
FINDING SAFE PATHS IN A FAULTY ENVIRONMENT]

by

D. Dolev
IBM Research

San Jose Laboratory

J. Meseguer
Computer Science Laboratory

SRI International

M. C. Pease
Computer Science Laboratory

SRI International

1 Int roduct ion

This paper addresses the problem of finding safe paths through a

network, some of whose nodes may be faulty. By a safe path we

mean one between two nodes that does not contain any faulty node.

The kinds of faults that concern us are not limited to those that may

cause a fhilure of a node or link, but include those that may cause a

node to distort messages in arbitrary ways. Furthermore, we want a

distributed algorithm to allow the network itself to discover suitable

paths without depending on a central controller for the analysis.

More broadly, we assume that each node has only local knowledge of

the network structure.

1The research reported herein was supported in part by Ar,ny Rese~wch Office
Contralti No. DAAG29-79-C-0102 and t)cpartmeiit of the N:lvy Contract No.
N00039-80-C-0571.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1982 ACMO-89791-081-8/82/O08/O095 $00 .75

We can think of a network of mobile radio transmitters ,as typical of

the problem that concerns us. As transmitters move, communication

links may be broken unexpcctedly, and new finks formed; the

topology of the network changes nnpl'edictab[y with time. The rate

of change, however, can be assumed to be sufficiently low so that a

set of paths will remain useful for some time. We assume, also, that

the rate at which information must be transmitted reliably, and the

volume that is likely to be involved in a given period of time, is high

enough so that it would be very co3tly to depend on broadcast

methods. Under these conditions, it is worthwhile to invest the

effort in discovering suitable sets of paths on which we can depend

for a significant period before they must be redetermined. We seek

an algorithm that will support the comrnunication rcquirements of

such a network.

The algorithm developed here depends on the use of an

authentication protocol that allows a node to test whether a message

has been altered. To guard against malicious behavior, public-key

encryption methods st, ch as those described in references [2, 14] can

be employed. If malicious behavior is not an issue, it may be enough

to use simple error-detecting codes to guard against accidental

95

distortion. For out" purposes, we simply assume some suitable

method tbr authentication.

It should be recognized that the use of authenticators does not

prevent a faulty node from generating nfisinformation. In particular,

a faulty node can provide misinfommtion about the route a message

has followed. To see this, we must understand that, dtu'ing one

phase of the algorithm, messages are sent backwards from the target

towards the initiator. 2 These messages contain the route that has

been traced by the message. Each node, when it reccives one of

these messages, first checks, by using the succcssive authenticators

for the nodes on the asserted path, that it has not been obviously

distorted, Suppose, for example, T is the target node and that X

receives a message M that asserts it was originated by T and

transmitted to X through nodes A and B. The message received by

node X can be represented its SBSAS.I.M, where, for node Y, Sy

denotes the authenticator of Y. By working back along this chain,

using the inverse operators to St? ,, S A and S T (the public keys) on the

successive fragnmnts of the message, node X can verify that the

message it has received is consistent with the claimed route

T - , A ~ B

possibly faulty nodes, at most m of the paths can contain faulty /

nodes, with the rest fault-free. To ensure reliable transmission, the

initiator sends duplicate copies of all important messages along at

least m + 1 paths, including with each message its own

authentication. The initiator can then be certain that the target will

receive (and be able, to identify) at least one valid copy of the

message. Our algorithm assumes that neither the initiator nor the

target are themselves faulty. In case one or both are faulty, no

reliable communication between them is possible.

It is worth emphasizing that the use of some kind of authentication

seems to be necessary in a reliable commtmication network using an

open transmission medium such as radio. It is generally necessary

that any node know unambiguously which node is the irnmediate

source of a message. In a network with a closed medium (e.g., where

all communication is by hard-wired node-to-node links) the source

o fa ntcssage is identified by observing the link over which it arrived.

Where a medium such as radio is used, its sottrce must be

identifiable fi'om the content of the message, or through an

uncorruptiblc hand-shaking protocol. This appears to require some

form of authentication.

