
Math. Systems Theory 26, 21-39 (1993)
Mathematical
Systems Theory
©1993 Springer-Verlag New York Inc .

A Partial Equivalence Between Shared-Memory and Message-Passing
in an Asynchronous Fail-Stop Distributed Environment*

Amotz Bar-Noy r and Danny Dolev 2

'IBM T. J . Watson Research Center, P .O. Box 704, Yorktown Heights, NY 10598, USA

'IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA and
Computer Science Department, The Hebrew University, Jerusalem, Israel

Abstract . This paper presents a schematic algorithm for distributed systems .
This schematic algorithm uses a "black-box" procedure for communica-
tion, the output of which must meet two requirements : a global-order
requirement and a deadlock-free requirement . This algorithm is valid in any
distributed system model that can provide such a communication procedure
that complies with these requirements. Two such models exist in an asynchro-
nous fail-stop environment : one in the shared-memory model and one in the
message-passing model . The implementation of the block-box procedure in
these models enables us to translate existing algorithms between the two
models whenever these algorithms are based on the schematic algorithm .
We demonstrate this idea in two ways. First, we present a randomized

algorithm for the consensus problem in the message-passing model based on
the algorithm of Aspnes and Herlihy [AH] in the shared-memory model . This
solution is the fastest known randomized algorithm that solves the consensus
problem against a strong fail-stop adversary with one-half resiliency. Second,
we solve the processor renaming problem in the shared-memory model based
on the solution of Attiya et al. [ABD +] in the message-passing model . The
existence of the solution to the renaming problem should be contrasted with
the impossibility result for the consensus problem in the shared-memory model
[CIL], [DDS], [LA] .

*A preliminary version of this paper, "Shared-Memory vs. Message-Passing in an Asynchro-
nous Distributed Environment," appeared in Proc . 8th ACM Symp. on Principles of Distributed
Computing, pp. 307-318, 1989 . Part of this work was done while A . Bar-Noy visited the Computer
Science Department, Stanford University, Stanford, CA 94305, USA, and his research was supported
in part by a Weizmann fellowship, by Contract ONR N00014-88-K-0166, and by a grant of Stanford's
Center for Integrated Systems.

22

	

A. Bar-Noy and D . Dolev

1 . Introduction

Two major processor intercommunication models in distributed systems have
attracted much attention and study : the message passing model and the shared-
memory model. In the message-passing model, processors are represented by
vertices of a network and messages are sent along links . In the shared-memory
model, processors share registers through which they communicate by performing
read and write operations.

In particular, the asynchronous environment and the fail-stop environment
have been the underlying assumptions of many recent papers . Researchers tried
to understand distributed systems where processors operate at different rates and
do not share a unique global clock . They also tried to understand distributed
systems where some of the processors may suddenly fail and stop operating (crash) .
The main difficulty in an asynchronous and fail-stop environment is how to
distinguish between slow processors and crashed processors . The distinction
between these two modes of operation is the challenge in solving coordination
problems. In such problems a set of processors are asked to make a decision
depending upon some initial input that each one of them possesses . The Agreement
Problem [PSL] and the Leader Election Problem [GHS] are among the famous
coordination problems studied in recent decades .

Unfortunately, since the shared-memory model and the message-passing
model are not equivalent, many coordination problems were solved for each model
separately . Therefore, finding ways to translate existing algorithms from one model
to the other is an intriguing question in distributed systems . This paper provides
a way to translate certain types of algorithms between these two models in an
asynchronous and fail-stop environment . The goal is to find an equivalence that
preserves the complexity measures : time, the size of messages or shared registers,
local memory and local computation . In certain cases, proving that the existence
of a solution in one model implies its existence in the other is important by itself .

We present a schematic algorithm for distributed systems . This algorithm uses
a black-box procedure for communication. The collection' of all outputs of this
procedure, no matter which processor invoked the procedure, must meet two
requirements : a global-order requirement and a deadlock free requirement. Any
proof of correctness assuming only these two requirements regarding the outputs
is valid in any distributed system model that can provide a communication
procedure that complies with these requirements . We then introduce two such
communication procedures in an asynchronous fail-stop environment : one in the
shared-memory model where the communication is via wait-free atomic read and
write registers and one in the message-passing model where the communication
is via a fully connected network and the resiliency is one-half. Applying these
procedures enables us to translate. existing algorithms between the two models
whenever these algorithms are based on the schematic algorithm . (Note that Chor
and Moscovici [CM] have demonstrated that for certain types of problems the
above two models are not equivalent . There are problems that can be solved in
the message-passing model with resiliency one-half but have no wait-free solution
in the shared-memory model and vice versa .)

Partial Equivalence Between Shared-Memory and Message-Passing

	

23

Two examples of such algorithms exist. One is the solution of Aspnes and
Herlihy [AH] to the consensus problem in the shared-memory model and one is
the solution of Attiya et al. [ABD "] to the renaming problem in the message-
passing model . These solutions assume only the global-order requirement and the
deadlock-free requirement and, consequently, these solutions are valid in both
models. The randomized solution for the consensus problem in the message-
passing model is the fastest known randomized algorithm for solving this problem
with resiliency one-half against the strongest possible adversary in a fail-stop
model. The time complexity of this solution is 0(n 2) expected number of rounds
where n is the number of processors . This improves the result of Ben-Or [B] of
0(2") expected number of rounds . The solution for the renaming problem in the
shared-memory model is the first deterministic wait-free solution to a coordination
problem using atomic registers . Its existence should be contrasted with the
impossibility result for the consensus problem in this model [CIL], [DDS], [LA] .

