round tree, and thus will have a common frontier, whence by the Frontier
Lemma s will be common after data conversion at the end of this last iteration .

To prove the bounds on message length and local computation time, note that messages sent at
the beginning of the last round of each block of b rounds (the largest messages) carry information

about trees with 0(nb) leaves . Thus messages for Algorithm B carry at most O(nb) bits. For

each block of b rounds, the algorithm requires O(nb+1) local computation, so the entire execution

requires 0 (n1+1
(bi)) local computation at each processor .

4 .2 Algorithm A

Let t < to = ["31 j . Algorithm A has parameter b, which is the maximum number of rounds

of Information Gathering (after round 1) in any block . We require 2 < b < t . If b = t, then

Algorithm A is exactly the Exponential Algorithm with a different data conversion function,
resolve', described below . Henceforth, we assume b < t . In this case, Algorithm A is the repeated

application of shiftb+1,1 to the Exponential Algorithm, using data conversion function resolve',

defined as follows :

resolve'(a) =

tree(a) if a is a leaf ;
if v is the unique value in V occurring at least t + 1 times in applying
resolve' to the children of a;

if a is not a leaf and no such unique value exists .

The definition of resolve' introduces a new value, 1. ~ V . Although used during the conver-
sion process, 1 is never used in the Information Gathering phase itself . If, at the end of some

conversion, resolve'' (s) = 1 for some correct processor p, then p uses the default value (0) as its

new preferred value .

Algorithm A uses an initial round, [b-21 blocks of b rounds, and, if b - 2 does not divide t - 1,

1 3

one final block with t + 1 - (b - 2) 1b2j rounds, for a total of t + 2 + 2 Lb=2J rounds .

Claim 2 The Correctness, Frontier, Persistence, and Hidden Fault Lemmas (Lemmas 1-4 re-

spectively) hold for executions of Algorithm A .

Proof : The proofs of the Correctness, Frontier, and Persistence Lemmas given above hold for
Algorithm A with "resolve" replaced by "resolve'" . The proof of the Hidden Fault Lemma
requires no changes .

Remarks :

1 . Using the Correctness and Frontier Lemmas, it is easy to show that the Exponential Al-
gorithm reaches Byzantine agreement in t+1 rounds with resolve' instead of resolve as
conversion function .

2 . Since I is never used during Information Gathering, if p and q are correct then by the
Correctness Lemma, resolvep(aq) ,A 1. In other words, the converted value of a node
corresponding to a correct processor is never 1 .

Recall that Corollary 1 to the Hidden Fault Lemma said that if an internal node is not
common then its corresponding processor is globally detected . The proof of Corollary 1 relied on
the assumption that the number of faults does not exceed tB . Something slightly weaker than
Corollary 1 holds even if the number of faults reaches tA . Moreover, this weaker result can be
used to show that Corollary 1 does hold for all nodes of height at least 2 in the presence of up to
to faults. Specifically, we have the following corollary to the Hidden Fault Lemma .

Corollary 2 Let 2 < h < t + 1 . Let ar be an internal node in an h-round Information Gathering

Tree of Algorithm A, and let all processors in ar be faulty . If, when data conversion is applied to

the h-round tree, two correct processors p and q obtain different converted values for ar, neither

of which is L, then r E L p n L q at the end of round jarl + 1 .

Proof : Assume correct processors p and q obtain different converted values for ar, neither of
which is 1 . Suppose, for the sake of contradiction, that r ~ Lp at the end of round Jarj + 1 . By

the Hidden Fault Lemma, there is a value v such that for at least n - 2t + ILp j correct processors
w, treep(arw) = v . By the Correctness Lemma, these children are common and all correct
processors (including p and q) have converted value v for each of them . Since t < tA, there are
at least t+1 such children w . Thus resolve'' (ar) E {v,1}, contradicting the assumption that
resolve'q(ar) ~ {resolve' (ar), 1} .

