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Abstmct. Various synchronization primitives are described by adding and testing integer vectors, 
or by using “Petri Nets”. A slice represents a local behavior, described by permissible sequences of 
distinct actions of the system. 

We present a double characterization of slices defined by various synchronization primitives: In 
terms of generating sets and dually in terms of commutation properties. A typical form of a 
commutation property is: The set of sequences of past actions which disallow a certain coming 
action is closed under certain permutations. The synchronization primitives treated here include 
various systems which lie between PV and Vector Replacement Systems or Petri Nets. 

1. Introduction 

Various synchronization primitives can be described by adding and testing of 
integer vectors, each primitive imposes some restrictions on the form of the vectors. 
The study of the behavior of synchronization primitives leads to the study of slices or 
finite languages which are prefix closed. The letters of the alphabet 2 of the language 
represent actions of the form “test a vector and add a vector”. Words of the language 
represent feasible (non-blocked) sequences of actions. The restriction of slices means 
we consider only words composed of distinct letters. The papers of Lipton [ 11 9 121 
explain how and why the comparison of slices plays an important role in the study of 
synchronization primitives. 

We characterize the slices of: Vector Replacement Systems (VRS in short, due to 
Keller [ lS]), Unrestricted VRS (U-VRS, see Definition 2), Vector Addition Systems 
(VAS, see [9]), Petri Nets (PN, see [8]), variants of PN (see [5]), PVgeneral (PVg, see 
[4]) and PVmultiple (PVm, see [ 151). We extend the notion of generating sets ([6], 
see also [3]) and use commutation relations (see [l]) to characterize the slices which 
are generated by the above systems. 

By the definitions of VAS and VRS one can easily see that VAS C_ VRS (A c B 
means that every slice which is defined by the system A can be defined by the system 
B. If, moreover, there is a -slice which is not an A-slice then AsB). Lipton, Snyder 
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and Z&stein [ 141 proved VASsVRS (with respect to z-slices, which is a restricted 
family of slices). They also gave relations between some other synchronization 
primitives, but the relations between PVm, PVg and PVC (PVchunck, defined in [ 161) 
was left open in their work. In an earlier report [l] we proved PVg= PVmSPVc 
(again with respect to X-slices) and using commutation properties we also charac- 
terized C-slices of VAS, VRS, PN and Loopless-PN. In the present article we 
simplify the constructions and extend the characterization to general slices defined 
by the above systems. 

We prove the following results (in sense of slices): 
(i) Prefix-Permutable = Unrestricted-VRS = VRS = GPN = PN. A slice 7r is 

Prefix-Permutable is cy E r and cvcrti 7r implies per(a)& 7r, where per(a) is any 
permutation of cy. Definitions of the various commutation relations are given in 
Section 2 and those of systems in Section 3. 

(ii) Prefix-Abelian = VAS = Loopless-GPN = Loopless-PN. 
(iii) Prefix-Permutable-Bipolar = PVg = PVmSPVc. 
Henderson-Zalcstein [6] introduced the extended notion of slice and the notion of 

generating sets and characterized the slices of PV and PV, ; but their characterization 
of PV, was incorrect, as pointed out in [3]. After the present article w& submitted 
for publication, we learned of a manuscript of Henderson-Zalcstein [7], in which 
they obtained most of their characterizations we present here (including a correct 
one for PV,), but not including the most general prefix permutable ones. 

A car,imutation relation provides a convenient method of finding that a language 
of system A in included (or not included) in the language of system B, while 
generating sets, described below, are convenient for obtaining the complement, i.e., 
the forbidden sequences of ths systems. For instance, PV two-ways bounded (PVk, 
see [14]), can be seen to be Prefix Abelian, thus representable by VAS, contrary to 
the impression obtained from Fig. 6.1 in [ 141. 

An earlier version of the results represented here was presented in August 1977 in 
the Waterloo Conference of Theoretical Computer Science [2]. 

2. Slices 

In this section we define various types of slices derived by commutation relations 
and we prove some relations among them. We start by giving the notations we use in 
this paper. Let C be a finite alphabet, we let 2? be the set of all the words which are 
composed of distinct letters of C. In what follows, late lower case Greek letters 
denote elements of C. Early lower case letters denote words of X+. We denote by 
per(y) a word obtained by permuting the letters of y. 