The rest of the papere is organized as follows . In Section 2 we describe the
two models considered in this paper . The schematic algorithm is presented in
Section 3 and the two communication procedures are presented in Section 4 . Our
two applications for the consensus problem and the renaming problem appear in
Sections 5 and 6 respectively .

2 . The Shared-Memory and the Message-Passing Models

2.1 The Shared-Memory Model

The shared-memory model is defined as follows (for more details see [AH]) .
There are n processors that communicate by reading and writing into registers .
The registers are atomic single-writer many-reader registers . Each processor has
an assigned register and is the only one that can write to it . However, all processors
can read all registers. The nonlocal atomic operations a processor can execute
without interference are READ and WRITE on a single register. Thus, once a
processor begins each of these operations it can complete it without the need to
wait for any other processor (see [L]). Intuitively, this property implies that a
reader need not wait for a writer to complete a read operation . Thus, even if the
writer crashes, the reader can complete its read operation . Similarly, a writer need
not wait for readers to complete their operations .

This requirement can be extended to any action a processor performs .
In this paper we focus only on wait free protocols, where a processor is able to
complete any action or set of actions without waiting for the completion of other
actions at any other processor. This models the asynchrony of the system
and the fact that even n - 1 processors may crash. However, a processor cannot
quit after making its decision before all other processors make their decision . It
cannot erase the content of its register, otherwise some processors may assume
that other processors that had already made their decisions are crashed processors
and this may lead to inconsistent decisions in many coordination problems .

This shared-memory model has been considered in many papers . Let us
now summarize some results that are relevant to our paper . In various papers

24

	

A. Bar-Noy and D . Dolev

(see [CIL], [DDS], and [LA]) it was proven that there is no determinstic
wait-free solution for the consensus problem when the atomic operations are
read and write . Atomic operations that are sufficient to solve the consensus
problem are explored in [H] . In several papers (see [A], [AH], [CIL], and
[ADS]) randomized algorithms are represented for the consensus problem .

2.2 . The Message-Passing Model

We define the message-passing model as follows (for more details see [ABD +]) .
There are n processors that are connected by a complete network . We assume
that when a processor sends a message, it broadcasts the same message to all other
processors . The fail-stop environment is characterized by a parameter t (t < n)
which is an upper bound for the number of processors that may crash . The
asynchrony is represented by a game between an adversary and a given algorithm .
The goal of the adversary is the failure of the algorithm .

This paper considers the following strong adversary in an asynchronous
and fail-stop environment . The adversary instructs the processors when to operate
and when to stop . However, it can stop up to t processors. Whenever a processor
waits for messages, it cannot expect to receive more than n - t messages from
different processors since the other t messages may belong to crashed processors .
Messages can arrive out of order as the adversary has the power to dictate their
delivery time. The adversary can plan its strategy by observing the messages to
be sent and the internal state of the processors . There are no cryptographic
assumptions, or other limitations on the power of the adversary . It is only
prevented from changing messages, changing the steps processors take, and
predicting the outcome of coin flips in randomized algorithms . The number t, the
upper bound for the number of processors that may crash, is called the resilience
parameter of the system. (Traditionally, the parameter t was an upper bound on
the number offaulty processors, which do not follow their algorithm .)

Following the proof in [ABD +] it is easy to see that, for many coordination
problems, if n < 2t, there is no algorithm that can prevail over such an adversary .
Because the adversary can force two groups of at most t processors to operate
separately by suspending all the messages between the two groups and this may
lead to inconsistent actions by the two groups . Furthermore, by similar reasoning,
at least 2t + 1 processors, even if they have already made their own decisions,
must continue sending and receiving messages in order to help other processors
make their decision . In this paper, t is set to its maximal possible value for many
coordination problems, i.e ., n = 2t + 1 .

Let us now summarize some results in this message-passing model that
are relevant to our paper . Fischer et al. [FLP] proved that the consensus
problem is not solvable deterministically against such an adversary even when
t = 1 . Yet, it is possible to overcome the adversary with a randomized algorithm
[B], [CMS], and [DSS] . The result of [FLP] was generalized in the papers [DDS]
and [DLS] where the level of synchrony needed to solve the consensus problem
is studied . Finally, some papers (e.g ., [ABD +], [BMZ], and [BW]) identify certain
problems that are solvable determinstically in the presence of such an adversary .

Partial Equivalence Between Shared-Memory and Message-Passing

	

25

3. The Schematic Algorithm

In this section we present a schematic algorithm for an asynchronous distributed
system (Figure 1) . The only way processors communicate between themselves is
by calling Procedures COMMUNICATE and HELP-COMMUNICATE. The
rest of the code is local and is independent of the specific model in which the
schematic algorithm is invoked . However, the schematic algorithm demands two
requirements from the outputs of Procedure COMMUNICATE, called the global-
order requirement and the deadlock free requirement . The schematic algorithm is
used as follows. Let d be a distributed algorithm, the code of which follows the
code of the schematic algorithm (Figure 1) . Suppose that the global-order require-
ment and the deadlock-free requirement are the only properties of Procedure
COMMUNICATE used in the proof of V . Then the proof is valid in any model
that can implement Procedure COMMUNICATE, as long as the implementation
satisfies these two requirerments .