	

I

In order to obtain the result of Corollary 1 for internal nodes of height at least 2 (in the

presence of to faults), we increase the power of the Fault Discovery Rule by applying it during
the conversion process .

1 4

Fault Discovery Rule During Conversion : Let p be a correct processor . During conversion,

p adds r ~ Lp to Lp if, for some internal node aT corresponding to r,

•

	

there is no majority value among the converted values for the children of ar or

•

	

a majority value v exists, but for more than t - ~Lp I processors q ~ Lp , resolvep(arq) 0 v .

Corollary 3 Let ar be an internal node, but not the parent of a leaf, in an Information Gathering

Tree of Algorithm A. If all processors in ar are faulty, and if some correct processor q does not

discover r either by the Fault Discovery Rule or the Fault Discovery Rule During Conversion,

then ar is common .

Proof : Since q does not discover r during Conversion, there is a value v such that resolve q(ar) =

v and q has at most t-1L.1 children of ar corresponding to processors not in Lq that have converted
values other than v . Thus, for at most t children w of ar we have resolve'q(arw) :A v. Let z ~ Lq

be such that resolve q(arz) = v, and let p be any correct processor different from q . If z is faulty,
then by Corollary 2 resolvep(arz) E {v,1}, while if z is not faulty then by the Correctness Lemma
resolve,(arz) = v . Thus, for at most t children w of ar we have resolvep(arw) 0 {v,1} . Thus, p

sees at most t support for any non-1 value u 0 v . Moreover, by the Hidden Fault and Correctness
Lemmas, all correct processors, including p, see at least t + 1 support for v, so resolve'p (ar) = v .

I

Proposition 3 Algorithm A achieves Byzantine agreement with the bounds on resiliency, mes-

sage length, local computation time, and number of rounds of communication stated in Theorem 2 .

Proof : If the source is correct then after Round 1 all correct processors prefer the same value,
so by the Persistence Lemma, s will be common with converted value v after conversion .

As in the proof of the previous proposition, if there is a common frontier then s is common .
We therefore discuss only the case in which the source is faulty and the b + 1-round Information
Gathering Tree contains a path p containing no common nodes . Once again the Correctness
Lemma implies that all processors corresponding to nodes on p are faulty . By Corollary 3, for
every internal node ar of p other than the parent of the leaf, processor r is globally detected. As
before, except for the source, which is repeatedly detected, once a processor is globally detected,
nodes corresponding to it in the Information Gathering Trees of subsequent blocks will be common
with converted value 0, the default value used in Fault Masking .

In analyzing the running time of Algorithm A there are two cases, according to whether or
not b - 2 divides t - 1 . Since the analysis is so close to that of Algorithm B, we discuss only the
case in which b - 2 does not divide t - 1 . After the initial round, Algorithm A repeatedly runs
b rounds of Information Gathering followed by conversion using resolve' . Each block of b rounds
that produces trees without a common frontier results in the global detection of at least b - 2

1 5

new faults besides the source . For t < tA, let us write t - 1 = (b - 2)x + y, where x and y are
nonnegative integers and y < b - 2 . (Note that x = LbZ, .) After 1 + bx rounds of Algorithm A,
either s is common or there are at most y faults not globally detected . After an additional y + 2

rounds followed by conversion by resolve', s must be common by the Persistence and Frontier
Lemmas . Since Algorithm A uses exactly 3 + bx + y rounds, Algorithm A reaches Byzantine
agreement in the presence of up to t faults .

To prove Theorem 2, let 2 < b < t < tA . Then algorithm A with parameter b achieves
Byzantine agreement in at most

1+b [b-2]
+t+1-(b-2)

1b-2i
-t+2+2

[b-2]

rounds of communication . Messages sent at the beginning of round b + 1 carry information about
trees with O(nb) leaves . Thus messages for Algorithm A carry at most O(nb) bits . For each block
of b rounds, the algorithm requires O(nb+l) local computation, so the entire execution requires
0 (nb+l (b_2)) local computation time at each processor .