This process prt)tects against the message being garbled, but it does

not protect against the route information being truncated. If node B

is [hulty, for example, the message may actually have arrived at node

X along the longer path T + A --+ C --+ B --+X. The message

received at node B was ScSASTM. In this case, node B hits stripped

offnode C's contribution and relayed tile remaining message

fragment, with its own authenticator, to node X; this message will

pass all tests that can be applied at node X. Authenticators do not

prevent a faulty node from misrepresenting the path a message has

taken.

The outcome of applying the algorithm is a set of independent paths

that tl'[e initiator can use to send messages to the target node. The

initiator will not know which of these paths are fault-free, but, if it

has more than m node-disjoint paths, where m is the number of

2We will be consistent in our use of tile terms "initiator" and "target." The
former indicatcs the node that initiates the process and that has the need for reliable
communication to another node which is called the target. We will use the terms
"sotlrce" and "receiver" m in~.licate a partictllar tr[nlsnlission o f a illcssage aCl"OSs a
single link. regardless o f where the message originated or its ultinmte destination.

Frocn the above it follows that, when the route is identified by the

sequence of authenticators in a message, a faulty node must add its

own authenticator. In the truncation example discussed above, node

B was able to eliminate node C from the route, but could not fail to

include itself. This fact has import,ant implications in the proof of

our algorithm.

Our algorithm can be understood as a distributed version of the

Eord-Fulkerson flow algorithm [10], or as an improved version of the

concurrent algorithm described by Segall [15]. It might be

questioned why we have not based our work on Dinits' algorithm [3]

or some variation of it such as that developed by Sleator [16], both

more efficient for centralized computation. In our earlier report [12],

we develop a decentralized algorithm based on Dinits' work.

However, Dinits' approach seems to be less efficient in the

distributed situation because it may require more stages than does a

Ford-Fulkerson type. It is advantageous to minimize the number of

stages if we are concerned with the number of messages being

transmitted, particularly since each stage includes a broadcast phase.

'['his argument appears to make it convenient to use a Ford-

Fulkerson type of algorithm.

96

The algorithm presented here develops incrementally the set of paths

in successive stages. ~ c h stage increases the number of paths from

the target to the initiator. Obviously it makes no difference for a

path to be described either fl'om the target to the initiator or fl'om the

initiator to the target; since in our algorithm the paths arc developed

starting from the u~rgct, we will always reoresent imths from the

target to the initiator. D.mh stage consists of three phases as follows:

• Phase 15 The initiator originates a message Ihat identifies
the stage and lists the paths between it and the target that
have been found in previous stages. (In the first stage,
there are no known paths.) This message is transmitted
by broadcast nlode through the network until it reaches
the target, The message carries the initiator's
authenticator and is relayed at each node without
change--i.e., inlermcdiate nodes check its authenticity
but do not add their own authenticators. On receipt of
this nlessage al any intermedialc node, the node records
both the stage nililli)er and any relevant local routing

information inlplied by the paths listed in the message.
That is, when a non-target node X receives the message it
looks to see if it is on any path listed in the message. If it
is, it records its predecessor and successor fiodcs on that
path. After receipt of this message the node will ignore
any messages fl'om an earlier stage. Thus the broadcast
message serves to terminate any residual activity that
may be left over fi'om earlier stages.

• Phase 2: This ph~e is initiated by the target when it
receives the phase I message for a new stage. The target
creates a message from the stage number and its own
authenticator, It sends this message to all neighbors that
are not its successors on any of the paths listed in the
phase 1 message. Each node receiving this message adds
its own authenticator and sends it to those of its
neighbors that are "suitable." The rules that govern
which neighbors are suitable for relaying a message and
which of those will accept it ensure that no new path that
violates the constraints on either the link or node
capacities is developoed. This process continues until the
initiator is reached. The initiator examines each phase 2
message as it is received to ensure that it is consistent
with the paths developed in the previous stage, since a
faulty node may have introduced an inconsistency not
recognized by an). other node. The initiator then stores
the accepted messages until phase 3.

