FINDING SAFE PATHS IN A FAULTY ENVIRONMENT!
by

D. Dolev
IBM Research
San Jose Laboratory

J. Meseguer
Computer Science Laboratory
SRI International

M. C. Pease
Computer Science Laboratory
SRI International

1 Introduction

This paper addresses the problem of finding safe paths through a
network, some of whose nodes may be faulty. By a safe path we
mean one between two nodes that does not contain any faulty node.
The kinds of faults that concern us are not limited to those that may
cause a failure of a node or link, but include those that may cause a
node to distort messages in arbitrary ways. Furthermore, we want a
distributed algorithm to allow the network itself to discover suitable

paths without depending on a central controller for the analysis.

More broadly, we assume that each node has only local knowledge of

the network structure.

The research reported herein was supported in part by Army Research Office
Contract No. DAAG29-79-C-0102 and Departmient of the Navy Contract No.
N00039-80-C-0571.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-081-8/82/008/0095 $00.75

95

We can think of a network of mobile radio transmitters as typical of
the problem that concerns us. As transmitters move, cotimunication
links may be broken unexpectedly, and new links formed; the
topology of the neiwork changes unpredictably with time, The rate
of change, however, can be assumed to be sufficiently low so that a
set of paths will remain uscful for some time, We assume, also, that
the rate at which information must be transmitted reliably, and the
volume that is likely to be involved in a given period of time, is high
cnough so that it would be very costly to depend on broadcast
methods. Under these conditions, it is worthwhile Lo invest the
cffort in discovering suitable scts of paths on which we can depend
for a significant period before they must be redetermined. We seek
an algorithm that will support the communication requirements of

such a network.

The algorithm developed here depends on the use of an
authentication protocol that allows a node to test whether a message
has been altered. To guard against malicious behavior, public-key
encryption methods such as those described in references {2, 14] can
be employed. If malicious behavior is not an issue, it may be enough

to use simple error-detecting codes to guard against accidental

distortion. For our purposes, we simply assume some suitable

method for authentication.,

It should be recognized that the use of authenticators does not
prevent a faulty node from gencrating misinformation. In particular,
a faulty node can provide misinformation about the route a message
has foliowed. To see this, we must understand that, during one
phase of the algorithm, messages arc sent backwards from the target
towards the initiator.2 These messages contain the route that has
been traced by the message. Each node, when it reccives one of
thesc messages, first checks, by using the succcssive authenticators
for the nodces on the asserted path, that it has not been obviously
distorted. Suppose, for example, T is the target node and that X
receives a message M that asserts it was originated by T and
transmitted to X through nodes A and B. The message reccived by
node X can be represented as SBS A5 M, where, for node Y, SY
denotes the authenticator of Y, By working back along this chain,
using the inverse operators to SB, SA and S,[. (the pablic keys) on the
suceessive fragments of the message, node X can verify that the
messagc it has received is consistent with the claimed route
T—-A—-B

This process protects against the message being garbled, but it does
not protect against the route mformation being truncated. [f node B
is faulty, for example, the message may actually have arrived at node
X along the longer path T — A — C — B — X, The message
received at node B was SCS ASTM' In this case, node B has stripped
off node C’s contribution and relayed the remaining message
fragment, with its own authenticator, to node X; this message will
pass all tests that can be apptied at node X. Authenticators do not
prevent a faulty node from misrepresenting the path a message has

taken.

The outcome of applying the algorithm is a set of independent paths
that thie initiator can use to send messages 1o the target node. The
initiator will not know which of these paths are fault-free, but, if it

has more than m node-disjoint paths, where m is the number of

2Wc will be consistent in our use of the terms "initiator” and "target." The
former indicates the node that initiates the process and that has the need for reliable
communication Lo another node which is called the target. We will use the terms
"source” and “receiver” to indicate a particular transmission of a message across a
single link, regardless of where the message originated or its ultimate destination.