A processor p, that executes Algorithm SCHEMATIC, gets some Input and
needs to produce some Output. We say that processor p decides at the moment p
is able to produce the output. Let I be the set of all the local variables of processor
p, where some of the variables get their initial value from the input . A subset of I,
or some function of I, is communicated with other processors in the system. We
call these variables the communication variables of p . Processor p collects the
communication variables of other processors . For that purpose, p maintains a
vector X of length n . The entry X(q) of the vector is the most recent value of the
communication variables of processor q that p knows about . The entry X(p) is the
value of the communication variables of p itself and it contains its most updated
value . We call this vector the communication vector of processor p. Processor p
works in rounds . In each round, p first communicates with the other processors
and thereby updates its communication vector . Then p updates its local variables
(1) and updates the appropriate entry in its communication vector (X(p)) . Processor
p continues to the next round if it has not yet decided. When p decides and the

Algorithm SCHEMATIC(Input, Output) ;
var I: set of variables ;

X: vector of length n ;
begin

I:= some function of Input ;
for each processor q do X(q) := a null value ;
while decision is not made do

X(p) := some function of I;
COMMUNICATE(X) ;
I:= some function of X ;

end-while ;
Output := some function of I;
HELP-COMMUNICATE(X) ;

end ;

Fig. 1. The schematic algorithm for processor p .

2 6

	

A. Bar-Noy and D . Dolev

output is produced, processor p calls Procedure HELP-COMMUNICATE . As
mentioned in the previous section, in both models p cannot stop completely until
everybody has made a decision . In the shared-memory model, p cannot erase the
contents of its register, and in the message-passing model, p must actively
communicate with other processors .

We now define the global-order requirement. First, we assume the following
local-order assumption :

Assumption 3.1 . Let the values of the communication variables of all processors
be taken from a partially ordered collection / containing a null value which is less
than all the other values . If, in times t l < t2 , processor p held the communication
variables value Jl and J2 respectively, then J l :5 J2 . Moreover, every other processor
can compute -< .

Note that this can be satisfied by a time-stamp system. An unbounded'
time-stamp system can be implemented by adding an unbounded counter to the
communication variables ; this counter is incremented for any new version of these
variables. In the shared-memory model, previous results show ways to use
bounded time-stamp system [II], [DS] .

Now, a partial order on the communication vectors can be defined . Recall
that if processor p holds the communication vector X, then X(q) is a copy of the
most recent communication variable of processor q known to p .

Definition 3.1 . Let X and X' be two communication vectors held by processors
p and q, respectively. Then X -< X' iff, for every 1 < k < n, X(k) -< X'(k) .

In other words, X precedes X' iff in all its entries X precedes X' according to
the order defined for / in Assumption 3 .1 .

Definition 3.2. The Global-Order Requirement . All the outputs of Procedure
COMMUNICATE must form a linear order under -<, no matter which processor
invoked the procedure.

In any run of Algorithm SCHEMATIC by all the processors, in which the
global-order requirement is met, we define the following .

Definition 3.3. A stable vector is a vector that was returned as an output of
Procedure COMMUNICATE. Denote by Xl X2 the sequence of all stable
vectors output by any call to Procedure COMMUNICATE, and let X 0 be the
vector with all entries equal to the null value .

A possible undesirable outcome of the global-order requirment is deadlock .
It might be the case that the processors will communicate forever because they
cannot satisfy this requirement . The second requirement avoids such situations .

Definition 3 .4. The Deadlock-Free Requirement . If any nonfaulty, undecided

Partial Equivalence Between Shared-Memory and Message-Passing

	

27

processor is executing Procedure COMMUNICATE, then eventually some pro-
cessor will output a stable vector .

Note that this definition permits starvation. However, in many coordination
problems, when there is a need only for one decision, a deadlock-free property
implies a nonstarvation property .

4. The Communication Procedures

In this section we provide four communication procedures (Figures 2 and 3), two
in each of the models defined in Section 2 . In the shared-memory model these
procedures are called SM-COMMUNICATE and SM-HELP-COMMUNI-
CATE, and in the message-passing model they are called MP-COMMUNICATE
and MP-HELP-COMMUNICATE .

The input for all four procedures is a communication vector of length n (which
contains the most updated version of the communication variables of other
processors known to the processor that calls the procedure) . The first time
Procedures SM-COMMUNICATE and MP-COMMUNICATE are invoked by
processorp, the input vector is the initial vector. In the initial vector, all the entries
are set to their null value except for p's entry, which is set to the value of p's
communication variables . In later invocations, the input vector is the current
vector known to processor p .

In Procedure SM-COMMUNICATE, processor p scans all the n registers and
copies their values into a temporary vector ()) . If the vectors that result from two
consecutive scans are identical, then this vector is the output and the procedure

Procedure SM-COMMUNICATE(X) ;
Input

	

X: a communication vector of length n ;
Output X: a communication vector of length n ;
var

	

q : a processor name ;
Y: a vector of length n ;

begin
Rp:= WRITE(X(p)) ;
repeat

for q e { 1, . . . , n} do Y(q) := READ(.t9) ;
if X = Ythen return (X) ;

else X:= Y;
end-repeat

end;

Procedure SM-HELP-COMMUNICATE(X) ;
Input X: a communication vector of length n ;
begin

while not all processors decided do not erase the content of Rp ;
end ;

Fig. 2. The shared-memory communication procedures for processor p. The atomic register of p is
denoted by Rp .