• Phase 3: The third phase is executed by the initiator
alone, and does not involve sending any messages. This
is permissible at any time after at least one phase 2
message has been accepted, tip to some specified time-
out. During phase 3, the source recomputes its paths
fl'om the target, updating its list of paths. After this, it
may initiate a new stage by originating a phase 1 message
with the new stage number.

The process terminates either when the initiator decides that enough

independent paths have been four<l, or when no authenticatable and

acceptable ph'ise 2 messages are returned within the specified time-

out period.

Any path found by this algorithm that does not contain a faulty node

will be a valid path. To see this, consider the "augnlented network"

derived flom the actual one by adding links from each fauhy node to

every other node (except the sotncc) 'o which it is not originally

linked. All paths fotlnd by the algorithm are wllkl paths in this

augmented network-- therefore those that do not use faulty nodes

innst be valid paths in the original network,

It might appear that the process, if carried to completion, would lead

to a maximal set of possible paths between the initiator and the

target in the augmented network. ~l'his is not so, however, since a

faulty node may respond incorrectly to phase 2 messages. In

particular, consider lhe following network:

. . . . X

/ I \

/ I \
T Y I

\ I l
\ I /

. . . . Z

An Exemplary Network

Suppose, node Y is faulty and that, in the first stage, the path

T - , X ~ Y - - + Z ~ l

fi'om the target to the initiator, is developed. In phase 2 of the

second stage, the link from Z to I is saturated in the flow-theoretic

sense; therefore the phase 2 message is sent fl'om I only to X and

Y. Node Y is assumed faulty and may, therefore, fail to relay the

message. Node X's neighbors arc T and Y: the link fiom T to X is

however already saturated, so X sends its message only to Y. Node

Y, being faulty, can again refiJse to relay the message. If so, no new

path is found and the process terminates. In effect, the faulty node,

Y. is able to maintain the path through itself at the expense of two

other fault-fi'ee paths,

The example discussed represents an extreme case. In general, each

faulty pode, located in the worst possible place and misbehaving in

97

the most destructive way, can prevent the discovery of, at most, two

fault-free paths, while forcing the continued use e ra path through

itself. Hence, if there can be as many as m faulty nodes, the

connectivity of the network between T and 1 must be at least

(3m + 1), if at least one fault-free path fi'om the initiator to the

target is to be found in this manner.

The main idea behind tile proof o1" the algorithm depends on the use
of the augmented network defined above. We compare the actual

network, the augmented network, and the the directed network

determined by the residual flow left by a set of paths. It is shown

that the connectivity 3m + i mentioned above is actually sufficient

for our algorithm to find at least one reliable path.

As a measure of the complexity of the algorithm, the basic

procedures require the transfer ofO((m + k) X n) authenticators

per link where n is the order of the network, m is the maximum

number of faults, and k is the required number of fault-fiee paths. If

we seek the maximal number of paths between the initiator and the

target, a variation &the algorithm requires the transfer of O([E])

authenticators per link, where I EI is the number of links. Under

some conditions, this bound can be substantially reduced.

Acknowledgements

We would very much like to thank Richard Schwatz for his most

valuable help in improving the exposition. Possible mistakes remain

our sole responsibility.

2 P a t h - F i n d i n g W a l k s

Let G = (N,E) be an undirected graph with set of nodes N, and set

of edges E. Nodes will be denoted by upper case letters like A, B, etc.

. T and I will denote two distinguished nonadjacent nodes of G

caled the target and the initiator. PG(T,I) shall denote the maximum

number of node-disjoint paths, or connectivity, fi'om T to 1.

Connectivity problems in an undirected graph can be translated into

flow problems ['or an associated directed network. This requires

"splitting" of the nodes to transForln "node capacities" into edge

capacities.

Let G § = (N§,E §) be the directed network constructed Ffom the

original G by splitting each node A in N into two nodes denoted A 1

and A 2, and having edges: (i) A t + A 2 for each node A different

fi'om T and l; (ii) A 2 --+ B 1 and B 2 --+ A 1 For each undirected edge

A --4 B in E. All the edges ofG § have unit capacity. Itis well-known [1]

that the integer PG(T,I) is the maximum flow fl'om T 2 to 1 l in the

network G §.

