New Latency Bounds for Atomic Broadcast
(EXTENDED ABSTRACT)

Ray Strong

Danny Dolev

Flaviu Cristian

IBM Research Division
Almaden Research Center

Abstract

This paper provides new tighter bounds on the
time required to reach agreement in a distributed
system as a function of the failure model.

1 Introduction

The time required to reach agreement has
been the subject of a number of studies in
the literature of fault tolerant distributed
systems (see, for example, [DM, DS, DRS,
FL, H, NT, PSL]). For many communica-
tion and failure models, previous results have
completely characterized this time. However,
most of these results correspond to models
in which processors are perfectly synchro-
nized, either communicating in synchronized
rounds or using clocks that present an exact
Newtonian time frame (real time). In this
paper we study a model that is more sensi-
tive to timing problems because clocks are
assumed to be only approximately synchro-
nized. Here much less is known about the
time required to reach agreement. In this
paper we study agreement as the result of a
single execution of an atomic broadcast pro-
tocol. An input message is given to one pro-
cessor in a system and, if everything works
correctly, the message is delivered as output
by all processors in the system. Relative to
a given failure model, an atomic broadcast
protocol is said to tolerate the failure of r

CH2933-0/90/0000/0156$01.00 © 1990 IEEE

components in a network, if, in every execu-
tion of the protocol in the network in which
at most 7 components fail, in each connrected
subnetwork of correct components, all pro-
cessors deliver the same message (if any),
and, if there is such a connected subnetwork
that contains the processor that was given
the input message, then all its processors de-
liver the input message as output. In oxder to
capture formally the notion of “time required
to reach agreement,” we define the latency of
an atomic broadcast algorithm as the worst
case difference between the clock time of de-
livery of an atomic broadcast message (by a
correct processor) and the timestamp on the
message (corresponding to its clock time of
origin if the originating processor is correct).

In one of the earliest studies of our model,
a 1985 paper on atomic broadcast [CASD],
the authors provide a sequence of algo-
rithms for atomic broadcast in distributed
systems. The first of these algorithms tol-
erates omission failures; the second, tim-
ing failures; and the third, authentication-
detectable Byzantine failures. The latency
of the [CASD] omission failure tolerant algo-
rithm is known to be optimal for many net-
works, including the completely connected
network; and it has long been conjectured
that the latencies of the [CASD] timing and
authentication-detectable Byzantine tolerant
algorithms were also optimal on these net-
works. But a proof of optimal latency was

156

only available for the third algorithm and
only for the case of a network of n processors
with = — 2 failures to be tolerated. In this
paper we disprove both of the conjectures by
providing a new timing failure tolerant algo-
rithm and a new authentication-detectable
Byzantine failure tolerant algorithm. We
show that the best possible latency for tim-
ing failure tolerance is very different from
the best possible latency for authentication-
detectable Byzantine failure tolerance.

We had previously shown that omission
failures require an atomic broadcast latency
of the form D + e, where D depends only
on the network, network transmission delays,
and the number of failures to be tolerated
(independent of clock synchronization preci-
sion) and e is the maximum deviation pos-
sible between correct clocks (independent of
the number of failures to be tolerated). In
contrast, it was shown that clock failures can
require a latency of the form D + (n — 1)e
when the number of failures to be tolerated
is n — 2. By constructing a new timing failure
tolerant algorithm, we now have the surpris-
ing result that the latency for timing failures
can be expressed in the form D + e, imply-
ing that algorithms tolerant of timing failures
cannot always be converted to algorithms tol-
erant of clock failures without a performance
time penalty. Thus we have shown a funda-
mental difference between clock and timing
failures. We also provide an authentication-
detectable Byzantine failure tolerant algo-
rithm with a latency that can be expressed
in the form D + (| ;27] + L%J)e, where f
is the number of faulty processors to be tol-
erated. We show that this latency is optimal
with respect to the coefficient of e for clock
and omission failure tolerant algorithms. Us-
ing the conversion technique of Srikanth and
Toueg, we convert this algorithm to an ar-
bitrary failure tolerant algorithm with a la-
tency that can be expressed in the form

D + 2e, provided f < %. These algorithms

and lower bounds are the main technical re-
sults of our paper. They are found in Section
4.