4.3 Algorithm C

In this subsection we modify a theorem of Dolev, Reischuk, and Strong, and recast their (modified)
theorem in terms of shifting . Our proof of the modified theorem follows the lines of the original
proof [7] .

Let tc = [,/n/2] . We will presently describe Algorithm C which, if t < tc, achieves the
bounds of Theorem 4 . Algorithm C will use an Information Gathering Tree in which each internal
node has exactly n children, one labelled with each processor name . Thus, in Algorithm C vertices
in the tree are sequences of processor names with repetitions, beginning always with s . Faults are
discovered using the Fault Discovery Rule during Information Gathering, which does not change
to reflect this new tree structure .

Consider first the following 3-round algorithm .

• Run Information Gathering for three rounds building a tree with repetitions, applying the
Fault Discovery Rule during rounds 2 and 3, and masking faults as soon as they are discov-
ered (i.e ., if faulty processor p is discovered in round i, then mask its round i messages) .

•

	

Reorder the leaves of the resulting 3 level tree by swapping the values stored in tree(spq)

and tree(sgp), for all q :A p .

After the reordering, the leaves in the subtree rooted at sq contain the values received from q

in round 3, unless q was discovered to be faulty, in which case these leaves contain the default
value 0 given by fault masking . Algorithm C is the repeated application of she ft3,2 to this

1 6

I

3-round algorithm until the entire execution has run for exactly i + 1 rounds . The conversion is
achieved by setting tree(sq) = resolve(sq) for all processors q . This results in a two-level tree. A
final application of shi ft2--,1i this time by setting tree(s) = Tesolve(s), yields the decision value .
Note that the Information Gathering Tree never has more than three levels . The children of the
root are referred to as intermediate vertices .

Claim 3 The Frontier and Hidden Fault Lemmas hold for Algorithm C when applied to the

3-round Information Gathering Tree before reordering . The Frontier Lemma also holds after

reordering.

Proof : The proof of the Frontier Lemma holds verbatim for Algorithm C, before and after
reordering . (Although the Frontier Lemma holds before and after reordering, we will only apply
it to the Information Gathering Tree after reordering, since we only apply data conversion after
reordering .)

The proof of the Hidden Fault Lemma requires only minor modifications . The modifications
are needed because in Algorithm C the Information Gathering Tree is constructed with repetitions ;

the proof is even easier in this case. (In fact, for Algorithm C the Hidden Fault Lemma holds
even without the condition that all processors in ar be faulty.)

The Correctness Lemma does not hold for Algorithm C, principally because of the reordering .
However, we do have a weaker version .

Lemma 5 (Correctness for Intermediate Vertices) For k > 3, let p be a correct processor

and let a = sp be an intermediate node . Then at the end of round k resolve q(a) = resolve r (a)
for all pairs of correct processors q, T . That is, all correct processors compute the same converted

value for a at the end of round k .

Proof: Consider the round k Information Gathering Tree of processor q after reordering. The
children of a are the values received from p in the current round . Since p is correct it sent the
same values to r, and since r is correct these values are stored correctly, after reordering, in tree, .

Thus, before conversion, for all w (correct or faulty), tree q(aw) = tree, (aw) and the lemma
follows .

Henceforth, by "preferred value at the end of round k" we mean the value that would be
obtained by computing resolve(s) just after reordering at round k, even though the algorithm
does not call for this computation . Accordingly, we say "s is common at the end of round V
if all correct processors hold the same preferred value for s at the end of round k. Note that
after applying shift3~ 2 processors do not broadcast their preferred values, but only the values
stored at the intermediate vertices . Thus, the Persistence Lemma as stated above does not hold .
However, we have an analogue .

Lemma 6 Let p be correct. Let k be the round number of any round of the algorithm . Consider

1 7

the following propositions :

1. at the end of round k, there exists a value v such that for strictly more than n/2 correct

processors r, we have treep (sr) = v;

2. at the end of round k, s is common with value v ;

3. if k + 1 is a round of the algorithm, then at the end of round k + 1 there exists a value v

such that treep(sq) = v for all correct processors q ;

4 . if k + 1 is a round of the algorithm, then at the end of round k + 1 there exists a value v

such that for strictly more than n/2 correct processors r we have tree p (sr) = v .