Every collection of node-disjoint paths from T to I in G corresponds

to a unitary flow (i.e., the flow is either 0 or i for each edge) from T 2

to I l in the network G §. Conversely, any such flow corresponds to a

collection of node-disjoint 3"-1 paths, after eventual elimination of

useless loops. In particular, a path p = TABC...I in G corresponds

to a unit flow along the path T2A1A2B 1 B2C1C2...I 1 in G §. For each

path p in G, the corresponding path in G § shall be denoted by p§.

There is a variant o fG § which can be used to find new paths in

addition to a given collection P &node-disjoint paths.

Definition: For P = {Pt pn } a collection of node-disjoint T-I

paths in G, the residual network RiG,P] associated with P is the

graph obtained from G § by replacing each edge X --. Y by an edge

Y --+ X, wherever Y is the succesor of X in p§, for p a path in P. All

the edges of RiG,P] assume unit capacity.

Lenuna !: (cf. [1], Lemma 6.1.) The maximum number of node-

disjoint directed T2-11 paths in RiG,P] is exactly

Do(T,I)- IPI

where]P[denotes the cardinality of P. II

Defnition: A legal walk for P in G is a T2-11 path in RiG,P], for P a

set of T-I paths in G. A string of nodes of G, TABC...I, is also called

a legal walk ill reduced form if it can be obtained fiom a legal walk by

first eliminating the superscripts 1, 2, and then identifying any two

contiguous repeated nodes. Similarly, a path beginning at T 2 in

RiG,P] is called a legal segment for P in G, and its reduced version is

defined in the same way.

The following characterization &legal walks and legal segments is

used in the proof of correctness of the algorithm. It basically says

that legal walks are composed ofsegmems of nodes not occurring in

ally path (denoted by A's below,) and segments of nodes

corresponding to portions of paths in reverse order (denoted by B's

below.)

98

Lemma 2: A string of nodes is the reduced version of a legal walk for

P in O if and only ifit has lira form

T A 1 I...AI kl B 11...BI hl A 2 I...A2 k2...B m l...Bm hm Am+ I l...Am+l km+l I

where

(i) nodes adjacent in the string are also adjacent in G and

no repeated nodes are adjacent in the string;

(ii) m _> 0, and each node Aij oecnrs only once in the string

and does not occur in P;

(iii) each node Bij occurs in P, and does not occur more than

twice in the string; each segment Bj 1...Bj h has length
• j

hj > 2, and there is a path in P of the form

T XI...X n Bj hj...Bj 1 YI...Yk l, with n,k > 0.

Similarly, a string of nodes T C1...C k with C k # 1 is the reduced

version of a legal segment for P in G if and only if nodes adjacent in

the string are adjacent in G and, in addition either

(a) the string T Cv..C k 1

or

(b) the string T C1...CkCk+ l | (where C k occurs in a path of

P, Ck_ 1 is not its successor in the

path, and CI< + 1 is its predecessor)

is the reduced version of a legal walk for P in G c, where G c denotes

the complete graph (i.e., it has all possible edges) on the set of nodes

N . I

If we see a legal walk and a set of paths as flows (in R[G,P] and G §

respectively,) they can be superimposed. ,as in [1] pg. 98, to obtain

another flow corresponding to a set of paths P' with eardinality]PI.

P' can be computed directly from P and the reduced version w of file

legal walk as the set of paths Regen(P,w) dctelmined by the edges

E[P] occurring in P after (i) removing all edges A ---, B such that AB

or BA occurs in w; (ii) adding all edges A ~ B not occurring in P, for

AB occurring in w.

3 The A l g o r i t h m

Let G = (N,E) be an undirected graph, with 1 and T denoting the

initiator and target nodes, respectively. Wc assume only one

initiator and one target at a time: the general case ofsimultancous

attempts by several initiator nodes could be handled in parallel in a

similar way.