We were led to these algorithms from an
investigation of the optimality proof and an
attempt to characterize a minimal class of
failures for which it held. As a result we can
now describe a much more general class of
failures that is tolerated by the second algo-
rithm of [CASD). The failure classes we study
in this paper were formulated to extend our
understanding of atomic broadcast and re-
lated algorithms and to allow more precise
comparisons of their failure tolerance.

After describing the model of a distributed
system that is a context for this work in Sec-
tion 2, we define several failure classes in
Section 3. In Section 4, we define a par-
tial order on classes of failures that involves
whether there is a latency penalty in con-
verting from tolerance of one failure class to
another. In this setting we distinguish clock
and timing failures, showing that there can
be a penalty in converting from timing fail-
ure tolerance to clock failure tolerance. We
leave open the exact expression for the opti-
mal latency for timing failure tolerant atomic
broadcast, though we conjecture that there
is some penalty in converting from omission
failure tolerance to timing failure tolerance.

2 The Model

We assume a distributed system consisting of
n processors completely connected by links.
Space limitations preclude a more formal de-
scription of our model. We assume that, in
any finite interval of real time, only finitely
many events take place in the entire system.

For each component we assume there is a
correctness specification consisting of a re-
lation between finite sequences of external
events and single output events. A more for-
mal discussion of specifications will be given

157

in the complete paper.

We denote the reading of the clock of pro-
cessor ¢ at real time t by Cy(t). Clocks
are specified to maintain linear envelope syn-
chronization: for all real times u < » and for
all processors p and g,

a1(7 —) < Cg(v) — Co(u) < a2(v — u) + a3

and
|Cp(v) — Co(v)| < €

for positive constants a1, a2, a3, and e (cf.
[DHSS]). Note that a consequence of the lin-
ear envelope synchronization is that any in-
terval timed to be of length z by one correct
clock cannot be timed to be of length more
than

drift(z) = (a2/a1)(z) + a3

on any other correct clock.

Links are specified to transmit messages
from processor to processor within a bounded
amount of real time. Processors are speci-
fied to respond to messages according to the
given protocol within a bounded amount of
real time, the response including the output
of any messages required by the protocol.
We assume processing time is negligible. We
simplify and summarize these bounds with
a constant d such that, if « is the real time
at which processor p outputs message m on
link I, » is the real time at which processor ¢,
at the other end of link [, finishes processing
m and has output all messages required by
the protocol in response to m, and r is any
processor in the system, then

0< Cr(v)—Cr(u) < d.

In the proofs of Theorem 4.5 and Theo-
rem 4.7 we will use a bound p on the relative
rate of drift defined as follows:

This p has the property that, whenever z >
2d, we have drift(z) < (1+ p)z. We will also
use an accumulated form of p as follows:
J .
¥(§) =D (1 +p)
1=0

Note that if p = 0 then 4(j) =j + 1.

3 Failure Classes

We provide a failure classification in order
to compare the fault tolerance of algorithms.
For this reason, we restrict our discussion
to the classification of sequences of external
events. A failure is a local history of a com-
ponent that does not satisfy the specification
of the component. Because of our bounded
time span assumption, any failure has a finite
prefix that does not satisfy the specification.
The failure event of a failure is the first event
e in the local history that makes it a failure,
that is, the local prefix ending in e does not
satisfy the specification, but the local prefix
ending in the prior event does. The faslure
time of a failure is the real time of its failure
event.

If the addition of output events to the local
history would satisfy the correctness speci-
fication, then the failure is classified as an
omission failure. If changing the real time
of some output events would satisfy the cor-
rectness specification, then the failure is clas-

sified as a timing failure [CASD].

Components communicate in the dis-
tributed system by the identification of cer-
tain types of output action at one component
with types of input action at another compo-
nent. If the removal of input events from a
failure would make it satisfy the specifica-
tion, then the failure is classed as a pseudo
input omission failure. The term “pseudo”
is used here to emphasize that the output
behavior of the component is as if some in-
put event had not occurred. Notice that a

158

pseudo input omission failure is not necessar-
ily an omission failure. The class containing
omission and pseudo input omission failures
is called the class of generalized omission fail-
ures [NT)]. (In [CASD] pseudo input omission
failures were not included in any class except
the class of (universal) Byzantine failures.)
When the component behaves as if certain in-
put events occurred either before or after the
output events with which they are identified,
then the failure is classified as a pseudo in-
put timing failure. The class containing tim-
ing and pseudo input timing failures is called
the class of generalized timing failures.

