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1 Int roduct ion 

This paper addresses the problem of finding safe paths through a 

network, some of whose nodes may be faulty. By a safe path we 

mean one between two nodes that does not contain any faulty node. 

The kinds of faults that concern us are not limited to those that may 

cause a fhilure of a node or link, but include those that may cause a 

node to distort messages in arbitrary ways. Furthermore, we want a 

distributed algorithm to allow the network itself to discover suitable 

paths without depending on a central controller for the analysis. 

More broadly, we assume that each node has only local knowledge of 

the network structure. 
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We can think of a network of mobile radio transmitters ,as typical of 

the problem that concerns us. As transmitters move, communication 

links may be broken unexpcctedly, and new finks formed; the 

topology of the network changes nnpl'edictab[y with time. The rate 

of change, however, can be assumed to be sufficiently low so that a 

set of paths will remain useful for some time. We assume, also, that 

the rate at which information must be transmitted reliably, and the 

volume that is likely to be involved in a given period of  time, is high 

enough so that it would be very co3tly to depend on broadcast 

methods. Under these conditions, it is worthwhile to invest the 

effort in discovering suitable sets of  paths on which we can depend 

for a significant period before they must be redetermined. We seek 

an algorithm that will support the comrnunication rcquirements of  

such a network. 

The algorithm developed here depends on the use of  an 

authentication protocol that allows a node to test whether a message 

has been altered. To guard against malicious behavior, public-key 

encryption methods st, ch as those described in references [2, 14] can 

be employed. If malicious behavior is not an issue, it may be enough 

to use simple error-detecting codes to guard against accidental 
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distortion. For out" purposes, we simply assume some suitable 

method tbr authentication. 

It should be recognized that the use of authenticators does not 

prevent a faulty node from generating nfisinformation. In particular, 

a faulty node can provide misinfommtion about the route a message 

has followed. To see this, we must understand that, dtu'ing one 

phase of the algorithm, messages are sent backwards from the target 

towards the initiator. 2 These messages contain the route that has 

been traced by the message. Each node, when it reccives one of 

these messages, first checks, by using the succcssive authenticators 

for the nodes on the asserted path, that it has not been obviously 

distorted, Suppose, for example, T is the target node and that X 

receives a message M that asserts it was originated by T and 

transmitted to X through nodes A and B. The message received by 

node X can be represented its SBSAS.I.M, where, for node Y, Sy 

denotes the authenticator of Y. By working back along this chain, 

using the inverse operators to St? ,, S A and S T (the public keys) on the 

successive fragnmnts of the message, node X can verify that the 

message it has received is consistent with the claimed route 

T - , A ~ B  

possibly faulty nodes, at most m of the paths can contain faulty / 

nodes, with the rest fault-free. To ensure reliable transmission, the 

initiator sends duplicate copies of all important messages along at 

least m + 1 paths, including with each message its own 

authentication. The initiator can then be certain that the target will 

receive (and be able, to identify) at least one valid copy of the 

message. Our algorithm assumes that neither the initiator nor the 

target are themselves faulty. In case one or both are faulty, no 

reliable communication between them is possible. 

It is worth emphasizing that the use of some kind of authentication 

seems to be necessary in a reliable commtmication network using an 

open transmission medium such as radio. It is generally necessary 

that any node know unambiguously which node is the irnmediate 

source of a message. In a network with a closed medium (e.g., where 

all communication is by hard-wired node-to-node links) the source 

o fa  ntcssage is identified by observing the link over which it arrived. 

Where a medium such as radio is used, its sottrce must be 

identifiable fi'om the content of the message, or through an 

uncorruptiblc hand-shaking protocol. This appears to require some 

form of authentication. 

This process prt)tects against the message being garbled, but it does 

not protect against the route information being truncated. If node B 

is [hulty, for example, the message may actually have arrived at node 

X along the longer path T + A --+ C --+ B --+X. The message 

received at node B was ScSASTM. In this case, node B hits stripped 

offnode C's contribution and relayed tile remaining message 

fragment, with its own authenticator, to node X; this message will 

pass all tests that can be applied at node X. Authenticators do not 

prevent a faulty node from misrepresenting the path a message has 

taken. 