The following implications hold : (1) implies (2), (2) implies (3), and (3) implies (4) .

Proof : Note that "the end of round k" means "after tree(s) is obtained" if k = 1, "after

information gathering" if k = 2, and "after conversion" if k > 2 .

Observe that (4) follows immediately from (3) . Note that if k is not the last round then (4)

is simply (1) for round k + 1 . We now prove that (1) implies (2) and that (2) implies (3) . Once

this is done, we will have that if (1) holds for round k and k + 1 is also a round of the algorithm,

then (1) holds also for round k + 1 .

Assume (1). By assumption there exist v and more than n/2 correct processors r such that

treep(sr) = v at the end of round k . (Note that we must have k > 1 .) Thus, it is immediate that

v is the preferred value of p at the end of round k. We now show that (1) holds with p replaced

by any correct processor q, from which will follow (2) .

Fix one of the correct processors r given in the statement of the Lemma . Let q be any

correct processor . There are two cases to consider, according to whether or not k = 2 . If k = 2,

then treep (sr) is the value received from r in round k . Since r is correct, it sent to q the same

value, so at the end of round k, tree q (sr) = v . If k # 2, then the value stored in treep(sr) was

obtained by computing resolvep(sr) at the end of round k, and by Lemma 5 (with a = sr),

resolve q(sr) = resolvep(sr) . Applying the above argument to each of the more than n/2 correct

processors r such that treep (sr) = v, we see that at the end of round k indeed (1) is satisfied

for q . Thus, v is the common preferred value for s at the end of round k, proving (2) .

Now, assume (2) and assume that k + 1 is a round of the algorithm . If k = 1, then every

correct processor sends v in round 2 and (3) holds at the end of round 2 . Assume k > 1 . For all

correct q, after reordering at the end of round k + 1, the leaves of the subtree of treep rooted at

sq contain precisely the values stored at the intermediate nodes of treeq at the end of round k .

Since v is the common preferred value for s at the end of round k, a majority of these values

are v, whence resolvep(sq) = v, proving (3) .

1 8

The value v described in Lemma 6 is called a "persistent" value . Note that Lemma 6 actually
yields an analogue to the Strong Persistence Lemma, since its conditions merely require that
the value v be stored at more than n/2 intermediate vertices corresponding to correct processors
(rather than n - tc such nodes) . This will be important when we shift into Algorithm C in the
hybrid algorithm .

Proposition 4 Algorithm C achieves Byzantine agreement with the bounds on resiliency, mes-

sage length, and number of rounds of communication stated in Theorem 4 .

Proof : That Algorithm C has the stated running time, message length, and local computation
bounds is clear by inspection .

We will show that, after the first round of Algorithm C, if there is a round in which no new
fault is globally detected during Information Gathering, then a persistent value is obtained . We
will also show that a persistent value is obtained by the end of the earliest- round in which all t

faults are globally detected . The second claim is used to show that t + 1 rounds suffice even if
only one fault is discovered in each of rounds 2 through t + 1 .

In round 2, if the source is not globally detected, then some processor p does not discover the
source to be faulty. By the Hidden Fault Lemma, at least n - 2t + JLp J correct processors q had
treeq (s) = v after round 1, for some value v . For each of these n - 2t + JLp I correct processors q,

tree(sq) = v at the end of round 2, for every correct processor r . The conditions on t ensure
that n - 2t + JLpJ is a majority of the n processors, so condition (1) of Lemma 6 is satisfied . In
this case (in particular, if s is correct and has initial value v), then from round 2 on, s is common
with value v .