96

possibly faulty nodes, at most m of the paths can contain faulty
nodes, with the rest fault-free. To ensure reliable transmission, the
initiator sends duplicatc copies of all important messages along at
least m -+ 1 paths, including with cach message its own
authentication. The initiator can then be certain that the target will
reccive (and be abie to identify) at least onc valid copy of the
message. Our algorithm assumes that neither the initiator nor the
target are themselves faulty. In case one or both are faulty, no

reliable communication between them is possible,

It is worth emphasizing that the use of some kind of authentication
seems to be necessary in a relizble communication network using an
open transmission medium such as radio. It is generally necessary
that any nodc know unambiguously which node is the immediate
source of a message. In a nctwork with a closed medium (e.g., where
all communication is by hard-wired node-to-node links) the source
of a message is identified by observing the link over which it arrived.
Where a medium such as radio is used, its source must be
identifiable from the content of the message, or through an
uncorruptible hand-shaking protocol. This appears to require some

form of authentication.

From the above it follows that, when the route is identitied by the
sequence of authenticators in a message, a faulty node must add its
own authenticator. In the truncation example discussed above, node
B was able to eliminate node C from the route, but could not fail to
include itself. This fact has important implications in the proof of

our algorithm.

Our algorithm can be understood as a distributed version of the
Ford-Fulkerson flow algorithm [10}, or as an improved version of the
concuirent algorithm described by Segall [15]. It might be
questioned why we have not based our work on Dinits’ algorithm 3]
or some variation of it such as that developed by Sleator [16], both
more efficient for centralized computation. In our earlier report [12],
we develop a decentralized algorithm based on Dinits’ work.
However, Dinits’ approach seems to be less efficient in the
distributed situation because it may require more stages than does a
Ford-Fulkerson type. It is advantageous to minimize the number of
stages if we are concerncd with the number of messages being
transmitted, particularly since each stage includes a broadcast phase.
This argument appears to make it convenient to use a Ford-

Fulkerson type of algorithm,

The algorithm presented here develops incrementally the set of paths
in successive stages. Each stage increases the number of paths from
the target to the initiator. Obviously it makes no difference for a
path to be described cither from the target to the initiator or from the
initiator to the target; since in our algorithm the paths arc developed
starting from the target, we will ulways represent paths from the

target to the initiator, Each stage consists of three phases as follows:

e Phase 1: The initiator originates a message that identifies
the stage and lists the paths between it and the target that
have been found in previous stages. (In the first stage,
there are no known paths.) This message is transmitted
by broadcast mode through the network until it reaches
the target. The message carrics the initiator’s
authenticator and is relayed at cach node without
change--i.c.. intermediate nodes check its authenticity
but do not add their own authenticators. On receipt of
this message at any intermediaie node, the node records
both the stage number and any relevant local routing
information implied by the paths listed in the message.
That is, when a non-target node X receives the message it
looks to see if it is on any path listed in the message. If it
is, it records its predecessor and successor nodes on that
path. After reccipt of this message the node will ignore
any messages from an carlicr stage. Thus the broadcast
message scrves to terminatc any residual activity that
may be left over from carlier stages.

Phase 2: This phase is initiatcd by the target when it
receives the phase 1 message for a new stage. The target
creates a message from the stage number and its own
authenticator. It sends this message to all neighbors that
are not its successors on any of the paths listed in the
phase 1 message. Each node receiving this message adds
its own authenticator and sends it to those of its
neighbors that are "suitable.” The rules that govern
which neighbors are suitable for relaying a message and
which of those will accept it ensure that no new path that
violates the constraints on cither the link or node
capacities is developoed. This process continues until the
initiator is reached. The initiator examines cach phase 2
message as it is received to ensure that it is consistent
with the paths developed in the previous stage, since a
faulty node may have introduced an inconsistency not
recognized by any other node. The initiator then stores
the accepted messages until phase 3.