A. ALGORITHM FOR A NODE OTllER THAN I

Each node maintains the following variables

init for the name of the initiator

targ for the name of the target

st for the stage number received from the initiator

succ for the successor in the path

pred for the predecessor in the pah

All variables have initial value nil. By convention nil < n, for all

integers n,

A.i. When receiving a message M = Sl(msg,s#) from a neighbor X

(comment. s # is the stage number; msg is the name T of the target if

s # = 1, otherwise a list of T-I paths)

Case 1.1. l f s # > st, then

init : = I ;

targ := T ;

s t : = s # ;

succ: = the node's successor in a path in msg, if any ;

pred : = the node's predecessor in a path in msg, ifany ;

send M to every neighbor except X

Case 1.2~ l f s # < st, then

ignore the message

A.2. When receiving a message M = Sun.,.St~l(s#) fi'om a neighbor

X, w i t h n > l , B l ~ l , andBn = X

Case 2.1~ If st s# , then

wait until receiving a message of the form Sl(msg,s#);

process this last message as in A.1, and go to Case 2.2

Case 2 ~ Ifeither st > s# , or X = pred, or A1 ~- targ, o1" some Ai

appears more than twice o1" twice and contiguously, then

ignore the message

(comment: by the case split st ~ nil)

99

.Case 2.3. If either succ = pred = nil, or X = succ, then

sign M and send it to every neighbor except X, targ, and

any Ai appearing twice in the list of signatures

(comment: by case split st = s #)

.Case 2.4, lfsucc and pred not nil, and X ;e succ, and pred * targ, then

sign M and send it to pred

(comment: by case split st = s #)

B. ALGOIIITIIM FOR T i l E TARGET

1 lie target T maintains the following variables:

init for the name of the initiator

st for the stage number

srs for the list of its succesors in the developed paths

All variables have initial value nil. As before nil < n, for all integers

n.

When receiving a message of the form M = Sl(msg,s#)

(comment: when s # = 1, then msg = T)

Case 1. I f s # > st, then

init : = I ;

s t : = s# ;

srs := the successors o f t in msg if s# > 1, nil i f s # = 1 ;

sign message (st), and send it to every neighbor except those in srs

(comment: s # = s+ 1)

Case 2. If s # < st, then

ignore the message

C. ALGORITItM FOR TI lE INITIATOR

The initiator tries to find k nonfaulty paths to the target, under the

assumption that no more than m nodes are faulty, l f t 0 is the

maximum time that it takes for a node to process a message, and]NI

is the total number of nodes, we define timeout = 3 × INI X t 0. The

transmitter keeps the following variables:

r an elapsed time counter

st for the stage number

P for the current paths

all variables have initial value nil

C.I. l f r > timeout, or]PI = k+t , then

STOP

(comment: either k nonfaulty paths have been found

or no more paths can be found)

C.2. When receiving a message of the form SX...S.I,(S#) from

neighbor X

Case 2.1__~. If s# < st, or the string T...XI is not a legal walk in

reduced form for P in the complete graph on the set of nodes

occuring in either the paths of P, or the string T...XI, then

ignore the message

(comment: to decide ifT...XI is a legal walk for P in tile complete

graph, the initiator cimcks the conditions in Lemma 2)

Case 2.2. otherwise

s t : = st + 1 ;

P := Regen(P,T...Xl) ;

sign message (P,st), and send it to every neighbor

i00

4 Proof of Correctness of the Algor i thm

Theorem 3: If the undirected graph G = (N,E) has connectivity

PG(T,I) > 3m + k, between nonadjacent nodes T and 1, and the

nodes of G perform the algorithm of last section with I as initiator, T

as target, and no more than m of the other nodes faulty, the initiator

[will have at least k node-disjoint T-I paths of G not involving any

faulty nodes among its list P of paths, before the timeout of stage m

+ k .

Proof. A faulty node can eliminate a collection of most-recent

signatures fiom a message. Since the only information the initiator

has at any given time is the list of already developed paths and the

list of its neighbors, faulty nodes could cause the initiator to accept

legal walks for the paths P in the complete graph on N which are not

legal in G. Thus the new paths developed by the initiator from this

information will not be in general valid paths of G.