We now turn to the case in which the source is globally detected in round 2 . Consider the
first round k > 3 in which no new fault is globally detected. Let p be correct . Since the source
is globally detected in round 2, JLp I > 1 . Let w be a faulty processor not discovered by p by the
end of round k . Then there exists a value v such that for at least n - (t - ILpD > n - (t - 1)

processors q, treep (swq) = v before reordering in round k . Thus, there exist at most t-~Lp I < t-1

correct processors r such that treep (swr) :A v . Fix such an r, if one exists . Note that after
reordering, the subtree of treep rooted at sr differs from the subtrees of Creep rooted at a majority
of the intermediate vertices . This is because after reordering, for most q, treep(sgw) = v, while
treep(srw) $ v . In this case we say that "w distinguishes the subtree rooted at ST from the
majority."

We have already observed there can be at most t - ~Lp) < t - 1 processors r such that
undiscovered w can distinguish the subtree rooted at sr from the majority. Moreover, since s is
globally detected, there are at most t - JLp J < t - 1 undetected faults w . Thus, the undetected
faulty processors together can distinguish from the majority at most (t-JLp 1) 2 < (t-1)2 subtrees
rooted at vertices sr .

1 9

In particular, if q, r are correct and if, after reordering, the subtrees rooted at sq and sr are
not distinguished from the majority, then for all w, treep(sgw) = treep(srw), so resolvep (sq) _

resolve p(sr) . Thus for some value v for at least

rt-t-(t_ILpI) 2 >n-t-(t-1) 2

correct processors q, resolvep (sq) = v for all correct p . Since t < tc, this number is strictly
greater than n/2, so condition (1) of Lemma 6 is satisfied and a persistent value is obtained .

Finally, consider the earliest round k in which all t faults have been globally detected . After
fault masking and reordering, all leaves are common . If k = t + 1, then by the Frontier Lemma,
s is common so all correct processors decide on the same value . If k < t + 1, then the children
of s are common . This means s is common so condition (2) of Lemma 6 is satisfied . Thus by
Lemma 6, this common value persists from round k on .

4 .4 Shifting Between Algorithms

Although we defined shifting in full generality, we have so far only used the technique for shifting
between rounds of a single algorithm . In this section, we construct a tA-resilient agreement
algorithm by shifting from Algorithm A to Algorithm B and from there to Alglorithm C . We
call this new algorithm the hybrid algorithm . The existence of the hybrid algorithm is surprising,
since the resiliencies of Algorithms B and C are strictly less than tA , the actual number of faults
tolerated by the hybrid . The hybrid algorithm is faster and requires less local computation time
than Algorithm A, but has identical resilience, maximum message length, and space requirements .

The hybrid algorithm has one parameter, b, the maximum number of rounds (after round 1)
in any block . We will later compute two special values, tAB , and tAG . tAB will be chosen so
that it is "safe" to shift (from Algorithm A) into Algorithm B once tAB faults have been globally
detected or a persistent value has been obtained . Specifically, tAB is chosen so that if tAB faults
are detected before shifting into Algorithm B, then Corollary 1 to the Hidden Fault Lemma holds
after shifting into Algorithm B .2 Similarly, tAG will be chosen so that it is "safe" to shift into
Algorithm C once tAC faults have been globally detected or a persistent value has been obtained .

Let kAB denote the minimum number of rounds, such that after kAB rounds of Algorithm A,
either a persistent value has been obtained or at least tAB faults have been globally detected .

Let tBC = tAG - tAB , and let kBG denote the minimum number of rounds, such that after
kBC rounds of Algorithm B (after the shift into Algorithm B), either a persistent value has been
obtained or an additional tBC faults have been globally detected .

2 Recall, this corollary shows that if all processors in a sequence ar are faulty but r is not detected, then ar is
common, but the corollary is proved only for up to tB faults .

