
BOUNDS FOR WIDTH TWO BRANCHING PROGRAMS 

Allan Borodin* 
Computer Science, University of Toronto 

Danny Dolev* 
Computer Science, Hebrew University, Jerusalem 

Faith E. Fich* 
Computer Science, University of Berkeley 

Wolfgang Paul 
IBM Research Laboratory 

San Jose, California 95193 

1. INTRODUCTION 

Branching programs for the computation of Boolean 
functions were first studied in the Master 's  thesis of 
Masek. 7 In a rather straightforward manner they generalize 
the concept of a decision tree to a decision graph. 
Formally, they can be defined as acyclie labelled diagraphs 
with the following properties. 

(i) There is exactly one source. 
(ii) Every node has outdegree at most 2. 

(iii) For every node v with outdegree 2, one of the 
edges leaving v is labelled by a Boolean variable x i 
and the other edge is labelled by its complement ~i- 

(iv) Every sink is labelled by 0 or 1. 

Let P be a branching program with edges labelled by 
the Boolean variables, x 1 ..... x n and their complements. 
Given an input a = ( a  1 ..... an)E {0,1} u, program P computes a 
function value fp(a) in the following way. The 
computation starts at the source. If the computation has 
reached a node v and if only one edge leaves v, then the 
computation proceeds via that  edge. If 2 edges, with labels 
x i and ii ,  leave v, then the computation proceeds via the 
edge labelled x i ff a i - - l ,  and via the edge labelled i i  
otherwise. Once the computation reaches a sink, the 
computation ends and fp(a) is defined to be the label of 
that sink. 

The nodes of P play the role of states or 
configurations. In particular, sinks play the role of final 
states or stopping configurations. We call sinks accepting if 
they are labelled 1 and rejecting otherwise. 

The length of program P is the length of the longest 
path in P. Following Cobham, 2 capacity of the program is 
defined to be the logarithm to the base 2 of the number of 
nodes in P. Length and capacity are lower bounds on time 
and space requirements for any reasonable model of 
sequential computation. Clearly, any n-variable Boolean 
function can be computed by a branching program of length 
n i f  the capacity is not constrained (e.g., consider a 
complete binary tree with 2 n leaves, one for each input). 

*This work was done while the author was a visitor at IBM, 
San Jose. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 

Since space lower bounds in excess of log n remain a 
fundamental  challenge, we consider restricted branching 
programs in the hope of gaining insight into this problem 
and the closely related problem of time-space trade-offs. 

We call a diagraph levelled if its nodes can be 
partit ioned into levels L0,LI... such that, for all i, an edge 
leaving a node in level L i ends at a node in level Li+ 1" The 
width of such a graph is the maximum n u m b e r  of nodes at 
any level. Every branching program can easily be 
transformed into a levelled program that computes the same 
function, has the same length, and has at most twice the 
capacity of the original program.1 Therefore, if we are 
interested in asymptotic bounds on length and capacity, 
then, without loss of generality, we can assume branching 
programs to be levelled. In this way, the level of a node 
represents the time needed to reach the node starting from 
the source. 

For any node v in a branching program P, let Ip(v) be 
the set of inputs a such that  the computation of P given a 
reaches v. If P is levelled, then, for each i, the system of 
sets [Ii~(v):vEL i} is a partition of the input that  mirrors the 
knowle-dge (or lack of knowledge) about the input at the 
level L i. 

The notat ion #S is used to denote the cardinality of 
the set S. For ae{0,1} n, let S(a)-C{1 ..... n} be the set of 
indices i such that  ai--1. The weight w(a) of a is #S(a). 
The n-ary functions E n h,k are defined by 

E~,k(a) ffi 1 iff h_<w(a)<_k. 

We write E~ for E~, k and drop the superscript n if the 
number of arguments is clear from the context. E?n/2 ] n is 
called the majority function and E~ n/2 ] is called th~ ' 
exactly-half function. Masek 7 made two observations 
concerning the latter function. 

(i) If the computation only looks at each input variable 
once, then, for i s n / 2 ,  level L i must contain i+1 
nodes. Hence, a branching program of minimum 
length, n, must have capacity at least 2 log2n+ a 
constant. This lower bound can be achieved by a 
branching program which counts the number  of 
input variables that  have value 1. 

publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1983 A C M  0-89791-099-0 /83 /004 /0087  $00.75 87 



(ii) By modular counting, the capacity requirement 
could be reduced at the expense of increased time. 

In fact, both the exactly-half function and the 
majority function posses algorithms which simultaneously 
achieve capacity O(log n) and length O(n). However, if we 
severely restrict the width of the programs, we begin to 
observe some potentially strange behavior. This we hope 
gives insight into how computations become confused (and 
hence prolonged) if we do not allow enough states. 

Independently, Furst, Saxe and Sipser 6 were led to the 
study of such programs in trying to establish the relativized 
NP-hierarchy. It is observed that  Boolean (^ ,V, , ) -c i rcu i t s  
with unbounded fan-in of depth d and size s can be 
simulated by branching programs of width d +  1 and length 
s d. Furst, Saxe and Sipser establish a very nontrivial lower 
bound: constant depth circuits computing a parity function 
of n variables must be of size nonpolynomial in n. A parity 
function is a function of the form Xl(~) . . .~ )X n o r  

(x I ®.. .  ®x n) where n> 1 and x 1 ..... x n are distinct Boolean 
variables. A Boolean function is a parity function if and 
only if it changes value when one of its arguments changes 
value. Similar lower bounds are established for other 
functions (including the majority function) based on suitable 
reductions of parity function to these functions. 