2 8

	

A. Bar-Noy and D. Dolev

Procedure MP-COMMUNICATE(X) ;
Input X : a communication vector of length n ;
Output X: a communication vector of length n ;
var

	

c: a counter ;
q : a processor name ;
Y : a vector of length n ;

begin
1 . BROADCAST(X) ;

C := 1 ;
2 . upon receiving Y from q do

if Y< X then goto 2 ;
else if Y = Xthen begin

c :=c+1 ;
if c < n - t then goto 2 ;

else return (X) ;
end ;

else if Y X then begin
for all j s .t. X(j)-< Y(t) do XU) := Y(i) ;
goto 1 ;

end ;
end ;

Procedure MP-HELP-COMMUNICATE(X) ;
Input X: : a communication vector of length n ;
var

	

q: a processor name ;
Y: a vector of length n ;

begin
while not all processors decided do

upon receiving Y from q do
if Y< X then SEND(X) to q ;
else if Y4X then begin

for all j s .t. XU) YU) do XU):= YU) ;
BROADCAST(X) ;

end ;
end ;

Fig. 3. The message-passing communication procedures for processor p .

terminates . Else X:= Y and the n registers are scanned again . In Procedure
SM-HELP-COMMUNICATE, processor p does not erase the content of its
register until all other processors have made their decision . (Note that Procedure
SM-HELP-COMMUNICATE does not need the input X . However, we leave it
like this for the sake of unique presentation of the schematic algorithm .) The
register of processor p is denoted by _W P and an atomic read or write of a value
v into or from register MP is denoted by v := READ(MP) or JIP := WRITE(v),
respectively .

In Procedure MP-COMMUNICATE, processorp broadcasts its communica-
tion vector to other processors and updates its own communication vector
according to the messages it receives . Since processor p is guaranteed to receive
at most n - t messages from different processors, it learns about the values of the
communication variables of the rest of the t processors, if these variables exist,
through other processors . The way this is done is as follows . During the run of

Partial Equivalence Between Shared-Memory and Message-Passing

	

29

Procedure MP-COMMUNICATE, processorp has a candidate vector . The vector
becomes the output when processor p receives n - t - 1 vectors identical to its
own candidate . If processor p receives a vector that is more recent in one of its
entries according to {, it updates all such entries in its candidate vector and
resumes collecting identical vectors . In Procedure MP-HELP-COMMUNICATE,
processor p continues to update its communication vector and to broadcast more
updated versions of its communication vector until all other processors made their
decision. The command BROADCAST(X) stands for sending the message X to
all other processors .

We note that in both models it is often impossible to determine whether all
the processors have made their decision . Obviously, running Procedure SM-
HELP-COMMUNICATE and Procedure MP-HELP-COMMUNICATE for-
ever is enough. However, if there exists a way to know that all the processors have
decided, then the processors may quit .

We need to prove that these procedures comply with the global-order
requirement and the deadlock-free requirement .

Lemma 4.1 . Suppose that X, and X2 were the communication vectors of processor
p in times t, < t 2 . Then X, -< X2 .

Proof. In both Procedures SM-COMMUNICATE and MP-COMMUNI-
CATE, a processor updates an entry in its communication vector only by more
updated information (according to -<) . Therefore, all the vectors p held are totally
ordered under -C .

	

0

Lemma 4.1 implies that both procedures meet the global-order requirement .

Lemma 4.2 (Global-Order) . Let X and X' be two output vectors held by pro-
cessors p and q, respectively. Then either X -< X' or X' -< X.

Proof of the Shared-Memory Model . Assume to the contrary that the lemma is
false. Then there exist 1 and k such that X(l) -< Y(I) and Y(k) -< X'(k). Denote by
t,, t 2i t 3 , t4 the times that p read R1 in the first scan of X, read Rk in the first scan
of X, read R, in the second scan of X, and read 9, in the second scan of X,
respectively. Similarly define s,, s 2 , s 3 , s4 for q.

By definition, both t, and t 2 are smaller than both t 3 and t4 and both s, and
s2 are smaller than both s 3 and s 4 . Since X(l) -< X'(l), it follows that q, in time s,,
found in 9 1 a more updated version of processor l's communication variables than
the version p found in time t 3 . Consequently, t 3 < s, . Similarly, since Y(k) -< X(k)
it follows that s4 < t 2 . Combining the two yields t 3 < t 2 ; a contradiction .

Note that the proof holds even when p and q read the registers .4 i and GJc' k
not in the same order. This is true since the proof is valid independent of the
order between the two times in each of the following four pairs : t, and t 2 , s, and
s 2 , t 3 and t4 , and s3 and s4 . Moreover, a processor may read the n registers in
two different scans in a different order and the proof still holds .

	

El

30

	

A. Bar-Noy and D . Dolev

Proof for the Message-Passing Model. Both processors p and q had n - t
identical vectors for X and X' . Since n > 2t there exists a processor k, the vector
of which belongs to both sets of vectors . By Lemma 4.1 the vectors held by any
processor are totally ordered and therefore either X -< X' or X' -< X.

	

R

The next lemma shows that both procedures meet the deadlock-free require-
ment .

Lemma 4.3 (Deadlock-Free) . Suppose that some set of nonfaulty processors, 9,
have not yet decided. Let Xj be the last stable vector output by any processor .
Then eventually one of the processors in .9 will output X1+1 .

Proof for the Shared-Memory Model. All the nonfaulty processors that have
decided will never change the content of their register . All the other nonfaulty
processors will eventually invoke Procedure SM-COMMUNICATE and execute
its first line. After that point none of them will change the content of its register
'unless it outputs a stable vector and it has not yet decided . Thereafter, the first
processor in 9 to complete two scans will output a stable vector .