Relative to a fixed authentication proto-
col (v. [LSP, DS, CASD]), the class of
authentication-detectable Byzantine failures
is defined as the class of arbitrary failures
that do not corrupt the authentication pro-
tocol, so that a correct processor can send
a copy of an authenticated message to any
other processor, proving that the supposed
originator of the authenticated message did
in fact send the message.

We focus on one special type of subcom-
ponent of a processor called a clock. Clocks
are assumed to have an input “read” event.
In response to a “read” event a clock is spec-
ified to deliver a reading (integer) to the sub-
component that issued the “read” request. A
clock can only fail by omitting to issue a read-
ing in response to a “read” event or by issuing
a reading value that violates the given lin-
ear envelope requirement of section 2. When
the failure of a processor could be explained
by a failure of its clock, then the failure is
classed as a clock failure. For simplicity we
will restrict attention to clock failures that
cannot be detected by considering only lo-
cal history, independent of the actual passage
of real time. (Assume that there is a fail-
ure free component that watches the input-
output behavior of the clock and stops the
processor if it can detect a clock failure with-
out reference to any external source of real

time. This discussion will be expanded in
the complete paper.)

4 New Latency Bounds for
Completely Connected
Networks

In this section we assume that the network
of n processors is completely connected.

Hadzilacos [H] and Neiger and Toueg [NT]
have studied the possibility of converting al-
gorithms tolerant of one class of failures into
algorithms tolerant of a more extensive class
of failures. The object of such a conversion
is to minimize any conversion overhead cost
and provide a useful but more fault toler-
ant algorithm. In particular, Hadzilacos was
the first to observe that crash failure tol-
erant atomic broadcast protocols could be
converted to omission failure tolerant atomic
broadcast protocols with no added latency.

Relative to this environment, we say class
C of failures dominates class D if, for ev-
ery atomic broadcast algorithm that toler-
ates failures from class D at any f of the n
processors, there is an atomic broadcast algo-
rithm with the same or shorter termination
time that tolerates failures from class C at
any f of the » processors. Note that e is
implicitly universally quantified in this defi-
nition, so the “dominance” must hold for any
ratio between d and e.

In this environment, relative to a given
number n of processors and a given maxi-
mum number of faulty processors f, we say a
class C of failures has precision sensitivity k
if some atomic broadcast algorithm tolerant
of class C has a latency of ke +O(d) and any
atomic broadcast algorithm tolerant of class
C must have a latency of at least ke, no mat-
ter how large the ratio between e and d. To
show that class C does not dominate class D
it suffices to produce n and f for which the

159

precision sensitivity of class D is larger than
that of class C.

In [CASD] it was shown that the class
of omission failures has precision sensitiv-
ity 1. It was also shown that the class of
authentication-detectable Byzantine failures
has precision sensitivity n—1 when f = n—2.
It has long been conjectured that the atomic
broadcast algorithms of [CASD] have opti-
mal latency for the failure classes they tol-
erate. If this were true then the precision
sensitivity for any failure class that includes
timing failures would be at least f + 1. We
will disprove this conjecture by showing that,
when the network of » processors is com-
pletely connected, then the class of clock
and generalized omission failures has a preci-
sion sensitivity of exactly |2] + 21|, where
n = f+c, and that the class of timing failures
has a precision sensitivity of 1.

We first prove some combinatorial prereq-
uisites. We define k(n,r) = 2] + [21].
For the following lemmas we assume that
0< f<m—1sothatl <c<m.

Lemma 4.1: If {S;|1 <i < j} is a family of
disjoint nonempty subsets of a set of cardinality
n and if, for every i with 1 < 7 < j, we have
|Si] + |Si+1] > ¢, then j < k(m,c) + 1. More-
over, for any n and f, there is such a family
with j = k(n,c)+1 and with |S;|+|Si+1] = ¢,
for every 7 with 1 < < j.

Proof Sketch: Let z = [2] so that n =
(c)z+ywitho<y<e

Suppose there is a family of subsets satis-
fying the hypotheses. Let a = |S;|. Without
loss of generality 1 < @ < c. Let b = |S2|.
Again without loss of generality, b = ¢ — a.
Moreover, without loss of generality, the car-
dinalities of the subsets alternate between a
and b.