We first show that the list P developed by the initiator is always a list

of valid paths in a graph G aug, called the augmentation of G, and

obtained from G by connecting each faulty node to all other nodes

except the initiator.

Lemma 4: At any stage the paths of P are valid paths in G aug

ProoL Using induction, it is enough to assume the result lbr the P

obtained at the end of s/age n, and then show that if in stage n + 1 the

initiator accepts as legal string, the string will be legal in G aug. This

is equivalent to showing that if the string received by the initiator is

not a legal walk Ibr P in G aug, then it is not a legal walk for P in the

complete graph for N. Let T AI...Ag I be such a string. By cases

A.2.2 - A.2.4 in the algorithm the string must contain a faulty node

with no nodes occurring either more than twice or twice and

contiguously, l,et T A1...A h be tile smallest illegal segment for P in

G aug. A h must be faulty: otherwise T AI...A h . l would be illegal, by

the cases A.2.2 - A.2.4 mentioned above. Note also that Ah. 1 must

belong to one of the paths in P (otherwise T A1...A h would be legal.)

For tile same reason A h . 2 cannot be the successor ofA h , 1 in such

path. Thus A h is not the predecessor OfAh. 1 in the path. Therefore

by condition (iii) in Lemma 2, T Ay..A h is not a legal segment for P

in the complete graph for N, completing the proof of the lemma. I

Since a path in G aug not involving lhulty nodes is also a path in G, to

complete the proof of the theorem we have only to show that if the

initiator broadcasts a list P ofj paths in G aug at the beginning of

phase j + 1 (for 0 < j <_ m + k - 1), then the initiator will receive a

list of signatures corresponding to a legal walk for P in G aug before

the counter r reaches timeout. By case A.2 &the algorithm, this is

equivalent to showing that the faulty nodes cannot block all the

paths of R[G,P]. Since the initiator can detect illegal walks for P in

G aug (by the proof of Lemma 4,) the worst case is to assume that the

faulty nodes do not answer any message during phase j + 1.

Note that, in any case, the message from the initiator to the target

reaches the target, since only the existence of m + 1 node-disjoint I-T

paths in G is needed. To see that a message sent fi'om the target will

reach the initiator without passing through any faulty node, note

that, by Lemma 1, R[G,P] has

3 m + k - j _ > 2 m + 1

node-disjoint paths from the target to the initiator. The faulty nodes

not answering a message corresponds to the removal of at most 2m

nodes in RIG,P]. But this Icaves one or more node-disjoint paths not

involving faulty nodes in R[G,P]. Any such path has length smaller

than 2 ×]N[. Thus the message will reach the initiator before

timeout which finishes the proof. I

5 Complex i ty Analys is

The algorithm presented above requires the initiator to broadcast all

the paths it has obtained in the previous stage at the beginnig of each

new stage. Broadcasting requires at most 21E I messages, since each

processor forwards the information at most once to each neighbor.

The second phase of each stage involves authenticated lists of

processors being developed ,as the messages are transmitted through

the network from the target to the initiator. Counting an

authenticated signature as one, if the initiator wants k reliable paths,

the total complexity is O((k+m) X INI X IEI). To find the

maximum number of paths takes up to IN I stages, which adds up to

O(tNI 2 x IE[).

i01

These bounds exceed the upper bound on the number of messages

needed if one just broadcasts all the information to the initiator and

lets the initiator find the paths. Such a straightforward algorithm

requires O(IEI 2) messages. But it requires the initiator to have O(IEI)

space for finding the connnectivity. Observe that the same number

of messages is required for finding even one reliable path. IEI

denotes here the number of edges in the augmented graph G aug.

The algorithm we have presented above can be improved to take

O(IEI 2) messages for finding the maximum number of paths, while

requiring even less tbr finding k reliable paths. During cach stage

the initiator sends only the new path that has been found in the last

stage. With that information, every processor can update its local

routing information to help the initiator obtain another node-disjoint

path at the end of the stage. This change requires continued

broadcasting from the initiator to the targct, even when a new stage

has been started. A proccssor has to wait until it receives the

required updating infornmtion, if a processor does not receive the

information, it does not proceed, since it is disconnected fi'om the

initiator by faulty processors.