	

0

Prooffor the Message-Passing Model. A nonfaulty processor p that has already
decided will never change the value of X(p) in its communication vector. A
nonfaulty processor p that has not yet decided will eventually invoke Procedure
MP-COMMUNICATE and will not change the value of X(p) in its communica-
tion vector unless it outputs a stable vector . Therefore, eventually, for each
nonfaulty processor p, the value of X(p) in its communication vector is fixed .

Recall that processors that have decided, invoke MP-HELP-COMMUNI-
CATE. In any case, at least n - t processors participate in the process of sending
and receiving messages . These n - t processors will eventually get each other's
vector and will have identical vectors . If p has decided already and outputs a
stable vector, it will not change X(p) in its communication vector . Therefore,
necessarily one of the undecided nonfaulty processors will output a stable vector. Fj

5. The Consensus Problem

Definition 5.1 . In the consensus problem, each processor has an initial binary
value. The processors should decide on a binary value under the following
requirements :

1. No two processors decide on different values.
2 . The decision value is some processor's initial value .

This problem is a very basic coordination problem . A number of papers solve
this problem and the related Byzantine Generals problem in different models (see
[Fi] for a survey of early work).

Aspnes and Herlihy [AH] described a randomized algorithm for the consensus

Partial Equivalence Between Shared-Memory and Message-Passing

	

3 1

problem in the shared-memory model . Their algorithm is wait-free and it uses a
weak shared coin for the random choices. The expected number of rounds for the
coin procedure and for the consensus algorithm is 0(n 2). It happens that their
consensus algorithm and the procedure that produces the weak shared coin can
be based on the schematic algorithm. Therefore, their solution can also be applied
to the message-passing model described in Section 2.2 .

In the message-passing model, this result improves the best published result
of Ben-Or [B], the complexity of which is O(2") expected number of rounds . (An
unpublished result of Feldman [Fe] states that if n > 4t, then there is an algorithm
with a constant expected number of rounds .)

5.1. The Weak Shared Coin

In this section we describe the coin procedure of [AH] in the framework of
Algorithm SCHEMATIC . Aspnes and Herlihy [AH] define their coin using an
abstraction for counters . However, it is not hard to verify that our presentation
is equivalent . They use a weak shared coin which is defined as follows .

Definition 5.2 . For a > 1, a weak shared coin has the following two properties :

1 . A processor flips r c {0, 1} with probability at most (a + 1)/2a .
2. With probability greater than (a - 1)/2a all the processors flip the same

value .

The parameter a is called the bias parameter .

The idea underlying Procedure COIN is as follows . The processors, together,
perform a random walk of an abstract cursor on the line. The cursor initially points
to zero, and each processor can move the cursor one unit to the right or to the
left . A processor flips 1 or 0 if the cursor points to the right of an or to the left
of -an, respectively, where a is the bias parameter. Intuitively, the only way the
adversary can bias the outcome of the coin toward some e c- {0, 11, is by preventing
as many processors as possible that try to move the cursor to the other direction
to do so. In the shared-memory model the adversary can delay the move
of n - 1 processors and in the message-passing model it can delay the move of t
processors . However, in this case the remaining processors continue the random
walk. This limits the influence of the adversay on the final outcome of the coins
being flipped.

The code for Procedure COIN appears in Figure 4 . The code is described for
processor p that flips the coinnumber coin and computes the weak shared coin
coinvalue with the bias parameter a. The roll of coinnumber is to distinguish
between different calls to Procedure COIN . The local function flip returns one of
the values + 1 or - 1, each with probability 1/2 . The local variable round
generates the local order required by the local-order assumption (Assumption 3 .1) .
The value of the variable localwalk is the sum of all the local coins p has flipped .
Each entry of the communication vector is composed of three fields associated with

32

	

A. Bar-Noy and D . Dolev

Procedure COIN (coinnumber, a, coinvalue) ;
Input

	

coinnumber : a counter ;
a : a bias parameter ;

Output coinvalue : 1 or - 1 ;
var

	

localwalk, globalwalk : integers ;
round: a counter ;
flip : a real coin ;
X: a communication vector ;
(X.coinnumber, X.round, X.localwalk) : the three fields in each entry of X;

begin
round := localwalk := globalwalk := 0 ;
for each processor q do X(q) := (coinnumber, 0, 0) ;
while -an <- globalwalk <- an do
round:= round + 1 ;
(* increments or decrements walk with probability 1/2 *)
localwalk := localwalk +flip(+ 1, -1) ;
X(p) :=(coinnumber, round, localwalk) ;
COMMUNICATE(X) ;
globalwalk :=Y, . X(l).localwalk ;

end-while
if globalwalk > an then coinvalue :=1 ;
if globalwalk < -an then coinvalue := 0 ;
HELP-COMMUNICATE(X) ;

end ;

Fig. 4. Procedure COIN for processor p with bias parameter a .

the communication variables : coinnumber, round, and localwalk . The value of the
variable globalwalk is the sum of all the localwalk fields in p's communication
vector. Procedure COMMUNICATE is either Procedure SM-COMMUNICATE
or Procedure MP-COMMUNICATE and Procedure HELP-COMMUNICATE
is either Procedure SM-HELP-COMMUNICATE or Procedure MP-HELP-
COMMUNICATE.

At this stage, we prove that Procedure COIN indeed produces a weak shared
coin. We state the lemmas needed and omit the proofs, as they are similar to their
counterpart proofs in [AH] (Lemma 15 through Theorem 19) .