20

The HybridAlgorithm(b) :
{ comment Begin with Algorithm A }

Run Algorithm A with parameter b for exactly kAB rounds ;
{ comment Shift to Algorithm B}

trees) = Tesolve'(s) ;
Run Algorithm B with parameter b for exactly kBC rounds
beginning with round 2 ;

{ continent Shift to Algorithm C }
tTee(s) = resolve(s) ;
Run Algorithm C for exactly t - tAC + 1 rounds beginning with round 2 ;
Decide Tesolve(s) ;

	 Figure 3: The Hybrid Algorithm with Parameter b(tand u Fixed)

If we shift into the end of round 1 of Algorithm C with at most to - tAC undetected faults,
then only an additional to - tAC + 1 rounds are needed to obtain a common value (including one
extra round in which the source is rediscovered) . The total running time of the hybrid algorithm
will be kAB+kBC+tA - tAC+1 .

The hybrid algorithm appears in Figure 3 . We will first show how to compute kAB and kBc as
functions of tAB and tBC, respectively. We will then compute tAB and tAC (and therefore tBC) .

We now show how to choose kAB and kBC as functions of tAB and tBC, respectively. We begin
with kAB . The goal is to find the minimum number of rounds such that after execution of rounds
1 through kAB of Algorithm A, either a persistent value has been obtained or at least tAB faults
have been detected . Let us write

tAB - 1 = (b - 2)x + y,

where x and y are nonnegative integers and y < b - 2 . Note that x = It 13
2 1 J . After the first

1 + bx rounds of Algorithm A, if no persistent value has been obtained, then 1 + (b - 2)x faults
have been globally detected . Rewriting the last equation we have

tAB-y=1+(b-2)x .

Thus, after 1 + bx rounds, if no persistent value has been obtained then tAB - y faults have been
globally detected . To detect an additional y faults (or obtain a persistent value), it suffices to run
Algorithm A for an additional y + 2 rounds. Thus,

kAB = 1+bx+y+2

3+bx+y

21

= 3+bx+tAB-1-(b-2)x

= 2+tAB+2x

2+tAB+2I
tAB - 1

L b-2

We now turn to kBC . Recall that tBC = tAC - tAB • Intuitively, our goal is to shift into
Algorithm C with a persistent value or with at least tAC faults detected . If there is no persistent
value, then when we leave Algorithm A at least tAB faults have been globally detected, so while

in Algorithm B either a persistent value must be obtained or tBC new faults must be detected .

The analysis is similar to the one just performed for kAB, only this time we shift into the end of

round 1 of Algorithm B, while we began execution of Algorithm A at the beginning of round 1 .

Thus, we write

tBC=(b-1)x'+ y',

where x' and y' are nonnegative integers and y' < b - 1 . Note that x' = L J
. Recall that

tAB is chosen such that if tAB faults are detected (and thereafter masked) during execution of
Algorithm A, then Corollary 1 to the Hidden Fault Lemma holds after shifting into Algorithm B .
On the other hand, the Strong Persistence Lemma will guarantee that a persistent value found
in Algorithm A remains persistent after the shift . Thus, after bx' rounds of Algorithm B, if no
persistent value has been obtained, then (b-1)x' new faults have been globally detected . Running
Algorithm B an additional y'+ 1 rounds yields

kBC

Proof of the Main Theorem:

•

	

bx'+y'+1

•

	

bx'+tBC-(b-1)x'+1

•

	

1+tBC+x '

•

	

1 + tBC +
tBC

1b -1
.J

When a faulty processor is globally detected, its messages are masked, so its ability to prevent
emergence of a persistent value is destroyed . Thus, the intuition behind being able to shift from
Algorithm A to Algorithm B (and, later, down to Algorithm C) is that if, after some number
kAB of rounds, a persistent value has not been obtained, then the number of undetected faults is
sufficiently small that we can safely shift into the end of round 1 of Algorithm B . On the other
hand, if a persistent value has been obtained, then, by the Strong Persistence Lemma, we should
again be able to shift into the end of round 1 of Algorithm B, and the value obtained during the
first conversion in Algorithm B will be the persistent value .