The requirement of 3m + k connectivity reflects worst case

behavior. As a matter of fact, to find k nonfaulty paths the size of

the minimal cut (in the sense of network Ilow) from the initiator to

the target has to be at least 3m' + k, where m' is the nun~ber of

faulty processors on the minimal cut. It may also happen that other

parts of the network have low connectivity -- arid the number of

faults can exceed m', or even (3m' + k), without harm, as long as

they are scattered.

6 Concluding Remarks

The algorithm introduced is not the only one that can overcome

malicious behavior while still finding communication paths.

Moreover, more efficient algorithnis likely exist. However, trying to

adapt more efficient centralized flow algorithms does not necessarily

help, since in general those algorithms make use of data structures

which have no efficient implementation in a distributed context.

The work described here is among the first to explore the area of

fault-tolerant algorithms which do not restrict the types of possible

faults. If the possibility of nodes generating misinfornaation were not

an issue, the problem would be much simpler.

Another impork'mt problem is to develop algorithms to find safe

paths without requiring authentication. Algorithms without

authentication have been developed for reacifing agreement in a

faulty network [12-13, 5-7]. Ideas in these algorithms could help in

solving the problem.

7 References

1. S. Even, Graph .Algorithms, Computer Science Press, Woodland

Hills, California.

2. W. [)iffie and M. I lellman, "New directions in cryptography,"

IF.H" Trans. on Inlbrmation 1"1"-22,6 pp 644-654 (1976).

3. E.A. Dinits,"Algorithm for the solution of maximal flow in a

network with power estimation," Soviet Mathematics Report No.

11, pp 1277-1280 (1970).

4. D, Dolev, "The Byzantine Generals Strike Again," Journal of

A!ggrithms, Vol. 3, No. 1,(1982).

5. D. Dolev, "Unanimity in an Unknown and Unreliable

Environment," 22nd IEEE Ann. ~IP3J3=. Found. Comp. Sci., pp 159-

168 (1981).

6. D. Dolev, M. Fischer, R. Fowler, N. Lynch, and R. Strong,

"Efficient Byzantine Agreement Without Authentication," in

preparation.

7. D. Dolev and H. R. Strong, "Polynomial Algorithm for Multiple

Processor Agreement," Proc. 14th ACM Sig{lc..jt Syrup. Theor,

Computing, May 1982; see also IBM Res. Report RJ3342 (1981).

8. D, Dolev and H. R. Strong, "Authenticated Algorithms for

Byzantine Agreement," submitted for publication.

9. D. Dolev and A. C. Yao, "On the Security of Public Key

Protocols," Proc. 22nd .I.EEE Syrup. Found. Comps. Sci,, pp 350-357

(1981).

10. L. R. Ford and D. R. Fulkerson, Flows in _Ntltworks, Princeton

University Press, Princeton, New Jersey, 1962.

102

11. L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals

Problem," ACM Trans. Programming and Systems, to appear.

12. M. C. Pease, J. G. Mescguer, and D. Dolev, "A decentralized

algorithm for network connectivity," Technical Report CSL-127,

SRI International, Menlo Park, California (July 1981).

13. M. C. Pease, R. Shostak. and L. Lamport, "Reaching Agreement

in the Presence of Faults", 3. ACM, Vol. 27. No. 2, pp 228-234

(1980).

14. R. L Rivest, A. Shamir, and L. Adleman, "A Method for

Obtaining Digital Signatures and Public Key Cryptosystems,"

Comm: ACM, Vol. 21, pp 120-126 (1978).

15. A. Segall, "Decentralized nlaximum flow algorithms," submitted

for publication.

16. D. K. Sleator, "An O{nm(Iog n)} algoridml for maximum

network flow," Ph. D. dissertation, Department of Computer

Science, Stanford University, Stanford, California (Nov. 1980).

103