The outcome of applying the algorithm is a set of  independent paths 

that tl'[e initiator can use to send messages to the target node. The 

initiator will not know which of these paths are fault-free, but, if it 

has more than m node-disjoint paths, where m is the number of 

2We will be consistent in our use of tile terms "initiator" and "target." The 
former indicatcs the node that initiates the process and that has the need for reliable 
communication to another node which is called the target. We will use the terms 
"sotlrce" and "receiver" m in~.licate a partictllar tr[nlsnlission o f a  illcssage aCl"OSs a 
single link. regardless o f  where the message originated or  its ultinmte destination. 

Frocn the above it follows that, when the route is identified by the 

sequence of authenticators in a message, a faulty node must add its 

own authenticator. In the truncation example discussed above, node 

B was able to eliminate node C from the route, but could not fail to 

include itself. This fact has import,ant implications in the proof of  

our algorithm. 

Our algorithm can be understood as a distributed version of the 

Eord-Fulkerson flow algorithm [10], or as an improved version of the 

concurrent algorithm described by Segall [15]. It might be 

questioned why we have not based our work on Dinits' algorithm [3] 

or some variation of  it such as that developed by Sleator [16], both 

more efficient for centralized computation. In our earlier report [12], 

we develop a decentralized algorithm based on Dinits' work. 

However, Dinits' approach seems to be less efficient in the 

distributed situation because it may require more stages than does a 

Ford-Fulkerson type. It is advantageous to minimize the number of 

stages if we are concerned with the number of messages being 

transmitted, particularly since each stage includes a broadcast phase. 

'['his argument appears to make it convenient to use a Ford- 

Fulkerson type of algorithm. 
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The algorithm presented here develops incrementally the set of paths 

in successive stages. ~ c h  stage increases the number of paths from 

the target to the initiator. Obviously it makes no difference for a 

path to be described either fl'om the target to the initiator or fl'om the 

initiator to the target; since in our algorithm the paths arc developed 

starting from the u~rgct, we will always reoresent imths from the 

target to the initiator. D.mh stage consists of three phases as follows: 

• Phase 15 The initiator originates a message Ihat identifies 
the stage and lists the paths between it and the target that 
have been found in previous stages. (In the first stage, 
there are no known paths.) This message is transmitted 
by broadcast nlode through the network until it reaches 
the target, The message carries the initiator's 
authenticator and is relayed at each node without 
change--i.e., inlermcdiate nodes check its authenticity 
but do not add their own authenticators. On receipt of  
this nlessage al any intermedialc node, the node records 
both the stage nililli)er and any relevant local routing 

information inlplied by the paths listed in the message. 
That is, when a non-target node X receives the message it 
looks to see if it is on any path listed in the message. If it 
is, it records its predecessor and successor fiodcs on that 
path. After receipt of this message the node will ignore 
any messages fl'om an earlier stage. Thus the broadcast 
message serves to terminate any residual activity that 
may be left over fi'om earlier stages. 

• Phase 2: This ph~e  is initiated by the target when it 
receives the phase I message for a new stage. The target 
creates a message from the stage number and its own 
authenticator, It sends this message to all neighbors that 
are not its successors on any of the paths listed in the 
phase 1 message. Each node receiving this message adds 
its own authenticator and sends it to those of  its 
neighbors that are "suitable." The rules that govern 
which neighbors are suitable for relaying a message and 
which of those will accept it ensure that no new path that 
violates the constraints on either the link or node 
capacities is developoed. This process continues until the 
initiator is reached. The initiator examines each phase 2 
message as it is received to ensure that it is consistent 
with the paths developed in the previous stage, since a 
faulty node may have introduced an inconsistency not 
recognized by an). other node. The initiator then stores 
the accepted messages until phase 3. 

• Phase 3: The third phase is executed by the initiator 
alone, and does not involve sending any messages. This 
is permissible at any time after at least one phase 2 
message has been accepted, tip to some specified time- 
out. During phase 3, the source recomputes its paths 
fl'om the target, updating its list of paths. After this, it 
may initiate a new stage by originating a phase 1 message 
with the new stage number. 

The process terminates either when the initiator decides that enough 

independent paths have been four<l, or when no authenticatable and 

acceptable ph'ise 2 messages are returned within the specified time- 

out period. 

Any path found by this algorithm that does not contain a faulty node 

will be a valid path. To see this, consider the "augnlented network" 

derived flom the actual one by adding links from each fauhy node to 

every other node (except the sotncc) 'o which it is not originally 

linked. All paths fotlnd by the algorithm are wllkl paths in this 

augmented network-- therefore those that do not use faulty nodes 

innst be valid paths in the original network, 

It might appear that the process, if carried to completion, would lead 

to a maximal set of possible paths between the initiator and the 

target in the augmented network. ~l'his is not so, however, since a 

faulty node may respond incorrectly to phase 2 messages. In 

particular, consider lhe following network: 

. . . .  X . . . . .  