We list some conventions used in the sequel. Let ar = ~1 - 9 l crk be a word in X’, 
then we denote the ith element of cy by ai; the length of a! by # a) ; the set of elements 
of QI by W(a); the i-prefix of cy (i.e., ~1 l l l oi) by ia, where ocy =A is the empty 
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word. Let 2 denote the integers, N denote the non-negative integers and (-N) the 
non-positive integers. 0 is the zero-vector and for s E 2” si denote the ith coordinate 
of s. Let s+ (s_) be the set of all the coordinates of the vector s with strictly positive 
(negative) values. 

Definition 1. A slice w over C is a prefix closed subset of Z+. If in addition C c_ 7~, the 
slice r is called a C-slice. 

Our “C-slice” coincides with “slice” in [ 11,121. Thus our results here are not 
directly an extension and an amplification of Lipton’s results. But in fact in our earlier 
report [l] we proved the results for C-slices. 

We are mainly interested in Prefix-Permutable slices because most previously 
defined synchronization primitives which were described in [14] (except 
Lock/Unlock, PVor, Bilogic and Program Schemata) give rise to Prefix-Permutable 
slices. 

Definition 2. A slice 7~ is called a Prefix-Permutable slice (P-slice in short) if for every 
CY, o and every per@) 

a t= n; ac& tr *per(a)& w. (2.1) 

Note that a PC-slice is called a commutative slice in [ 14). The prefix permutability 
property (2.1) extends to words p E C’ instead of symbols CT E 2, 

a! E rr, ap@ T *per(cu)p& v. 

Example 1. The following slice can easily be seen to be a P-slice. 

m = {A, a, 794% o”r, TU, pr, (+7p, mph 
The next notion will characterize the slices of VAS. 

Definition 3. A slice rr is called a Prefix-Abelian slice (PA-slice in short) if for every 
(YO E c’ and every per(cua), 

cy E n; cw& w * per(cYu) li w. (2.2) 

Property (2.2) is the abdian property. Intuitively it means that by reordering the 
operations we do not change the total result. The following lemma is obvious. 

Lemma 1. &ery PA-slice is a P-slice. 
Note the fact that in a PA-slice rr, 

The abelity condition is strictly stronger than (2.3). For instance, the slice 
{A, p, a, CM, ~7, p~u} satisfying (2.3), is a P-slice but is not a PA-slice. We prove later 
that VAS-slice is a PA-slice, therefore (2.3) is not sufficient for the characterization 
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of VAS-slices. Note that a C-slice which satisfies (2.3) and is a P&lice but is not a 
PAS-slice, contains at least five letters in the alphabet (an example is given in [l]). 

To obtain the PA-slice (abelian) we exhausted the full permutation group on the 
“history of the process”; to define stronger commutation relations we have to 
distinguish special properties of the letters (actions) of C, using the notion of movers 
which appears in [ 131. 

Definition 4. Let rr c_ 2’ and let u E X, we call a a right-mover with respect to n. if 
for every Q! E 2’ and 7 E 2, 

Similarly, we call D a left-mover with respect to IT, if for every cu and T, 

We define now the relation ‘“PB” which will characterize PVm-slices. 

Definition 5. Let Rcr : a + cm be the operation of right-attachment. A slice rr is 
called a Bipolar-slice if every element o E C is either a right-mover or the operation 
Ra preserves the slice, i.e., for every Q) 

aEn,imE~+*auE7T. (2.5) 

We let 21 be the set of all elements in C with Ro-property and denote & = Z\&. 
Note that every element in C, is a right-mover. Moreover, the following lemma is 
easily devived and is, in fact, equivalent to the above definition. 

Lemma 2. A slice is a Bipolar-slice iff 2 = & u C, where 
(9 Z;I n2L =0, 

(ii) etiery element in Z* is a right-mover which does not satisfy (ZS’), 
(iii) every element in 2, is a left-mover and satisfies (2.5). 

In what follows we are interested only in Prefix-Permutable-Bipolar slices (PB- 
slices, in short), i.e., P-slices which are also Bipolar. 

Example 2. The slice v2 = {A, a, 7, p, 8, a7, r~, &&I} is obviously a PB-slice (in 
which & = 0). Lipton [ 11,121 showed that it is PVm-definable. 

Lemma 3. Every PB-slice is a PA-slice. 

roof. Let 7~ be a PB-slice. Let cy, a be such that 



Various synchronization primitives 383 

We have to prove that for every permutation per+), on the word CUO; per(acP) g 7~. 
Assume, conversely, that 

(2) per(ao) E R. 