Phase 3: The third phase is executed by the initiator
alone, and does not involve sending any messages. This
is permissible at any time alter at least one phase 2
message has been accepted, up to some specificd time-
out. During phase 3, the source recomputes its paths
from the target, updating its list of paths. After this, it
may initiate a new stage by originating a phase 1 message
with the new stage number.

97

The process terminates either when the initiator decides that enough
independent paths have been found, or when no authenticatable and
acceptable phase 2 messages are returned within the specified time-
out period.

Any path found by this algorithm that does not contain a faulty node
will be a valid path. To sce this, consider the "augmented network"
derived from the actual onc by adding links from cach faulty node to
every other node (except the source) to which it is not originally
linked. All paths found by the algorithm are valid paths in this
augmented network-- therefore those that do not use faulty nodes

must be valid paths in the original nerwork,

Itmightappear that the process, if carried to completion, would lead
to a maximal set of possible paths between the initiator and the
targetin the augmented network. This is not so, however, sinee a
faulty node may respond incorrectly to phasc 2 messages. In

particular, consider ihe following network:

——— X _____
/] \

/ | \
T oon Y oeeen I
\ | /
N
R Z

An Exemplary Network

Suppose, node Y is faulty and that, in the first stage, the path
T+X-YoZ-1
from the target to the initiator, is developed. In phase 2 of the
second stage, the link from Z to | is saturated in ihe flow-thcorctic
scnse; therefore the phase 2 message is sent from I only to X and
Y. Node Y is assumed faulty and may, therefore, fail to relay the
message. Node X's neighbors arc T and Y the link from T to X is
howcver already saturated. so X sends its message only to Y, Node
Y, being faulty. can again refuse to relay the message. 1fso, no new
path is found and the process terminates. In effect, the faulty node,
Y. is able to maintain the path through itself at the cxpense of two

other fault-free paths.

The example discussed represents an extreme case. [n general, each

faulty node. located in the worst possible place and misbchaving in

the most destructive way, can prevent the discovery of, at most, two
fault-free paths, while forcing the continued use of a path through
itself. Hence, if there can be as many as m faulty nodes, the
connectivity of the network between T and [inust be at least

(3m + 1), if at least one fault-free path from the initiator to the

warget is o be found in this manner.,

The main idea behind the proof of the algorithm depends on the use
of the augmented network defined above. We compare the actual

network, the augmented network, and the the directed network
determined by the residual flow left by a set of paths. It is shown
that the connectivity 3m + 1 mentioned above is actually sufficient

for our algorithm to find at Icast one reliable path,

As a measure of the complexity of the algorithm, the basic
procedures require the transfer of O((m + k) X n) authenticators
per link where n is the order of the network, m is the maximum
number of faults, and k is the required number of fault-free paths. 1f
we seek the maximal number of paths between the initiator and the
target, a variation of the algorithm requires the transfer of O(JE})
authenticators per link, where |E| is the number of links. Under

some conditions, this bound can be substantially reduced.
Acknowledgements

We would very much like to thank Richard Schwatz for his most
valuable help in improving the exposition. Possible mistakes remain

our sole responsibility.

2 Path-Finding Walks

Let G = (N,E) be an undirected graph with set of nodes N, and set
of edges E. Nodcs will be denoted by upper case letters like A, B, ctc.
. Tand I will denote twe distinguished nonadjacent nodes of G
caled the target and the initiator. P T.D) shall denote the maximum

number of node-disjoint paths, or connectivity, from T to 1.

Connectivity problems in an undirected graph can be translated into
flow problems for an associated directed network. This requires
"splitting” of the nodes to transform "node capacities” into edge

capacities.

Let C-§ = (N§,E§) be the directed network constructed from the
original G by splitting each node A in N into two nodes denoted A

and AZ, and having edges: (i) Al - A for each node A different

98

from T and 1 (ii) A2 5 Bl and B2 — Al for cach undirected edge

A — Bin E. All the edges of G¥ have unit capacity. Itis well-known {1]

that the integer pG(T.I) is the maximum flow from T2 to 11 in the

network G§.