/ I \ 

/ I \ 
T ..... Y . . . . . . .  I 

\ I l 
\ I / 

. . . .  Z . . . . .  

An Exemplary Network 

Suppose, node Y is faulty and that, in the first stage, the path 

T - , X ~  Y - - + Z ~  l 

fi'om the target to the initiator, is developed. In phase 2 of  the 

second stage, the link from Z to I is saturated in the flow-theoretic 

sense; therefore the phase 2 message is sent fl'om I only to X and 

Y. Node Y is assumed faulty and may, therefore, fail to relay the 

message. Node X's neighbors arc T and Y: the link fiom T to X is 

however already saturated, so X sends its message only to Y. Node 

Y, being faulty, can again refiJse to relay the message. If so, no new 

path is found and the process terminates. In effect, the faulty node, 

Y. is able to maintain the path through itself at the expense of two 

other fault-fi'ee paths, 

The example discussed represents an extreme case. In general, each 

faulty pode, located in the worst possible place and misbehaving in 
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the most destructive way, can prevent the discovery of, at most, two 

fault-free paths, while forcing the continued use e ra  path through 

itself. Hence, if there can be as many as m faulty nodes, the 

connectivity of the network between T and 1 must be at least 

(3m + 1), if at least one fault-free path fi'om the initiator to the 

target is to be found in this manner. 

The main idea behind tile proof o1" the algorithm depends on the use 
of the augmented network defined above. We compare the actual 

network, the augmented network, and the the directed network 

determined by the residual flow left by a set of paths. It is shown 

that the connectivity 3m + i mentioned above is actually sufficient 

for our algorithm to find at least one reliable path. 

As a measure of the complexity of the algorithm, the basic 

procedures require the transfer ofO((m + k) X n) authenticators 

per link where n is the order of the network, m is the maximum 

number of faults, and k is the required number of fault-fiee paths. If 

we seek the maximal number of paths between the initiator and the 

target, a variation &the  algorithm requires the transfer of O([E]) 

authenticators per link, where I EI is the number of links. Under 

some conditions, this bound can be substantially reduced. 
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2 P a t h - F i n d i n g  W a l k s  

Let G = (N,E) be an undirected graph with set of nodes N, and set 

of edges E. Nodes will be denoted by upper case letters like A, B, etc. 

. T and I will denote two distinguished nonadjacent nodes of G 

caled the target and the initiator. PG(T,I) shall denote the maximum 

number of node-disjoint paths, or connectivity, fi'om T to 1. 

Connectivity problems in an undirected graph can be translated into 

flow problems ['or an associated directed network. This requires 

"splitting" of the nodes to transForln "node capacities" into edge 

capacities. 

Let G § = (N§,E §) be the directed network constructed Ffom the 

original G by splitting each node A in N into two nodes denoted A 1 

and A 2, and having edges: (i) A t + A 2 for each node A different 

fi'om T and l; (ii) A 2 --+ B 1 and B 2 --+ A 1 For each undirected edge 

A --4 B in E. All the edges ofG § have unit capacity. Itis well-known [1] 

that the integer PG(T,I) is the maximum flow fl'om T 2 to 1 l in the 

network G §. 

Every collection of node-disjoint paths from T to I in G corresponds 

to a unitary flow (i.e., the flow is either 0 or i for each edge) from T 2 

to I l in the network G §. Conversely, any such flow corresponds to a 

collection of node-disjoint 3"-1 paths, after eventual elimination of 

useless loops. In particular, a path p = TABC...I in G corresponds 

to a unit flow along the path T2A1A2B 1 B2C1C2...I 1 in G §. For each 

path p in G, the corresponding path in G § shall be denoted by p§. 

There is a variant o fG § which can be used to find new paths in 

addition to a given collection P &node-disjoint paths. 

Definition: For P = {Pt ..... pn } a collection of node-disjoint T-I 

paths in G, the residual network RiG,P] associated with P is the 

graph obtained from G § by replacing each edge X --. Y by an edge 

Y --+ X, wherever Y is the succesor of X in p§, for p a path in P. All 

the edges of RiG,P] assume unit capacity. 