Distinguish between the two cases: 
(i) If a~& then arug rr iff au&X+. Therefore also per(atr) & Z+ which 

contradicts (2). 
(ii) Assume a E X,. In this case we can move a to the right by repeated application 

of (2.4) on per(am) and get per’(a)a E rr, We know that a E n, therefore, by the prefix 
permutability, we conclude that ag E rr, which contradicts (1). Thus we proved that in 
any case, per(am) ti n, which completes the proof. 

Corollary 4. PB 5 PA c, P. 

Proof. The relations PB E PA s P are derived from Lemma 1 and Lemma 3. The 
slice ~1, which appears in Example 1 is a P-slice which is not a PA-slice. Therefore 
PA s P. The slice ~3 = (-4, a, ar, a7p) is a PA-slice which is not a PB-sli.ce. Thus we 
have proved the desired relations. 

Note that the above relations remain valid for Z-slices. 

3. The vector-systems 

Here we define the 
derived from them. 

systems of integer vectors which we work with, and the slices 

Definition 6. (1) An Unrestricted Vector Replacement System (U-VRS) is a system 
Qz = (C, t, r, so) where 

(i) C is a set of symbols, t and r are maps from C to 2” (t(o) is called a test-vector 
and r(u) is called a replacement-vector). For s E 2” we define 

(s)u = s + r(u) and (S) ra = (s)a + r(u). 

The coordinates of the vector s E 2” are called semaphores. 
(ii) so E 2” is a given initial value of the semaphores’-vector. 
(2) An U-VRS system @ induces a slice 7r = n(Q), which is the set of all words 

a =71 8 9 . T* E c’ such that 

k-l 

So+ C r(Ti)+ t(?k)aO for every 1 G k G m. 
i=l 

(3.1) 

It is easy to verify that l?(G) is indeed a slice (i.e., prefix closed). 
(3) A slice ‘K is called U-VRS definable is there is an U-VRS system @ such that 

T= ). 
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Definition 7. (1) An U-VRS system @ is called a Vector Replacement System (VRS) 
if @ satisfies the following restriction: 

r(g) - t(c) 2 0, for every 0 E X. (3.2) 

(2) A VRS system Qz is called a Generalized Petri Net (GPN) if for every a e 2, 

t(u) E (-N)" and t-(a) n t+(m) = 9). (3.3) 

Recall that t- (t+) is the set of all the strictly negative (positive) coordinates of t. Note 
that (3.2) and (3.3) imply that r-(c) e t-(a). 

(3) A GPN is called a Petri-Net (PN) if for every g E X, 

t(u) E (0, -1)” and r(a) E (0, 1, -1)“. (3.4) 

Example 3. Let rrl be the slice *I = {A, cr, 7, .p, 07, TO, pi, 07p, 7ap). One can show, 
using the following PN-system, that ml is a P&definable. Take @ = (2, t, r, so) 

where, 

c = {fl, 7, PI, SO = (1, 1, La, 

t(u) = (-1, 0, -1, -l), 44 = (-1, 1, 0, O), 

t(7) = (0, -1, 0, -1) r(7) = (1, -191, -I), 

t(p) = (-1, -1, -1, -l), r(p) = (O,O, -1, -1). 

Note that ra is also a P-slice, as claimed in Example 1. 

From Definition 6 and Definition 7, we conclude at once that 

U-VRS 2 VRS 2 GPN 3 PN. (3.5) 

We 
the 

shall prove later that these systems are equivalent in the sense that all generate 
same family of slices. 

Definition 8. (1) A VRS system Qz is called a Vector Addition System (VAS) if for 
each 0 s 2, t(a) = r(a). 

(2) A GPN {PN) is called a Loopless-GPN (Loopless-PN) if for every 0~2, 
t_(o) = I_(O). The term Loopless is connected to the network representation of Petri 
Nets. 

Example 4. Let m3 be the slice v3 = {A, o, a7, a7p). One can show, using the 
following Loopless-PN system a, that 7~~ is a L-PN definable. Take @ = (C, t, r, so) 
where 

c = {a; 7, p), so = (0, 0, l), 

w = (0, 0, -I), r(d = (1, 1, -n 
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fb) = (-LO, a, 4d = t-1,1, l), 

t(p) = (0, -1, -a r(p) = (1, -1, -1). 