Let z be the number of subsets of cardi-
nality b. There are at least as many subsets

of cardinality e. Since z(a + b) < =, it must
be the case that z < z. If there are z+1 sub-
sets of cardinality a, then z(a +b) +a < =,
so either z < z or ¢ < y. Thus either (1)
y=0and j =22 < 2z or(2) y>0and
j<22+1<2z+1.

If y =0, then LI‘—:-I-J =z -1, s0 k(n,c) =
2z-1.1{y > 0, then |22L] = ¢, s0 k(n,c) =
2z. Thus in either case j < k(n,c) + 1.

Now let = and f be arbitrary, subject to
0< f<mn-—landn= f+c.Ify =0 then let
¢ =1 and let = ¢ — a. Then the set with »
elements can easily be partitioned into z sets
of size @ and z sets of size b. If y > 0 then let
e = y and let b = ¢ — a. Then the set with
n elements can be partitioned into z + 1 sets
of size a and z sets of size b. In either case a
family of subsets of size k(n,c) + 1 satisfies
the hypotheses.]

Lemma 4.2: If {R;|1 < i < j}is a family of
subsets of a set of cardinality n, if, for every ¢
with 1 < i < j, we have |R;| > ¢, and if each
subset R; has nonempty intersection only with
R;_; and R;41, then j < k(m,c).

Proof:

For each i with 1 < ¢ < j—1,1let §; =
R; — Riy1. Let S; = R; N R;—1 and let
S;+1 = R; — Rj-1. The family of subsets
{S:]1 < i < j+ 1} satisfies the hypotheses
of Lemma 4.1, so j +1 < k(n,¢) + 1. m}

Theorem 4.3: 0 < f<n—-1landn =
[+c, then k(n,c)(d + e) is a lower bound on
the latency of any atomic broadcast protocol
that tolerates clock and generalized omission
failures in any f processors.

Proof Sketch:

Let k = k(m,c). By Lemma 4.1 we can par-
tition the set of processors into k -+ 1 disjoint

160

sets {Si|0 < ¢ < k} such that the union of
any pair of adjacent sets has cardinality ex-
actly c.

Suppose there were an atomic broadcast
protocol with a latency less than k(d + e).
Consider only executions in which, at real
time t the clocks in S; all read t + ie, and
each message transmission and processing
that completes requires exactly d units of real
time. (Note that such executions are consis-
tent with our model assumptions from sec-
tion 2.) In any such execution there are ex-
actly f faulty processors and the correct pro-
cessors reside in two adjacent sets Si,Si41.
Thus, using generalized omission failures, we
can produce executions of this type in which
any message called for by the protocol be-
tween processors that are not in adjacent sets
is either omitted by the sending processor or
the receiving processor acts as if it did not
receive the message. Consider an execution
of this type in which communication is con-
strained in this way and otherwise all pro-
cessors obey the protocol. If the correct pro-
cessors reside in Sx—; and Sk, then the mes-
sage delivered as output by correct proces-
sors must be some default or empty message,
because information about the input message
does not have time to reach the processors of
Sk before the latency is exhausted. Using the
idea that correct processors in S; cannot tell
which of Si—; and Si41 are also correct, it
is now straightforward to prove by induction
that, even when the correct processors are in
So and §1, the correct processors must give
an empty or default message as output; but
this contradicts the specification of the pro-
tocol. m|

Corollary 4.4: The precision sensitivity of
any class of failures containing both clock and
generalized omission failures is at least k(m,c).
Thus the class of omission failures does not
dominate the class of clock and generalized

omission failures.

Note that when 0 < f < %, then k(n,c) =
2.

Theorem 4.5: For 0 < f < n — 1 with
n = f +c, there is an atomic broadcast proto-
col for m completely connected processors that
tolerates authentication detectable Byzantine
failures in up to f processors and has a latency
of k(n,c)e + ad, where a depends only on n,

f, and p.

Corollary 4.6: The precision sensitivity of
the class of clock and generalized omission fail-
ures is exactly k(n,n — f).