Every collection of node-disjoint paths from T to I in G corresponds
to a unitary flow (i.e., the flow is either 0 or 1 for each edge) from T2
to 1V in the network G§. Conversely, any such flow corresponds to a
collection of node-disjoint T-1 paths, after eventual elimination of
useless loops. In particular, a path p = TABC...I in G corresponds
to a unit flow along the path T2A'AZB'B2CICE 1L in G§. For each
path p in G, the corresponding path in G§ shall be denoted by p§.
There is a variant ofG§ which can be used to find new paths in

addition to a given collection P of node-disjoint paths,

Definition: For P = {pl,
pathsin G, the residual network R]G,P] associated with P is the

., } a collection of node-disjoint T-1

graph obtained from G§ by replacing each edge X — Y by an edge
Y — X, wherever Y is the succesor of X in p§, for p a path in P, All
the edges of R[G,P] assume unit capacity.
Lemma 1: (cf. [1]. Lemma 6.1)) The maximum number of node-
disjoint directed T2-1! paths in R[G,P] is exactly

pG(T.D) - [P)
where |P| denotes thc cardinality of P. 8

Definition: A legal walk for P in G is a T2-1' path in R[G P], for Pa
set of T-1 paths in G. A string of nodes of G, TABC.. 1, is also called
a legal walk in reduced form if it can be obtained from a legal walk by
first eliminating the superscripts 1, 2, and then identifying any two
contiguous repeated nodes. Similarly, a path beginning at Tin
R[G.P] is called a legal segment for P in G, and its reduced version is

defined in the same way.

The following characterization of legal walks and fcgal segments is
used in the proof of correctness of the algorithm. It basically says
that legal walks are composed of segments of nodes not occurting in
any path (denoted by A’s below,) and segments of nodes
corresponding to portions of paths in reverse order (denoted by B's
below.)

Lemma 2: A string of nodes is the reduced version of a legal walk for
P in G if and only if it has the form

TA Ay BriBry Ag Ay B

.B A A
17 ihy 21072k,

ml1 mhm m+11" m+1km

+1
where

(i) nodes adjacent in the string are also adjacent in G and

no repeated nodes are adjacent in the string;

(ii) m > 0, and each node Aij occurs only once in the string
and does not occur in Py

(iii) cach node B, joceurs in P, and does not occur more than
twice in the string; each segmenF Bj 1...Bj I has length

hj > 2, and there is a path in P of the form

TX,.X, Bj hj"'B“ Y., Lwithnk >0

Similarly, a string of nodes T Cl...Ck with G, # 1 is the reduced
version of a legal segment for P in G if and only if nodes adjacent in
the string are adjacent in G and, in addition either
(a) the string TC,..C 1
or
(b) the string T Cl"'Cka-H
P,C, jisnot its successor in the
path, and C

I (where Ck occurs in a path of

sl is its predecessor)

is the reduced version of a legal walk for P in G, where G° denotes
the complete graph (i.e., it has all possible edges) on the sct of nodes
N. 1

If we see a legal walk and a set of paths as flows (in R[G,P] and G§
respectively,) they can be supcrimposed. as in [1] pg. 98, to obtain
another flow corresponding to a set of paths P’ with cardinality |P).
P’ can be computed directly from P and the reduced version w of the
legal walk as the sct of paths Regen(P,w) determined by the edges
E[P] occurring in P after (i) removing atl edges A — B such that AB
or BA occurs in w: (ii) adding all edges A — B not occurring in P, for

AB occurring in w.