Note that ~3 is already a PA-slice. 

We conclude easily, from Definition 6 to 8 that 

L-GPN 2 L-PN. (3.6) 
Note that we cannot determine easily how V S relates to (3.6). We introduce now 
some special types of VAS. 

Definition 9. Let @ be a VAS-system. If for every u E E, 
(1) r(a) E N” u (-N)“, then @ is called a PVg-system, 
(2) r(a) E (0,l)” u (0, -l}“, then Qcz is called a PVm-system, 
(3) I(+ N” u (-N)” and contains at most one non-zero coordinate, then @ is 
called a PVC-system. 

Note that PVgzPVm and PVgzPVc. The following lemma and corollary are 
easily derive& 

Lemma 5. 
fi) Every U-VRS-d&able slice is a P-slice. 

(ii) Every VAS-definable slice is a PA-slice. 
(iii) Every L- definable slice is a PA-slice. 
(iv) Every PVg-definable slice is a PB-slice. 

Corollary 6. 
(i) PB E. GPN c VRS c IT-VRS c P. 

(ii) L-PN c P-GPN s PA and L-PN c VAS c PA. 
(iii) PVm s PVg s PI3 and PVC c PVg c PB. 

4. Generating sets 

The notion of a generating set for a slice is a useful tool introduced in [S]. We use 
several variants of this notion to characterize the slices of various synchronization 
primitives. 

Definition 10. (1) A collection of couples, 

G=((Ai,ai))AiEC,aiE~,i=1,...,n) 

is called a generating set (GS, in short) for a language 7r s 2’ (notation v = U(G)) if 

a.& ?I- iff (W(@!), q+l) E G for some 0s i < # cy - 1. 
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(2) A collection of sets, G, is called a generating set of type A (GS-A) for a 
language 9r s 2’ if 

cu&rr iff W(p)EG for some lsis #cu. 

(3) For a GS-A we define 

A GS-A is called a generating set of types B (GS-B) if it is closed under union of 
‘Stoppers”, i.e., 

A E G, BE&*AuBEG. (4.1) 

Note that GS-A is the notion of generating set defined in [S]. A language v defined 
by a generating set is obviously prefix closed, hence a slice. By closing a GS-A under 
(4.1) we obtain a GS-B, the set of stoppers of the obtained GS-B is a subset of that of 
GS-A. 

Example 5. (1) Let m1 be the P-slice appearing in Example 1 (VI= 
{A, q T, p, (~7, TC, pr, cup, 7ap)). Then the following GS is a generating set for ~1: 

GI = {<{al, P), (b), P), (bh d (17, d, a)). 

(2) Let 7~3 be the PA-slice appearing in Example 4 (7~~ = {A, a, 67, a7p)). The 
following GS-A generates 7~3: 

(3) Let 7t4={A, cr, (T7) be a slice, over the alphabet C = (a, r, p}, which can easily 
be seen to be PB-slice. One can check and see that the following generating sets 
generate 7r4: 

Glr = ((~1, (PI, 1~9 PI,I~, 7, PH (a GS-A slice), 

and moreover also that, &(Gi) I> .&(G4). 

The connection between the gnerating sets and the slices is given in the following 
theorem. 

Theorem 7. (1) A slice is a P-slice iff it has a (ES. 
(2) A slice is a PA-slice iff it has a GS-A. 
(3) A slice is a PB-slice iff it has a GS-B. 

Proof. (1) Let v be a P-slice. We define a GS, G, and prove that v = II(G). Define 

G={(W(a),a)IcuErr,aaErl+andcua~n}. 

Let if = n(G) (the slice generated by G). We prove that for every a! E c‘ 
a6z7r iff &if. 
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Assume, first, that cy & 7r. Let i be the first index such that j~ E 7r and (i+lJ~ & V. By 
definition (W(p), ai+l) E G, which implies that cy @ ii. 

Conversely, assume that cue ii, let i bc the first index such that ( W(i~), CY~+~) E G. 
By definition, there is a p&x), such that 

perk) E tr and per(icu)q+i & V. 

Therefore, by the prefix permutability property we conclude ia ai+l& rr, which 
implies that ar& V. 

We now prove that every GS generates a P-slice. Let G be a GS and let 7r = 17(G). 
Then n is a slice. Let (Y and CT be such that a! E v and CUU@ 7r. Then by definition 
(W(a), a) E G. For any per(a), per ((w)c& w since (W(per(cu)), a) = (W(a), a) E G. 