Lenuna !: (cf. [1], Lemma 6.1.) The maximum number of node- 

disjoint directed T2-11 paths in RiG,P] is exactly 

Do(T,I)- IPI 

where ]P[ denotes the cardinality of P. II 

Defnition: A legal walk for P in G is a T2-11 path in RiG,P], for P a 

set of T-I paths in G. A string of nodes of G, TABC...I, is also called 

a legal walk ill reduced form if it can be obtained fiom a legal walk by 

first eliminating the superscripts 1, 2, and then identifying any two 

contiguous repeated nodes. Similarly, a path beginning at T 2 in 

RiG,P] is called a legal segment for P in G, and its reduced version is 

defined in the same way. 

The following characterization &legal walks and legal segments is 

used in the proof of correctness of the algorithm. It basically says 

that legal walks are composed ofsegmems of nodes not occurring in 

ally path (denoted by A's below,) and segments of nodes 

corresponding to portions of paths in reverse order (denoted by B's 

below.) 
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Lemma 2: A string of nodes is the reduced version of a legal walk for 

P in O if and only ifit has lira form 

T A 1 I...AI kl B 11...BI hl A 2 I...A2 k2...B m l...Bm hm Am+ I l...Am+l km+l I 

where 

(i) nodes adjacent in the string are also adjacent in G and 

no repeated nodes are adjacent in the string; 

(ii) m _> 0, and each node Aij oecnrs only once in the string 

and does not occur in P; 

(iii) each node Bij occurs in P, and does not occur more than 

twice in the string; each segment Bj 1...Bj h has length 
• j 

hj > 2, and there is a path in P of the form 

T XI...X n Bj hj...Bj 1 YI...Yk l, with n,k > 0. 

Similarly, a string of nodes T C1...C k with C k # 1 is the reduced 

version of a legal segment for P in G if and only if nodes adjacent in 

the string are adjacent in G and, in addition either 

(a) the string T Cv..C k 1 

or 

(b) the string T C1...CkCk+ l | (where C k occurs in a path of 

P, Ck_ 1 is not its successor in the 

path, and CI< + 1 is its predecessor) 

is the reduced version of a legal walk for P in G c, where G c denotes 

the complete graph (i.e., it has all possible edges) on the set of nodes 

N . I  

If we see a legal walk and a set of paths as flows (in R[G,P] and G § 

respectively,) they can be superimposed. ,as in [1] pg. 98, to obtain 

another flow corresponding to a set of paths P' with eardinality ]PI. 

P' can be computed directly from P and the reduced version w of file 

legal walk as the set of paths Regen(P,w) dctelmined by the edges 

E[P] occurring in P after (i) removing all edges A ---, B such that AB 

or BA occurs in w; (ii) adding all edges A ~ B not occurring in P, for 

AB occurring in w. 

3 The  A l g o r i t h m  

Let G = (N,E) be an undirected graph, with 1 and T denoting the 

initiator and target nodes, respectively. Wc assume only one 

initiator and one target at a time: the general case ofsimultancous 

attempts by several initiator nodes could be handled in parallel in a 

similar way. 

A. ALGORITHM FOR A NODE OTllER THAN I 

Each node maintains the following variables 

init for the name of the initiator 

targ for the name of the target 

st for the stage number received from the initiator 

succ for the successor in the path 

pred for the predecessor in the pah 

All variables have initial value nil. By convention nil < n, for all 

integers n, 

A.i. When receiving a message M = Sl(msg,s#) from a neighbor X 

(comment. s #  is the stage number; msg is the name T of the target if 

s #  = 1, otherwise a list of T-I paths) 

Case 1.1. l f s #  > st, then 

init : = I ; 

targ :=  T ; 

s t : =  s #  ; 

succ: = the node's successor in a path in msg, if any ; 

pred : = the node's predecessor in a path in msg, ifany ; 

send M to every neighbor except X 

Case 1.2~ l f s #  < st, then 

ignore the message 

A.2. When receiving a message M = Sun.,.St~l(s#) fi'om a neighbor 

X, w i t h n > l ,  B l ~ l ,  andBn = X  

Case 2.1~ If st s# ,  then 

wait until receiving a message of the form Sl(msg,s#); 

process this last message as in A.1, and go to Case 2.2 

Case 2 ~  Ifeither st > s# ,  or X = pred, or A1 ~- targ, o1" some Ai 

appears more than twice o1" twice and contiguously, then 

ignore the message 

(comment: by the case split st ~ nil) 
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.Case 2.3. If either succ = pred = nil, or X = succ, then 

sign M and send it to every neighbor except X, targ, and 

any Ai appearing twice in the list of signatures 

(comment: by case split st = s # )  