Denote by H and T the number of 1 and -1 generated by all the processors
in some run of Procedure COIN. The global-order lemma (Lemma 4.2) implies
Lemma 5.1 which yields Corollaries 5 .1 and 5 .2.

Lemma 5.1 . Let 1 < l3 be a real number . If, for some processor, H - T > l3n
(resp. T - H > /3n), then at that time H - T >- (/3 - 1)n (resp . T - H >- (/3 - 1)n) .

Corollary 5.1 . If H - T > (a + 1)n (resp . T - H > (a + 1)n), then all remaining
processors eventually flip 1 (resp . 0) .

Corollary 5.2 . If some processor flips 1 (resp . 0), then at that time H - T >- (a - 1)n

(resp. T- H >- (a - 1)n).

Partial Equivalence Between Shared-Memory and Message-Passing

	

33

The next two lemmas show the two properties of the weak shared coin (see
Definition 5.2) .

Lemma 5.2 . The adversary can force a processor to flip s with probability at most
(a + 1)/2a .

Lemma 5.3. With probability greater than (a - 1)/2a all the processors flip the
same value .

The complexity of this procedure is stated in the next lemma . It can be proved
based on the deadlock-free lemma (Lemma 4.3).

Lemma 5.4 . The expected number of rounds of Procedure COIN is 0((a + 1) 2 n 2) .

Combining Lemmas 5.2, 5 .3, and 5 .4 together yields the following theorem .

Theorem 5.1 . Procedure COIN produces a weak shared coin with O((a + 1) 2 n 2)
expected number of rounds .

5 .2. The Consensus Algorithm

In this section we describe the consensus algorithm of [AH] in the framework of
Algorithm SCHEMATIC. Again, our presentation is not the same as that of
[AH] but it is not hard to verify that both presentations are equivalent .

Algorithm CONSENSUS for processor p with initial value v, bias parameter
a for coins, and a decision value cons appears in Figure 5 . In the first round,
processor p suggests its input value as the decision value . In later rounds, p either
decides on this value or suggests some value again according to the following
rules. If, based on p's knowledge, its round is the maximal round and the rounds
of all the processors that disagree with p's value trail by at least two, thenp decides
on its value . Else, if all the processors with maximum round agree on the same
value, e, then p adopts e and suggests it in its next round . Otherwise, it suggests,
in its next round, a new value which is the value of the weak shared coin flipped
by Procedure COMMUNICATE .

In the code of the algorithm, the variable round generates the local order
required by the local-order assumption (Assumption 3.1). Each entry of the
communication vector is composed of two fields associated with the communica-
tion variables : round and v . The value of the variable maxround is the maximum
of all the roundfields in the communication vector . Procedure COMMUNICATE
is either Procedure SM-COMMUNICATE or Procedure MP-COMMUNICATE
and procedure HELP-COMMUNICATE is either Procedure SM-HELP-COM-
MUNICATE or Procedurre MP-HELP-COMMUNICATE .

Note that both Algorithm CONSENSUS and Procedure COIN call Proce-
dures COMMUNICATE and HELP-COMMUNICATE. Furthermore, a pro-
cessor while flipping one coin may need to help other processors to flip earlier

34

	

A. Bar-Noy and D . Dolev

Algorithm CONSENSUS (v, a, cons) ;
Input

	

v: an initial binary value ;
a : a bias parameter ;

Output cons : a decision binary value ;
var

	

e: a binary value ;
round, maxround : counters ;
q : a processor name ;
X: a communication vector ;
(X.round, X.value) : the two fields in each entry of X;

begin
round := maxround := 0 ;
for each processor q do X(q) := (0, - 1) ;
while (round 0 maxround) or (3gX(q).value 0 v and X(q).round >_ round - 1) do
(* stop only if round is a maximum and all that disagree trail by at least 2 *)

round := round + 1 ;
X(p) :=(round, v) ;
COMMUNICATE(X) ;
maxround := max is 9 s n {X(q). round} ;
(* if all processors with round = maxround agree on the same value *)
if 3e s .t . dy,x(y). .annd ,, ,0undX(q).value = s
then v := s ; (* adopts the majority value *)
else v := COIN(round + 1, a) ; (* flip a weak shared coin for v *)

end-while
(* Here, (round = maxround) and (X(q),value # v iff X(q).round < round - 1) *)
cons := v ;
HELP-COMMUNICATE(x) ;

end ;

Fig. 5. Algorithm CONSENSUS for processor p with initial value v and bias parameter a.

coins. This means that a processor while executing Procedure COMMUNICATE
is concurrently executing several instances of Procedure HELP-COMMUNI-
CATE. For simplicity, we omit the mechanism that enables processors to distin-
guish between different calls and to handle different calls . We just remark that it
can be done using the variable round of Procedure coin and the variable round of
Algorithm CONSENSUS .

We omit the proofs of the following lemmas since they are similar to their
counterpart proofs in [AH] (Lemma 1 through Theorem 6 and Corollary 14) .
They are stated so as to emphasize the way the global-order requirement and the
deadlock-free requirements are used .

The global-order lemma, Lemma 4.2, implies the following two lemmas .

Lemma 5.5. In a certain round at most one value can be adopted .

Lemma 5.6. If a processor decides on a in round r, then no other processor suggests
1 - s in round r .

The following corollary guarantees the first requirement of the consensus
problem (Definition 5.1) .

Partial Equivalence Between Shared-Memory and Message-Passing

	

35

Corollary 5.3 . If a processor decides on a in round r, then all the other processors
decide on s no later than round r + 1 .