,2) The proof is similar to that of (1) but with the following GS-A (instead of GS): 

G = {A u (o)l (A, a) E GS}. 

(3) Let $7 be a PB 1 -s ice. We prove that it has a GS-B which generates it. By (2) it 
has a GS-A, G1. Extend Gi to a set G by closing G1 under condition (4.1), G is 
obviously a GS-A and already a GS-B. From Definitions 5,lO and Lemma 2 one can 
prove that C, = Z;. We have to prove that G generates n. Note that 

GI s G --r, II 2 L?(G). (4.2) 

After proving (2) it is enough to prove that a! & H(G1) iff a~ & n(G). By (4.2) it suffices 
toproveare!Z7(G)=+cr&U(Gi). 

Let arti H(G) and let i be an index such that W&a) E G. Assume that a E n(G1) 
and that W&) & G1. Let 6 be the extension of A, such that W(gt) = &4 u B, where 
A E Zl(G1) and B s &\A. 27(G1) is a PB-slice and we assume that a! e n(Gi). 
Therefore, by the right-moving of the elements of B (since 2CS = C,), we conclude 
(Y = $3 E lZ(Gl), where W(6) = A and W(p) = B. 

But this is a contradiction, since if W(6) E G1, then by definition Zfi & n( G1). Thus 
we conclude that a! r8 n( Gl). 

It remains to prove that every GS-B generates a PB-slice. Let G be a GS-B. By (2) 
and Lemma 1, n(G) is a PA-slice and a P-slice. Therefore it is enough to prove the 
right-moving for the elements of & (=Zr) and the right-attachment (Ru) for the 
elements in Z\Zs (=&). 

Let CT E & and let em E v = n(G). If cy~ E rr then by the abelity we conclude that 
cyw E w. If arti w then W(aT) E G (since a! E n). By property (4.1), W(m) u {a} E G, 
since {a} E &. But this contradicts the assumption that CYUT E 7. Therefore we proved 
the right-moving of the elements of &. 

Let r E X\&, a E w such that a~ E C’. If a76 rr then by definition W(m) E. G by 
which we conclude that 7 E Z:,, a contradiction (since C is not empty, otherwise the 
theorem is trivial). 
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5. Concrete realizations of systems defined by generatinesets 

We start by constructing a Petri Net (Loopless Petri Net) realization for a P-slice 
(PA-slice), thus proving that the chains of containments in Corollary 6 are actually 
equivalences. Similarly we construct a PVmultiple realization for PB-slices. 

Theorem 8 (Characterization of PN-slices). PN = P. 

Proof. In view of Corollary 6 it is enough to prove that PN 1 P. Let v be a P-slice and 
let G be a GS such that 7r =n(G). We first define the equivalent PN-system 
(Definition 7) Qz = (2, t, r, so). Take C as the set of symbols. Let n be the number of 
elements of G. To every pair (Ai, ai) in G we associate a semaphore si and define 
sy = IAil (the number of elements in Ai). For every a EC define 

[t(@)li = ( 
-1 if CEAi Or O=Ci 

0 otherwise, 

I -1 ifcEAi 

[r(u)li = 0 if a = Ui 

I 1 + otherwise. 

Let ii = U(e). One can easily prove that e is already a PN-definable slice. 

Claim. (i) (~‘)a! 20 for all cu in z1+, 
(ii) [(s”)a]i = 0 iff [W(a) = Ai or W(a) = Ai u (ui}], 

(iii) let t.& W(a) then [(s’)cY + t(a)]i = -1 iff m = gi alld W(a) = Ai. 

Proof. Indeed, the initial value of semaphore i is IAil. The action “add r(o)” 
decreases 9 iff u E Ai. Thus (i) is valid. 

(ii) is valid since semaphore i gets its minimal value iff it is not increased in any 
symbol, and this can happen iff W(a) = Ai or W(a) = Ai u {vi}. 

The value of semaphore i can be less than zero iff [(s’)a]i = 0 and [t(a)]i = -1. 
Therefore, by (ii) and the definition of t(u) we conclude that (r = ai, which proves 
(iii). 