.Case 2.4, lfsucc and pred not nil, and X ;e succ, and pred * targ, then 

sign M and send it to pred 

(comment: by case split st = s # )  

B. ALGOIIITIIM FOR T i l E  TARGET 

1 lie target T maintains the following variables: 

init for the name of the initiator 

st for the stage number 

srs for the list of its succesors in the developed paths 

All variables have initial value nil. As before nil < n, for all integers 

n. 

When receiving a message of the form M = Sl(msg,s# ) 

(comment: when s #  = 1, then msg = T) 

Case 1. I f s #  > st, then 

init : = I ; 

s t : =  s#  ; 

srs :=  the successors o f t  in msg if s#  > 1, nil i f s #  = 1 ; 

sign message (st), and send it to every neighbor except those in srs 

(comment: s #  = s+ 1) 

Case 2. If s #  < st, then 

ignore the message 

C. ALGORITItM FOR TI lE  INITIATOR 

The initiator tries to find k nonfaulty paths to the target, under the 

assumption that no more than m nodes are faulty, l f t  0 is the 

maximum time that it takes for a node to process a message, and ]NI 

is the total number of nodes, we define timeout = 3 × INI X t 0. The 

transmitter keeps the following variables: 

r an elapsed time counter 

st for the stage number 

P for the current paths 

all variables have initial value nil 

C.I. l f r  > timeout, or ]PI = k+t ,  then 

STOP 

(comment: either k nonfaulty paths have been found 

or no more paths can be found) 

C.2. When receiving a message of the form SX...S.I,(S# ) from 

neighbor X 

Case 2.1__~. If s#  < st, or the string T...XI is not a legal walk in 

reduced form for P in the complete graph on the set of nodes 

occuring in either the paths of P, or the string T...XI, then 

ignore the message 

(comment: to decide ifT...XI is a legal walk for P in tile complete 

graph, the initiator cimcks the conditions in Lemma 2) 

Case 2.2. otherwise 

s t : =  st + 1 ;  

P :=  Regen(P,T...Xl) ; 

sign message (P,st), and send it to every neighbor 
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4 Proof of Correctness of the Algor i thm 

Theorem 3: If the undirected graph G = (N,E) has connectivity 

PG(T,I) > 3m + k, between nonadjacent nodes T and 1, and the 

nodes of G perform the algorithm of last section with I as initiator, T 

as target, and no more than m of the other nodes faulty, the initiator 

[ will have at least k node-disjoint T-I paths of G not involving any 

faulty nodes among its list P of paths, before the timeout of stage m 

+ k .  

Proof. A faulty node can eliminate a collection of most-recent 

signatures fiom a message. Since the only information the initiator 

has at any given time is the list of already developed paths and the 

list of its neighbors, faulty nodes could cause the initiator to accept 

legal walks for the paths P in the complete graph on N which are not 

legal in G. Thus the new paths developed by the initiator from this 

information will not be in general valid paths of G. 

We first show that the list P developed by the initiator is always a list 

of valid paths in a graph G aug, called the augmentation of G, and 

obtained from G by connecting each faulty node to all other nodes 

except the initiator. 

Lemma 4: At any stage the paths of P are valid paths in G aug 

ProoL Using induction, it is enough to assume the result lbr the P 

obtained at the end of s/age n, and then show that if in stage n + 1 the 

initiator accepts as legal string, the string will be legal in G aug. This 

is equivalent to showing that if the string received by the initiator is 

not a legal walk Ibr P in G aug, then it is not a legal walk for P in the 

complete graph for N. Let T AI...Ag I be such a string. By cases 

A.2.2 - A.2.4 in the algorithm the string must contain a faulty node 

with no nodes occurring either more than twice or twice and 

contiguously, l,et T A1...A h be tile smallest illegal segment for P in 

G aug. A h must be faulty: otherwise T AI...A h . l would be illegal, by 

the cases A.2.2 - A.2.4 mentioned above. Note also that Ah. 1 must 

belong to one of the paths in P (otherwise T A1...A h would be legal.) 