It remains to determine the least tAB such that, when no persistent value has been obtained
during execution of Algorithm A, but tAB faults have been globally detected, then once we shift

2 2

into Algorithm B, Corollary 1 to the Hidden Fault Lemma can be applied as in the proof of
correctness of Algorithm B . This Corollary is critical because, speaking informally, it guarantees
that the adversary must allow b - 1 new faults to be detected in each block of b rounds that does
not result in a persistent value . The difficulty is that the Corollary is proved only for tB < to

faults, but to processors may actually be faulty .

Specifically, after the shift we require that, if ar is any internal node (with all processors in
ar faulty) and some correct processor does not discover r once it receives values for the children
of ar, then ar is common . As we now explain, this is achieved provided n - 2tA + tAB > [n2121

,
First, note that if tAB faults are globally detected then for every correct processor p, ~Lp I > tAB •

Let p be correct and let ar be an internal node . If all processors in ar are faulty but r ~ EP, then
by the Hidden Fault Lemma there is some value v such that v is stored in at least n - 2tA + I LP I >

n - 2tA + tAB children of ar corresponding to correct processors . By the Correctness Lemma,
these children are common . To guarantee that ar is common with converted value v, it suffices
that these children form a strict majority of the (< n - 1) children of ar . Thus, we need

n-1
n - VA + tAB >

	

2 ,

so we must take tAB -> [J2
Now we consider the shift after kAB + kBC rounds of A and B to the end of round 1 of

Algorithm C. First suppose a persistent value has been obtained by the end of round kAB + kBC •

This means that s is common in the converted round 1 tree and condition (2) of Lemma 6 is
satisfied. Note that Lemma 6 holds provided the faulty processors are a strict minority . Thus the
persistent value will be preserved through the end of the hybrid algorithm. Alternatively, suppose
that there are tAC detected faults at the end of round kAB + kBC . The proof of Proposition 4 for
the case in which the source is globally detected in round 2 holds when n - t - (t - ILp I) 2 > z for
any correct processor p. Since tAC is a lower bound on JLp J for all correct processors p, it suffices
for tAC to satisfy

) 2 >
n

n-tA-(tA-tAC

	

2 .

Solvin g for tAC, we obtain tAC > tA - V 2n-
2t" . Recall that n E J3tA + 1, 3tA + 2, 3tA + 3 so it

suffices for tAC to satisfy

tAC > 1tA -
/tA	

2
	 1 + 1 .

We shift into Algorithm C only after either a persistent value has been obtained or at least
tAC faults have been globally detected . Thus we run Algorithm C only an additional to - tAC + 1
rounds . In the first round after the shift (corresponding to round 2 of Algorithm C) the source
s may be redetected . Thereafter, at least one new fault is detected per round until a persistent
value is obtained . If all remaining to - tAC undetected faults become globally detected in round
k, then a persistent value is obtained by round k (see the proof of Proposition 4) .

23

Summarizing, let t = tA , and let tAB , and tBC = tAC - t4B be as in the above discussion .
The number of rounds required by the hybrid algorithm, when run with parameter b, is

kAB+kBC+t - tAC+1

•

	

2+tAB+2 L tb 211 +1+tBC+
I btBCJ +t-tAC+1

•

	

t+2Ltb 2 1 J+
I b BC

1J+(tAB+tBC - tAC)+4

•

	

t+2[t/2 -1
,
+ It/2- J(t+1)/2+1J

+4.b-2

	

b-1

5 Recent Results

Since the first appearance of these results [1], a number of agreement algorithms superseding our
algorithms have appeared in the literature . All those of which we are aware make use of some of
the techniques used in this paper . We briefly note some of these here .

Moses and Waarts obtained the first linearly resilient agreement algorithm with polynomial (in
n) communication complexity and local computation time, and requiring only t+O(1) rounds [10] .
Indeed, their algorithm runs in exactly t + 1 rounds. They have since improved the resiliency
slightly, with no cost in these measures . Although not based on the technique of shifting, their
algorithms rely heavily on the ideas presented in this paper, together with a new technique they
call "Coordinated Traversal ." Waarts informs us that it is possible to shift into both of the Moses
and Waarts algorithms [12] .