To prove that 7r = ii we have to prove that cy E 7r iff CY E % One can see immediately 
that it sufices to prove that CY E n + [we T iff cut& +I, Let cy E 7r and assume that 
cuu& n. By the definition of a generating set it implies that (W(a), u) = (Ai, n:! E G, 

for some 1 s i s n. By the above claim we know that [(s”)rw + t(a)li = - 1, thus acre ii, 
Assume now that au& ti. Let sk be a semaphore that becomes negative after 

adding t(u) to (so)&. By the above claim W(a) =Ai and o = ui. From the con- 
struction of a generating set we conclude that for son.- per(a), per(a)& *. But using 
the prefix permutability we conclude that U~U$ W. 

From Corollary 6 and Theorem 8 we conclude: 
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P = u-vas = VRS = @PN = PN. 

389 

Example 6. One can use the method of the proof of Theorem 8 to get from the 
generating set of ~1 (Example 5) the PN-system which appears in Example 3. 

Theorem 10 (Characterization of Loopless-PN). PA = L-PN. 

Proof. The method of proof is very similar to that of Theorem 8. It is enough “ro 
prove that every PA-slice is a L-PN-definable slice. Let rr be a PA-slice and let G be 
a GS-A such that 7r = H(G). We define the equivalent L-PN-system @ = (C, t, r, so). 
Take C as the set of symbols. To every Ai E G we associate a semaphore sj and define 
sy = JAzj - 1. For every Q E Z: define 

[t(~)li = { 
-1 ifaEAi 

0 ifa&Ai 

bWli = { 
-1 ifaEAi 
+l ifoeAi 

Note that PN are loopless in case that the test vector is equal to the negative part of 
the leplacement vector. 

Claim. Lea (Y E Z+, then for every 7 e Z\ W(a), (S’)CU + t(7) a -1. Moreover, [(s’)LY + 
t(?)li = -1 iff ar~Z n; where Ai = W(a) v (7). 

Proof. The proof of the claim is straightforward from the definitions. The rest of the 
proof is analogous to the proof of Theorem 8. 

Using the same method it is proved in 123 that PA=VAS and therefore from 
Corollary 6 and Theorem 10 we conclude 

CoroUary 11. PA = VAS = L-GPN = L-PN. 

Example 7. One can use the above method to get, from the GS-A of 7r3 (Example S), 
the L-PN system which appears in Example 4. 

Theorem 12 (Characterization of PVm). PB =PVm. 

Proof. From Corollary 6 we conciude that it is enough to prove that PB s PVm. Let 
rr be a PB-slice. By Theorem 7 we know that there is a GS-A G such that 7~ = l?(G) 

and that G is closed under tRe property Ai E G and B s 2& + Ai u B E G, where 
&=X~=(a)3As.t.A~GandAu{a}~G;. 
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Define the equivalent PVm-system @ = (2, t, so). Take C as the set of symbols, let 
n be the number of elements in G. To every Ai E G associate a semaphore si with 
initial value sl =I~~nAi1-1.ToeveryaE~define 

if a f & : [t(a)]i = if c E Ai then -1 else 0 

if a E c\c, : [t(o)& =if CEAi then 0 else +l. 

Note that & = Xr and z\Xs = 2,. 

Claim. The semaphore si becomes negative (in fact assumes the value - 1) after cy iff 
W(a) = Ai u B, where B c Ss\Ai and Ai E G. 

Proof, The proof of the claim is straightforward from the definitions. As noted in the 
above theorems, it is enough to prove that a! E 7r + [a& w iff arcr& %j, where 
iT = Z7(@). By definitions, the case cr& w implies arcr& ii; is immediate. Therefore 
assume that cua& ii. Let si be a semaphore which becomes negative after cyor. By the 
above claim W(a) = Ai u B, where B c Z;\Ai and Ai E G. By property (4. l), Ai E G 
implies that Ai u B E G. hence cw& 7r. 

Corollary 13. PB = PVm = PVg 2 PVC. 

Proof. By Corollary 6 and Theorem 12 WI: conclude that PVm = PVg = PB. PVc- 
definable slice is a PB-slice, but as was proved in [ 11,121 there is a PVm-definable 
slice which is not a PVC-definable slice. Therefore PVC j-PVm. 

In the sense of slice inclusion we have thus settled the open alternative in Fig. 6.1 
(in [ 14]), showing that Case (a) is valid (also for C-slices as shown in [ 11). Henderson 
and Zalcstein [6] have claimed to have settled the same point but their charac- 
terization of PVm (by GS-A sets) was mistaken. 
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