The deadlock-free lemma, Lemma 4 .3, guarantees the second requirement of
the consensus problem (Definition 5 .1) .

Lemma 5.7 . If all the processors have the same initial value, then they all decide
on this value after the second round .

The expected number of rounds for Algorithm CONSENSUS depends on the
type of coin used . If the processors share a perfect (nonbiased) global coin, then
the expected number of rounds is constant . On the other hand, if each processor
flips a local coin, then the adversary can force the expected number of rounds to
be 0(2") . Here, the weak shared coin (Section 5 .1) is used, which, by the deadlock-
free lemma (Lemma 4.3), is sufficient to guarantee a constant expected number of
rounds .

Lemma 5.8. The expected number of rounds of Algorithms CONSENSUS is

constant.

Combining Corollary 5.3, Lemma 5 .7, Lemma 5 .8, and Theorem 5 .1 together
yields the following theorem.

Theorem 5.2 . Algorithms CONSENSUS using Procedure COIN, solves the con-
sensus problem in 0(n2) expected number of rounds .

6 . The Renaming Problem

Definition 6 .1 . In the renaming problem, each processor p initially has a distinct
old name taken from some (possibly large) ordered domain . The goal of the
processors is to select a new name from a space of size N, so that every two selected
new names are distinct .

The value of N does not depend on the original names, but only on n. For
the sake of simplicity, in the description of the algorithm the processors are still
identified with the numbers l, . . . , n. However, this numbering is not common to
all the processors, otherwise they can solve the problem by selecting these numbers .
Nevertheless, the processors are still able to compare entries of their own
communication vector and other communication vectors . They compare them by
the old name part of the entries . The algorithm guarantees that the communication
variables will always contain the old name .

The motivation and the importance of this problem are well explained in the
paper [ABD +], which presented two solutions that are based on Algorithm
SCHEMATIC. In this section we present the simple algorithm of [ABD +],
which solves the renaming problem with a new name-space of size 0(n 2) .

3 6

Algorithm RENAMING (ID, NEWID) ;
Input

	

ID: the old name ofp ;
Output NEWID : the new name ofp ;
var

	

S: a set of old names ;
r ; integer;
q : a local name for processors ;
X: vector of n old names;

begin
for q := 1 to n do X(q) := 0 ;
X(p) := ID ;
COMMUNICATE(X) ;
S:= the set of the old names that appear in X;
r := the rank of ID in S;

NEWID := I SI I+r ;
/2

HELP-COMMUNICATE(X) ;
end ;

Fig. 6 . Algorithm RENAMING for processor p .

A. Bar-Noy and D . Dolev

The goal of every processor is to learn the names of other processors . Due to
the asynchronous fail-stop environment, it cannot do it. The idea behind
Algorithm RENAMING is that processors select their new names according to
some sets of old names only if any two such sets are comparable (one set is a
subset of the other set) . This condition can be achieved by one call to Procedure
COMMUNICATE (either Procedure SM-COMMUNICATE or Procedure MP-
COMMUNICATE).

Algorithm RENAMING appears in Figure 6. The communication variables
of a processor in this solution contain only the old name of this processor. Here
processors compare two entries of two vectors by their content (old names) and
not by their index. If a processor does not have an entry containing some old
name and it sees this old name in another vector, it deduces, that it has less updated
information . Note that there are two possible values to each entry : either the null
value or an old name of some processor .

Again, since processors cannot quit before all the other processors make their
decision, they call Procedure HELP-COMMUNICATE after selecting their new
name .

Denote by Sk the set of the old names that appear in the kth stable vector
Xk . The following are two simple corollaries of the gobal-order lemma (Lemma
4.2) .

Corollary 6.1 . If l < i < j, then S, c~S;.

Corollary 6.2. For every 1, 1 < l < n, if I S i I _ I S; I = 1, then Si = S,.

In the algorithm, each processorp invokes Procedure COMMUNICATE only
once and then decides according to the output stable vector X. Let l be the number

Partial Equivalence Between Shared-Memory and Message-Passing

	

37

of old names that appear in X, and let r be the rank of p's old name along these

old IDs. Then processor p selects
(

2A) + r as its new name.

The following two lemmas prove that the algorithm is correct and that all
nonfaulty processors select a new name . Namely, each nonfaulty processor selects
a distinct new name after a finite number of operations .

Lemma 6.1 (Correctness). In any run of Algorithm RENAMING, if p and q
select the new names xp and xq , respectively, then x , :0 yq.

Proof. Let

s
XP =

	

+ rp

and let
s

xq =

	

+ rq .

If s p = sq , then, by Corollary 6 .2, p and q are decided according to the same
set of old names . Therefore, their ranks, r p and rq , are not equal and consequently
X p 0 xq . Ifsp # sq , then assume without loss of generality that sp < sq . As r p < SP

(

it follows that

2)+rp<(2)+1 .

Since 1 < r q it follows that

(2)+Yp<(2)+Yq
and therefore x, =A xq .

Lemma 6.2 (Termination) . All the nonfaulty processors select a new name .

Proof. The deadlock-free lemma (Lemma 4 .3) guarantees that at least one
non-faulty processor selects a new name . However, this processor makes his
decision immediately after outputting the first stable vector . The claim of this
lemma is implied by applying again and again the deadlock-free lemma .

	

El

By Lemmas 6.1 and 6 .2 and by the fact that the number of possible new IDs
is exactly

Cn +

11 = O(n2)

we get the next theorem.