Proof Sketch of Theorem 4.5:

First we give pseudocode for the atomic
broadcast protocol. We assume a send op-
eration that timestamps, signs with an au-
thentication protocol, and sends a message
to all neighbors. We also assume a receive
operation that checks all signatures with the
authentication protocol, checks to see that
each message timestamped ¢ is received after
1t —e and by ¢+ e+ d, and checks to see that
any imbedded timestamps and signatures in
the message structure (defined below) corre-
spond to messages that would have passed
the above tests.

Variable : type
z : value
m : message
P,q,T,T: PIoCessor
P,Q,R: set of p

R : set of p, g

8,y : signature
t,u,v : time

S : set of p, 3,1, u
i,J : integer

161

Message formats:
amessage := adopt(z) |
adopt(amessage,p, 5)
emessage := echo(amessage,p, 3,1, %)
rmessage := reecho(z,p, s,1)
message := amessage |
emessage | rmessage

Procedure timetest(m,p, s,1,%,7) :
j « depth(m)
fori=1to j do
h « h(base(i,m,p, s,t))
ifu>h+(j—i-1)d+2dy(j - 1))
then discard message
and end processing fi od
if g(m,p) = L then
g(m,p) « min(u,t+e) fi
if w > g(m,p) + v then
discard message
and end processing fi
end.

Procedure addechoes(m, ¢,p,3,t,u) :
if p ¢ R(m,q) then
add p to R(m,q)
add p,s,t,u to S(m,q)
if |[R(m, q)| > c&q € R(m,q) then
unless already sent
send adopt(m,q, S(m,q)) fi fi
end.

Procedure depth(m) :
if m is of form adopt(z)
then return 1
else if m is of form adopt(m1,p1, S)
then return 1+ depth(m1)
fi fi
end.

Procedure base(j,m,p,3,1) :
if depth(m) < j then return m,p, 3,1
else if m is of form adopt(m1,p1,S)
then find element p1,9:1,%1,21 € S
return base(j, m1,p1,91,11)
fifi
end.

Procedure timeset(m,p, 3,t,u) :

if h(m,p,s,t) = L then
h(m,p,s,t) < u
send reecho(m,p,3,t) fi

end.

Procedure processmessage:

if processor z receives amessage m
at local clock time = directly
from processor p with signature s
and timestamp ¢ then
if depth(m) = f + 1 then
unless already done
deliver (base(l,m,p,s,t))
else if depth(m) < f + 1 then
for i = 1 to depth(m) do
timeset(base(i, m,p, 3, 1), z)
od
timetest(m, p, 3,t,%,d)
send echo(m,p, 3,1,)
with signature y
and timestamp
addechoes(m, p, p, 3,1, u)
addechoes(m,p,z,¥, 4,)
fififi
if processor x receives
emessage echo(m,p, 31,11,%1)
at local clock time u
directly from processor g
with signature s
and timestamp t
and depth(m) < f+1 then
for i = 1 to depth(m) do
timeset(base(i, m,p, 31,t1),%) od
timetest(m, p, 31, 11, u, 2d)
addechoes(m, p, ¢, 3,t,2) fi
if processor z receives
rmessage reecho(m,p, 3,1)
at local clock time % then
for i = 1 to depth(m) do
timeset(base(i, m,p, 3,t),z) od fi

end.

Procedure initiate(z) :

162

send adopt(z) with signature y

(from processor z) and timestamp ¢
deliver(adopt(z),z,¥,1)
end.

Discussion:

Consider a received amessage with its
nested sets of timestamps. Divide the inter-
val of time over which the timestamps spread
(the interval of latency) into subintervals as
follows: Let ¢; be the latest timestamp asso-
ciated with the initial amessage (either on
it or on an echo). Let u; be the earliest
timestamp associated with the initial ames-
sage. Let I, be the interval from u; to t1.
Let o1 be the latest timestamp of a proces-
sor with a timestamp appearing in I. Let
E, be the interval from u; to v1 + d. Having
defined E;, let t;+1 be the latest timestamp
associated with the deepest amessage with
an associated timestamp at or earlier than
v; + d and an associated timestamp after »;.
Let ©;4+1 be the earliest timestamp associated
with this amessage. Let I;4+1 be the inter-
val from #;+1 to #;+1. Let 9;41 be the latest
timestamp of a processor with a timestamp
appearing in Ii11. Let E;+1 be the interval
from %41 to v;+1 + d. Continue the process
until all the timestamps are exhausted. For
each i let R; be the set of processors with
timestamps appearing in the interval I;. The
cardinality of each R; is at least c, since it
contains the sender and all echoers of some
amessage. By construction the sets R; satisfy
the hypotheses of Lemma 4.2. Thus the max-
imum index i is k(n,c). The length of each
interval E; is e+ 2d plus an amount that cor-
responds to the difference between one times-
tamp and another by the same processor,
where the timestamps are associated with
different depth amessages. If the difference in
depths is j then the difference in timestamps
is less than (j — 1)d + 2dv(j — 1). Moreover,
a later E; involves deeper amessages. The
latency is the maximum possible sum of the
lengths of the E;, which is bounded above by