3 The Algorithm

Let G = (N.E) be an undirected graph, with Tand T denoting the
initiator and target nodes. respectively. We assume only one
initiator and one target at a time: the general case of simultancous
attemipts by several initiator nodes could be handled in parallel in a

similar way,

99

A. ALGORITHM FOR A NODE OTHER THANI

Each node maintains the following variables

init for the name of the initiator

targ for the name of the target

st for the stage number received {rom the initiator
succ for the successor in the path

pred for the predecessor in the pah

All variables have initial value nil. By convention nil <n, for all

integers n,
A.1. When receiving a message M = Sl(msg,s#) from a neighbor X

(comment,. s# is the stage number; msg is the name T of the target if

s# = 1, otherwise a list of T-I paths)

Case 1.1, If s# > st, then

it :=1;
targ :=T;
st:=s#;

succ := the nodc’s successor in a path in msg, if any ;

pred := the node’s predecessor in a path in msg, ifany ;

send M to every neighbor except X

5

se 1.2, If s# < st, then
ignore the message

A.2. When receiving a message M = SBn'“Sm(s#) from a neighbor
X,withn>1,Bl #l,and Bn = X

Casc 2.1, If st {s#, then
wait untif recciving a message of the form Sl(msg,s#);
process this last message as in A.1, and go to Case 2.2

Case 2.2. If cither st > s#, or X = pred, or Al # targ, or some Ai

appears morce than twice or twice and contiguously, then
ignore the message

(comment: by the case split st = nil)

Case 2.3, If either succ = pred = nil, or X = succ, then

sign M and send it to every neighbor except X, targ, and

any Ai appearing twice in the list of signatures

(comment; by case split st = s#)

Case 2.4, If succ and pred not nil, and X # succ, and pred # targ, then

sign M and send it to pred
(comment: by case split st = s#)
B. ALGORITHM FOR THE TARGET
Thie target T maintains the following variables:

init for the name of the initiator
st for the stage number

srs for the list of its succesors in the developed paths

Al variables have initial value nil. As before nil <n, for all integers

n.
When receiving a message of the form M = S (msg,s#)
(comment: whens# = 1, thenmsg = T)

Case 1, [fs# > st then

init ;=13
st = s#
srs - = the successors of Tin msg ifs# > 1, nitifs# = 1;

sign message (st), and send it to every neighbor except thosc in srs

(comment: s# = s+1)
Case 2. If s# < st, then

ignore the message

C. ALGORITHM FOR THE INITIATOR

The initiator tries to find k nonfaully paths to the target, under the
assumption that no more than m nodes are faulty. If t) is the
maximum time that it takes for a node to process a message, and IN}
is the total number of nodes, we define timeout = 3 X |N| X ty The

transmitter keeps the foliowing variables:

T an elapsed time counter
st for the stage number

P for the current paths

all variables have initial value nil

C.L If v timeout, or |P| = k4, then
sTop

(comment: cither k nonfaulty paths have been found

or no more paths can be found)

C.2. When receiving a message of the form SX"’ST(S#) from
neighbor X

Casg 2.1, If s# <st, or the string T...X1 is not a legal walk in
reduced form for P in the complete graph on the set of nodes

oceuring in cither the paths of P, or the string T...X1, then

ignore the message

(comment: to decide if T...X1 is a tegal walk for P in the complete

graph, the initiator checks the conditions in Lemma 2)
Case 2.2. otherwise

st:=st+1;
P := Regen(P,T..XI);

sign message (P st), and send it to every neighbor

4 Proof of Correctness of the Algorithm

Theorem 3: If the undirected graph G = (N,E) has connectivity
pg(T.D 2 3m + k, between nonadjacent nodes T and 1, and the
nodes of G perform the algorithm of last scction with I as initiator, T
as target, and no more than m of the other nodcs faulty, the initiator
[will have at lcast k node-disjoint T-1 paths of G not involving any
faulty nodes among its list P of paths, before the timeout of stage m
+ k.

Proof. A faulty node can eliminate a collection of most-recent
signatures from a message. Since the only information the initiator
has at any given time is the list of already developed paths and the
list of its neighbors, faulty nodes could cause the initiator to accept
legal walks for the paths P in the complete graph on N which are not
legal in G. Thus the new paths developed by the initiator from this

information will not be in general valid paths of G.