More recently, Berman, Garay, and Perry have obtained a t + 1-round agreement algorithm
requiring only n > 4t processors [2] . Considerably less complex than the Moses and Waarts
algorithms, Berman, Garay, and Perry's algorithm uses a strengthening of the fault masking
technique presented here, together with a simple and elegant technique of "Cloture Agreement ."
As the name suggests, cloture agreement is a primitive that makes it possible to close debate
and force an output at an early time. Since the underlying algorithm in Berman, Garay, and
Perry's work is again the Exponential Algorithm, it may be possible to shift into the Berman and
and Garay algorithm . Finally, Coan and Welch [6] have obtained optimally resilient agreement
algorithms running in time t + o(t) using a "modular" approach similar in spirit to our shifting
technique . Berman, Garay, and Perry have exhibited similar bounds [3] .

6 Concluding Remarks

We have constructed Algorithms A, B, and C and shown that it is possible to shift from A to
B and from B to C with resulting improvements in speed and resilience . When can we shift

24

from one algorithm to another in a way that provides a better combination of our performance
measures than that of either of the algorithms separately? We do not have explicit necessary or
sufficient conditions for such a successful application of shifting . We leave as an open question
the characterization in general of when it is safe to shift from one algorithm to another with a
given overall resilience .

Acknowledgements

The authors thank the referees for their in-depth reading of the paper and their numerous sug-
gestions .

25

References

[1]

[2] Berman, P. and Garay, J., and Perry, K . J ., "Towards Optimal Distributed Consensus,"
Proceedings of the Thirtieth Symposium on Foundations of Computer Science, pp . 410-

415, 1989 .

[3]

[5]

[6] Coan, B .A ., and Welch, J.L ., "Modular Construction of Nearly Optimal Byzantine
Agreement Protocols," Proceedings of the Eighth ACM Symposium on Principles of

Distributed Computing, pp . 295-305, 1989 .

Dolev, D ., Reischuk, R., and Strong, H.R., "Early Stopping in Byzantine Agreement,"
to appear in JACM, IBM Research Report RJ5406 (55357), 1986 .

Dolev, D. and Strong, H .R., "Authenticated Algorithms for Byzantine Agreement,"
SIAM Journal of Computing 12(4) (1983), pp . 656-666 .

Fischer, M . and Lynch, N ., "A Lower Bound for the Time to Assure Interactive Con-
sistency," Information Processing Letters, 1 .4(4) (1982), pp. 183-186 .

[7]

[8]

[9]

Bar-Noy, A., Dolev, D ., Dwork, C., and Strong, H .R., "Shifting Gears : Changing
Algorithms on the Fly to Expedite Byzantine Agreement," Proceedings of the Sixth

ACM Symposium on Principles of Distributed Computing, pp . 42-51, 1987 .

Berman, P. and Garay, J ., and Perry, K . J., "Recursive Phase King Protocols for
Distributed Systems," Technical Report 89-24, Department of Computer Science, The
Pennsylvania State University, August 1989 .

[4] Coan, B .A ., "A Communication-Efficient Canonical Form for Fault-Tolerant Dis-
tributed Protocols," Proceedings of the Fifth ACM Symposium on Principles of Dis-

tributed Computing, pp . 63-72, 1986 .

Coan, B .A., "Achieving Consensus in Fault-Tolerant Distributed Computer Systems :
Protocols, Lower Bounds, and Simulations," PhD Thesis, MIT, June 1987 .

[10] Moses, Y . and Waarts, 0 ., "(t+1)-Round Byzantine Agreement in Polynomial Time,"
Proceedings of the 29th Symposium on Foundations of Computer Science, pp . 246-255,

1988 .

[11] Pease, M ., Shostak, R., and Lamport, L., "Reaching Agreement in the Presence of
Faults," JACM 27(2), (1980), pp . 228-234 .

[12] Waarts, 0., private communication .

26

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27