For tile same reason A h . 2 cannot be the successor ofA h , 1 in such 

path. Thus A h is not the predecessor OfAh. 1 in the path. Therefore 

by condition (iii) in Lemma 2, T Ay..A h is not a legal segment for P 

in the complete graph for N, completing the proof of the lemma. I 

Since a path in G aug not involving lhulty nodes is also a path in G, to 

complete the proof of the theorem we have only to show that if the 

initiator broadcasts a list P ofj paths in G aug at the beginning of 

phase j + 1 (for 0 < j <_ m + k - 1), then the initiator will receive a 

list of signatures corresponding to a legal walk for P in G aug before 

the counter r reaches timeout. By case A.2 &the  algorithm, this is 

equivalent to showing that the faulty nodes cannot block all the 

paths of R[G,P]. Since the initiator can detect illegal walks for P in 

G aug (by the proof of Lemma 4,) the worst case is to assume that the 

faulty nodes do not answer any message during phase j + 1. 

Note that, in any case, the message from the initiator to the target 

reaches the target, since only the existence of m +  1 node-disjoint I-T 

paths in G is needed. To see that a message sent fi'om the target will 

reach the initiator without passing through any faulty node, note 

that, by Lemma 1, R[G,P] has 

3 m +  k - j _ > 2 m +  1 

node-disjoint paths from the target to the initiator. The faulty nodes 

not answering a message corresponds to the removal of at most 2m 

nodes in RIG,P]. But this Icaves one or more node-disjoint paths not 

involving faulty nodes in R[G,P]. Any such path has length smaller 

than 2 × ]N[. Thus the message will reach the initiator before 

timeout which finishes the proof. I 

5 Complex i ty  Analys is  

The algorithm presented above requires the initiator to broadcast all 

the paths it has obtained in the previous stage at the beginnig of each 

new stage. Broadcasting requires at most 21E I messages, since each 

processor forwards the information at most once to each neighbor. 

The second phase of each stage involves authenticated lists of 

processors being developed ,as the messages are transmitted through 

the network from the target to the initiator. Counting an 

authenticated signature as one, if the initiator wants k reliable paths, 

the total complexity is O((k+m) X INI X IEI). To find the 

maximum number of paths takes up to IN I stages, which adds up to 

O(tNI 2 x IE[). 
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These bounds exceed the upper bound on the number of messages 

needed if one just broadcasts all the information to the initiator and 

lets the initiator find the paths. Such a straightforward algorithm 

requires O(IEI 2) messages. But it requires the initiator to have O(IEI) 

space for finding the connnectivity. Observe that the same number 

of messages is required for finding even one reliable path. IEI 

denotes here the number of edges in the augmented graph G aug. 

The algorithm we have presented above can be improved to take 

O(IEI 2) messages for finding the maximum number of paths, while 

requiring even less tbr finding k reliable paths. During cach stage 

the initiator sends only the new path that has been found in the last 

stage. With that information, every processor can update its local 

routing information to help the initiator obtain another node-disjoint 

path at the end of the stage. This change requires continued 

broadcasting from the initiator to the targct, even when a new stage 

has been started. A proccssor has to wait until it receives the 

required updating infornmtion, if a processor does not receive the 

information, it does not proceed, since it is disconnected fi'om the 

initiator by faulty processors. 

The requirement of 3m + k connectivity reflects worst case 

behavior. As a matter of fact, to find k nonfaulty paths the size of 

the minimal cut (in the sense of network Ilow) from the initiator to 

the target has to be at least 3m' + k, where m' is the nun~ber of 

faulty processors on the minimal cut. It may also happen that other 

parts of the network have low connectivity -- arid the number of 

faults can exceed m', or even (3m' + k), without harm, as long as 

they are scattered. 

6 Concluding Remarks 

The algorithm introduced is not the only one that can overcome 

malicious behavior while still finding communication paths. 

Moreover, more efficient algorithnis likely exist. However, trying to 

adapt more efficient centralized flow algorithms does not necessarily 

help, since in general those algorithms make use of data structures 

which have no efficient implementation in a distributed context. 

The work described here is among the first to explore the area of 

fault-tolerant algorithms which do not restrict the types of possible 

faults. If the possibility of nodes generating misinfornaation were not 

an issue, the problem would be much simpler. 

Another impork'mt problem is to develop algorithms to find safe 

paths without requiring authentication. Algorithms without 

authentication have been developed for reacifing agreement in a 

faulty network [12-13, 5-7]. Ideas in these algorithms could help in 

solving the problem. 
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