We first show that the list P developed by the initiator is always a list
of valid paths in a graph G™8, called the augmentation of G, and
obtained from G by connecting each faulty node to all other nodes
except the initiator.

Lemma 4: At any stage the paths of P are valid paths in G™'&

Proof. Using induction, it is enough to assume the result for the P

obtained at the end of stage n, and then show that if in stage n+ 1 the

initiator accepts as legal string, the string will be legal in G™&. This
is equivalent to showing that if the string received by the initiator is
not a legal walk for P in G™8, then it is not a legal walk for P in the
complcte graph for N, Let T Al.../\g I be such a string. By cases
A.2.2- A2.4in the algorithm the string must contain a faulty node
with no nodes occurring either morc than twice or twice and
contiguously. Let T A,..A} be the smallest illegal segment for P in
G™®. A, must be faulty; otherwise T A,..A, | would be illegal, by
the cases A.2.2 - A.2.4 mentioned above. Notc also that A, .| must
belong to one of the paths in P (otherwise T A,...A} would be legal.)
For the same reason A, _, cannot be the successor of A, _; in such
path. Thus A, is not the predecessor of A, _ in the path. Therefore
by condition (iii) in Lemma?2, T Al..A, isnota legal segment for P

in the complete graph for N, completing the proof of the lemma, &

101

Since a path in G®“2 not involving faulty nodes is also a path in G, to
complete the proof of the thearem we have only to show that if the
initiator broadcasts a list P of j paths in G2"8 at the beginning of
phasej + 1 (for0 <j < m + k - 1), then the initiator will receive a
list of signatures corresponding to a legal walk for P in G“8 before
the counter 7 reaches timeout. By case A.2 of the algorithm, this is
equivalent to showing that the faulty nodes cannot block all the
paths of R[G,P]. Since the initiator can detect illegal walks for P in
G2 (by the proof of Lemma 4,) the worst case is to assume that the

faulty nodes do not answer any message during phasej + 1.

Note that, in any case, the message from the initiator to the target
reaches the target, since only the existence of m+-1 node-disjoint I-T
paths in G is needed. To see that a message sent from the target will
reach the initiator without passing through any faulty node, note
that, by Lemma 1, R[G,P] has

3m+k-j>2m+1
node-disjoint paths from the target to the initiator. The faulty nodes
not answering a message corresponds to the removal of at most 2m
nodes in R[G,P]. But this leaves one or more node-disjoint paths not
involving faulty nodcs in R[G,P]. Any such path has length smaller
than 2 X |NJ. Thus the message will reach the initiator before

timeout, which finishes the proof. &

5 Complexity Analysis

The algorithm presented above requires the initiator to broadcast all
the paths it has obtained in the previous stage at the beginnig of each
new stage. Broadcasting requires at most 2|E| messages, since each
processor forwards the information at most once to each neighbor.
The second phase of each stage involves authenticated lists of
processors being developed as the messages are transmitted through
the network from the target to the initiator. Counting an
authenticated signature as one, if the initiator wants k reliable paths,
the total complexity is O((k + m) X |N} X |E{). To find the
maximum number of paths takes up to |N| stages, which adds up to
O(INJ? X |E]).

These bounds exceed the upper bound on the number of messages
needed if onc just broadcasts all the information to the initiator and
lets the initiator find the paths. Such a straightforward algorithm
requires O(|E12) messages. But it requires the initiator to have O(|E|)
space for finding the connnectivity. Observe that the same number
of messages is required for finding even one reliable path, |E|
denotes here the number of edges in the augmented graph G,
The algorithm we have presented above can be improved to take
O(|E|2) messages for finding the maximum number of paths, while
requiring even less for finding k reliable paths. During cach stage
the initiator sends only the new path that has been found in the last
stage. With that information, every processor can update its local
routing information to help the initiator obtain another node-disjoint
path at the end of the stage. This change requires continued
broadcasting from the initiator to the targct, even when a new stage
has been started. A processor has to wait until it receives the
required updating information; if a processor does not receive the
information, it does not proceed, since it is disconnected from the

initiator by faulty processors.