k(n,c)e+(2k(n,c)+ fF —1+2(v(f)))d. Thus
we can take a = 2k(n,c) + f — 1 + 2¥(f).
The argument that the protocol achieves
atomic broadcast is relatively simple. If a
correct processor delivers a value, then either
it received a corresponding amessage with
depth f+1 or it sent a corresponding ames-
sage to all other correct processors. In either
case the other correct processors must also
have delivered the corresponding value. O

Note that if there is no relative drift among
correct clocks, then a is 2k(n,c) +3f + 1.

Theorem 4.7: There is an atomic broadcast
protocol for n completely connected processors
that tolerates arbitrary (Byzantine) failures in
up to f < % processors and has a latency of
2¢ + 3, where 3 is a term that depends only on
n, f, and p.

Proof Sketch:

Since f < %, k(n,c) = 2. Following
Srikanth and Toueg ([ST]) we convert the
protocol of the proof of Theorem 4.5 to one
that tolerates Byzantine failures by echoing
the echoes with what we will call aechoes
for authentication echoes. The echoes them-
selves serve to authenticate the amessages.
The emessages are deemed authentic when
f + 1 aechoes have been received directly;
though, in order to send an amessage, there
must be a total of ¢ timestamps associated
with each of the ¢ — 1 echoes. This num-
ber guarantees that any processor will see
the echo as authentic. It is straightforward
to convert the protocol that uses signatures
to one that does not. An easy overestimate
gives § = 3a/2. m]

Theorem 4.8: There is an atomic broadcast
protocol tolerant of timing faults at any f com-
ponents for any 0 < f < m — 1 that has a
latency of e + 3v(f)d.

163

Proof Sketch:

In our algorithm, each processor uses its
clock to timestamp and send a message to
each of its neighbors every d units of clock
time. When one of these periodic messages is
received, the receiver adds its own timestamp
and the latest timestamp it has received from
every other processor and returns the mes-
sage to its sender. Finally, when a returned
message is received it is again timestamped.
Each processor maintains a FIFO protocol
for its returned messages, never accepting re-
ceipt of a message out of order. It holds
any out of order message until the missing
message has arrived. Moreover, it refuses
to receive any return that has taken longer
than 2d units of time on its clock to make
the round trip, permanently stopping the pe-
riodic messages to a neighbor that exhibits
such a timing failure. The same treatment is
given any processor that “returns” messages
before they are sent.

In addition to the timestamps, these peri-
odic messages carry no text on the first half
of their cycle. But, when a processor origi-
nates an atomic broadcast, it timestamps the
text with a time of origin (against which la-
tency is measured) and then places the mod-
ified text on the next periodic message that
it returns to each of its neighbors.

When a processor receives text with a time
of origin only on a returned periodic message,
it checks that the time of origin is between
the time of receipt by the neighbor of the pre-
vious periodic message and that of the cur-
rent periodic message. If not, then the mes-
sage 1s discarded and the periodic messages
to that neighbor are permanently halted; if
so, then the time of return is added to the
message text as a time of relay, the text is
forwarded to the other neighbors on the next
available periodic message, and the text of
the atomic broadcast is scheduled for deliv-
ery at its time of origin plus e + 3v(f)d.

When a processor receives a returned pe-
riodic message carrying a text with a time of
origin and some times of relay, it checks that
the last time of relay is between the time of
receipt by the neighbor of the previous pe-
riodic message and that of the current pe-
riodic message. If not, then the message is
discarded and the neighbor treated as above;
if so, then the text of the atomic broadcast
is scheduled for delivery at its time of origin
plus e + 3v(f)d.