El

38

	

A. Bar-Noy and D . Dolev

Theorem 6.1 . Algorithm RENAMING solves the renaming problem with a new

ID space of size In
2

1)
. This solution is valid in both the shared-memory model and

the message -passing model defined in Section 2 .

In the message-passing model the size of the new space is of order O(nt)
[ABD+] . The second algorithm of [ABD +] solves the renaming problem with
a new name-space of size 2n - 1 (n + t in the message-passing model) . Since it is
also based on the schematic algorithm, Theorem 6 .1 can be improved accordingly .

A related problem to the renaming problem requires the following : if the old
name of processor p is smaller than that of processor q, then the new name of p
is smaller than the new ID of q. In the paper [ABD +] this problem is also
solved. Again their solution is based on the schematic algorithm and, therefore,
is valid in both the shared-memory model and the message-passing model defined
in Section 2 .

Acknowledgment

We would like to thank the anonymous referees whose comments helped us to improve the presentation
of this paper substantially .

References

[A] K. Abrahamson, On Achieving Consensus Using a Shared Memory, Proc. 7th ACM
Symp. on Principles of Distributed Computing, pp. 291-302, 1988 .

[AH] J. Aspnes and M . Herlihy, Fast Randomized Consensus Using Shared Memory, Journal
of Algorithms, 11, 441-461, 1990 .

[ADB+] H. Attiya, A. Bar-Noy, D . Dolev, D. Peleg, and R . Reischuk, Renaming in an Asynchronous
Environment, Journal of the ACM, 37, 524-548, 1990.

[ADS] H. Attiya, D. Dolev, and N. Shavit. Bounded Polynomial Randomized Consensus, Proc .
8th ACM Symp. on Principles of Distributed Computing, pp . 281-293,1989.

[B] M. Ben-Or, Another Advantage of Free Choice : Completely Asynchronous Agreement
Protocols, Proc. 2nd ACM Symp. on Principles of Distributed Computing, pp . 27-30,
1983 .

[BMZ] O. Biran, S . Moran, and S. Zaks, A Combinatorial Characterization of the Distributed
Tasks Which are Solvable in the Presence of One Faulty Processor, Proc. 7th ACM Symp.
on Principles ofDistributed Computing, pp . 263-275, 1988 .

[BW] M. F. Bridgland and R. J . Watro, Fault-Tolerant Decision Making in totally Asynchronous
Distributed Systems, Proc. 6th ACM Symp. on Principles of Distributed Computing,
pp. 52-63, 1987 .

[CIL] B. Chor, A. Israeli, and M . Li, On Processor Coordination Using Asynchronous Hardware,
Proc. 6th ACM Symp on Principles ofDistributed Computing, pp . 86-97,1987 .

[CMS] B. Chor, M. Merritt, and D. Shmoys, Simple Constant-Time Consensus Protocols in
Realistic Failure Models, Journal of the ACM, 36, 591-614, 1989 .

[CM] B. Chor and L. Moscovici, Solvability in Asynchronous Environments, Proc. 30th Symp .
on Foundations of Computer Science, pp. 422-427, 1989 .

[DDS] D. Dolev, C. Dwork, and L. Stockmeyer, On the Minimal Synchronism Needed for
Distributed Consensus, Journal of the ACM, 34, 77-97, 1987 .

Partial Equivalence Between Shared-Memory and Message-Passing

	

39

[DS] D. Dolev and N. Shavit, Bounded Concurrent Time-Stamp Systems are Construct-
ible, Proc. 21st ACM SIGACT Symp. on Theory of Computing, 1989 .

[DLS] C. Dwork, N. Lynch, and L. Stockmeyer, Consensus in the Presence of Partial Synchrony,
Journal of the ACM, 35, 288-323, 1988 .

[DSS] C. Dwork, D. Shmoys, and L . Stockmeyer, Flipping Persuasively in Constant Expected
Time, Proc. 27th Symp. on Foundations of Computer Science, pp . 222-232, 1986.

[Fe] P. Feldman, Private communication .
[Fi] M. J . Fischer, The Consensus Problem in Unreliable Distributed Systems (a Brief Survey),

YALEU/DCS/RR-273, June 1983 .
[FLP] M. J. Fischer, N. A. Lynch, and M. S . Paterson, Impossibility of Distributed Consensus

with One Faulty Processor, Journal of the A CM, 32, 374-382, 1985.
[GHS] R. G . Gallagher, P . A. Humblet, and P. M. Spira, A Distributed Algorithm for Minimum-

Weight Spanning Trees, ACM Transactions on Programming Languages and Systems, 5,
66-77,1983.

[H] M. P. Herlihy, Impossibility and Universality Results for Wait-Free Synchronization,
Proc. 7th ACM Symp . on Principles of Distributed Computing, pp . 276-290, 1988 .

[IL] A. Israeli and M . Li, Bounded Time-Stamps, Proc. 28th Symp . on Foundations of Computer
Science, pp. 371-382, 1987 .

[L] L. Lamport, On Interprocess Communication, Part I and II, Distributed Computing,
1, 77-101, 1986.

[LA] M. G . Loui and H . Abu-Amara, Memory Requirements for Agreement Among Unreliable
Asynchronous Processes, Advances in Computing Research, 4, 163-183, 1987.

[PSL] M. Pease, R. Shostak, and L. Lamport, Reaching Agreement in the Presence of Faults,
Journal of the ACM, 27, 228-234, 1980.

Received January 10, 1990, and in revised form October 10, 1990, and November 11, 1990, and
in final form December 20, 1991 .

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19