The requirement of 3m + k connectivity reflects worst case
behavior. Asa matter of fact, to find k nonfaulty paths the size of
the minimal cut (in the sense of network flow) from the initiator to
the target has to be at cast 3nm + k, where o' is the number of
faulty processors on the minimal cut. 1t may also happen that other
parts of the network have low conncclivity -- arid the number of
faults can exceed ', or even (3m' -+ k), without harm, as long as

they are scattered.

6 Concluding Remarks

The algorithm introduced is not the only one that can overcome
malicious behavior while still finding communication paths.
Moreover, more efficient algorithms likely exist. However, trying to
adapt more efficient centralized flow algorithms does not necessarity
help, since in general those algorithms make use of data structures

which have no efficient implementation in a distributed context.

The work described here is among the first to explorc the area of
fault-tolerant algorithms which do not restrict the types of possible
faults. If the possibility of nodes generating misinformation were not

an issue, the problem would be much simpler.

102

Aunother important problem is to develop algorithms to find safe
paths without requiring authentication. Algorithms without
authentication have been developed for reaching agreement in a
faulty network [12-13, 5-7). 1deas in these algorithms could help in

solving the problem.

7 References

1. S. Even, Graph Algorithms, Computer Science Press, Woodland
Hills, California.

2. W. Diffic and M. Hellman, "New directions in cryptography,”
IEEE Trans. on Information, 1T-22,6 pp 644-654 (1976).

3. E.A. Dinits," Algorithm for the solution of maximal flow ina
network with power estimation,” Soviet Mathcmatics, Report No.
11, pp 1277-1280 (1970).

4. D. Dolev, "The Byzantine Generals Strike Again,” Journal of
Algorithims, Vol. 3, No. 1,(1982).

5. D. Dolev, "Unanimity in an Unknown and Unreliable
Environment," 220d 1EEE Ann. Symp. Found. Comp. Sci., pp 159-
168 (1981).

6. D. Dolev, M. Fischer, R. Fowler, N. Lynch, and R, Strong,
"Efficient Byzantine Agreement Without Authentication,” in
preparation.

1. D. Dolev and H. R. Strong, "Polynomial Algorithm for Multipte
Processor Agreement,” Proc, 14th ACM Sigact Symp. Theor,

Computing, May 1982; sce also IBM Res. Report RJ3342 (1981).

8. D. Dolev and H. R. Strong, "Authenticated Algorithms for

Byzantine Agreement,” submitted for publication,

9. D. Dolev and A. C. Yao, "On the Sccurity of Public Key
Protocols,” Proc. 22nd 1EEE Symp. Found, Comp, Sci.. pp 350-357
(1981).

10. L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton

University Press, Princeton, New Jersey, 1962,

11. L. Lamport, R. Shostak, and M. Pease, "The Byzantinc Generals

Problem,” ACM Trans. Programming and Systems, to appear.

12. M. C. Pease, J. G. Mescguer, and D. Dolev, "A decentralized
algorithm for network connectivity,” Technical Report CSL-127,
SRI International, Menlo Park, California (July 1981).

13. M. C. Pease, R. Shostak, and L. Lamport, "Reaching Agrecment
in the Presence of Faults™, J. ACM, Vol. 27. No. 2, pp 228-234
(1980).

14. R. L. Rivest, A, Shamir, and L. Adleman, "A Method for
Obtaining Digital Signatures and Public Key Cryptosystems,”
Comm, ACM, Vol. 21, pp 120-126 (1978).

15. A. Scgall, "Decentralized maximum flow algorithms,” submitted
for publication,

16. D. K. Sleator, "An O{nm(log n)} algoritim for maximum
network flow,” Ph. D. disscrtation, Department of Computer

Science, Stanford University, Stanford, California (Nov. 1980).

103