Note that the elapsed time for any hop as
measured on the clock of the receiver must
be at most 3d because this is the maximum
time between sending one periodic message
and receiving the return of the next periodic
message. If an atomic broadcast originates
at a correct processor at local clock time ¢,
then a correct neighbor receives the text by
clock time t + e + 3d. Since processors may
only suffer timing faults, a relaying processor
can assume that each hop that the message
took required no more than 3d on the local
clock of the receiver. After f hops some cor-
rect processor must be encountered. Thus
the latency is e + 3v(f)d. O

Note that if there is no relative drift then
the coefficient of d becomes 3(f + 1).

Corollary 4.9: For any 0 < f < m — 1, the
precision sensitivity of the class of timing fail-
ures is exactly 1. Thus the class of timing fail-
ures does not dominate the class of clock and
generalized omission failures.

5 Summary

Coinciding upper and lower bounds for the
time required to reach agreement are avail-
able only for the case of omission failures. In
the past a large gap has separated upper and
lower bounds for any class of failures contain-
ing timing failures. For any class of failures

containing both clock and generalized omis-
sion failures, we provide both improved up-
per and lower bounds.

We have proved tight bounds on preci-
sion sensitivity as a function of failure class;
but we have still left wide gaps between up-
per and lower bounds for latency of atomic
broadcast. We leave the closing of these gaps
as open problems.

References

[CASD] F. Cristian, H. Aghili, R. Strong,
and D. Dolev, “Atomic Broad-
cast: From Simple Message Diffu-
sion to Byzantine Agreement,” pro-
ceedings, the 15th Int. Conf on
Fault Tolerant Computing, (1985)
1-7. See also IBM Research Report
RJ5244 (Revised 4/11/89).

[DHSS] D. Dolev, J. Halpern, B. Simons,
and R. Strong, “Dynamic Fault-
Tolerant Clock Synchronization,”
IBM Research Report RJ6722,
March 3, 1989. See also “Fault-
Tolerant Clock Synchronization,”
PODC-3, pp. 89-102, Vancouver,

1984,

[DM] C. Dwork and Y. Moses, “Knowl-
edge and Common Knowledge in
a Byzantine Environment I: Crash
Failures,” Theoretical Aspects of
Reasoning About Knowledge, ed.
J. Halpern, pp. 149-170, Monterey,

1986.

[DS] D. Dolev and R. Strong, “Au-
thenticated Algorithms for Byzan-
tine Agreement,” SIAM Journal of
Computing, vol. 12, no. 4, pp. 656-

666, 1983.

[DRS] D. Dolev, R. Reischuk, and R.

Strong, “Early Stopping in Byzan-

[FL]

[LSP]

[LT]

[PSL)

[NT]

[ST]

165

tine Agreement,” to appear in
8 PP

JACM. See also IBM Research Re-
port RJ5406, December 2, 1986.

M. Fischer and N. Lynch, “A Lower
Bound on the Time to Assure In-
teractive Comnsistency,” Information
Processing Letters 14:4, pp. 183-
186, 1982.

V. Hadzilacos, “Issues of Fault
Tolerance in Concurrent Computa-
tions,” Ph.D. dissertation, Harvard
University, June 1984, Harvard
University Department of Com-
puter Science Technical Report 11-
84.

L. Lamport, R. Shostak, and M.
Pease, “The Byzantine Generals
Problem,” ACM Transactions on
Programming Languages and Sys-
tems, vol. 4, no. 3, pp. 382-401, July
1982.

N. A. Lynch, and M. R. Tuttle,
Hierarchical Correctness Proofs for
Distributed Algorithms, Technical
Report MIT/LCS/TR-387, MIT,
Lab. for Computer Science, April
1987.

M. Pease, R. Shostak, and L. Lam-
port, “Reaching Agreement in the
Presence of Faults,” JACM 27, pp.
228-234, 1980.

G. Neiger and S. Toueg, “Au-
tomatically Increasing the Fault-
tolerance of Distributed Systems,”
Proc. 7th ACM Symp. on PODC,
(1988) 248-262.

T. K. Srikanth, and S. Toueg,
“Byzantine Agreement Made Sim-
ple: Simulating Authentication
Without Signatures,” Distributed
Computing 2, pp. 80-94, 1987.