Clearly a parity function can be computed by 
branching programs of width 2 and length n. But what 
about the majority function? It has recently been shown by 
Chandra, Furst  and Lipton 3 that  the majority function 
cannot  be computed in bounded width and linear length. 
We would like to show that  this function or the closely 
related exactly-half function cannot  be computed in 
bounded width and polynomial length. In fact, we 
conjecture that,  in these cases, bounded width implies 
exponential length. Thus far we have only been able to 
establish much weaker results, dealing with programs of 
width 2. Even so, we found that  width 2 branching 
programs offer some surprises and challenges. This is unlike 
the situation for depth 2 circuits which are characterized by 
disjunctive normal form (DNF) and conjunctive normal 
form (CNF).  

The formula size of a Boolean function is the 
minimum number of occurrences of literals in any Boolean 
formula (over the basis of all binary operationS) which 
describes the function. Although most Boolean functions of 
n variables have formula size f~(2n/log n), the best lower 

2 bound for specific examples is f l (n  / log  n) due to 
Neciporuk. 8 Fischer, Meyer and Paterson 5 have shown that  
most symmetric Boolean functions, including E k n for k, 
n-k=[~(n/ log  n)) have formula size f l(nlog n ) . '  

We will show that  lower bounds for formula size 
directly translate into lower bounds for the length of width 
2 branching programs. Precisely because width 2 branching 
programs constitute a more restrictive model, there is hope 
that  bet ter  lower bounds can be more easily achieved. 

2. STRICT BRANCHING PROGRAMS OF WIDTH 2 
AND THEIR CHARACTERIZATION 

In order to understand branching programs of width 2 
(W2-programs), it is useful tO study even more restrictive 

models of computation. Specifically, we must indicate 
whether or not we allow accepting or rejecting nodes during 
the computation. 

We call a width 2 branching program monotone if it 
has exactly one rejecting node. A strict width 2 branching 
program has exactly one accepting node and exactly one 
rejecting node. 

In monotone programs no intermediate rejecting nodes 
are allowed. In strict programs neither intermediate 
accepting nodes nor intermediate rejecting nodes are 
allowed. Any W2-program with t sinks can be decomposed 
into t-1 strict W2-programs in an obvious way. 

By considering DNF, it is clear that  every Boolean 
function is computable by a monotone W2-program. The 
usual counting argument establishes the existence of 
functions whose branching programs have length 
exponential in n if the width is bounded by a polynomial in 
n. However, we are looking for lower bounds for 
effectively defined functions. (A sequence of n-ary Boolean 
functions fn, n =  1,2 .... is effectively defined if 
U f n l ( 1 ) e N P . )  

It is not a priori clear, whether strict W2-programs are 
powerful enough to compute every Boolean function. Let  
SW 2 denote the class of functions computable by strict 
W2-programs. In this section we give a characterization of 
SW 2 and use it to show that  some simple functions are not 
in SW 2. For instance E~ is not in SW 2. It is somewhat 
surprising that  E31 and E 2 are in SW 2. The lower bounds 
which we derive later are based on the results and 
techniques developed here. Our characterization reveals 
some of the subtleties and the power of strict W2-programs. 
It is not surprising that  parity should play a prominent  role 
here. We will occasionally abuse notation and identify 
Boolean formulas and the Boolean functions defined by the 
formulas. 

Theorem 1. SW 2 is the smallest class ~ of Boolean 
functions containing the constant functions 0 and 1, and the 
projections gi(xl ..... Xn)=Xi, for all i and n, and which has 
the following closure properties: if fee6 and a, b are literals 
then 

R1) f ® a ¢ ~  

R2) fAaE~¢ 

R3) f A ( a ® b ) ¢ ~  

Proof: The constant functions and projections are 
obviously in SW 2. Let f be computed by a strict 
W2-program P with accepting node u and rejecting node v. 
In order to compute f®a ,  fAa, and fA(a®b)  extend P by 
the program segments shown in Figures 1 (i), 1 (ii), and 
l(iii),  respectively. Thus SW 2 has the desired closure 
properties. 

It remains to show SW2-C~'. Clearly ~' contains all 
functions that  can be computed by a strict W2-program of 
length 1. Now suppose ~¢ contains all functions that  can be 
computed by a strict W2-program of length n. Consider 
any function g computed by a strict W2-program P of length 

88 



n + l .  The last two levels (i.e., levels n and n + l )  of P are 
illustrated in Figure 2, with a and b denoting (not 
necessarily distinct) literals or constants. 

For convenience, we also allow the edges leaving a 
node of outdegree 2 to have the labels 0 and 1. The 
intended interpretation is that  the node has outdegree 1, the 
edge labelled 0 is absent, and the edge labelled 1 is present 
(and unlabelled). 

Let f be the function computed by the program 
obta ined  from P by deleting level n +  1, making u accepting 
and v rejecting. Then g = [ f A ( a ® b ) ] ® b .  [ ]  

The proof of Theorem 1 gives a constructive 
procedure for obtaining a formula for the Boolean function 
computed by a strict W2-program, given the program. This 
enables us to relate the two complexity measures, formula 
size and program length. 

Theorem 2: Any Boolean function that  can be computed by 
a W2-program of length L has formula size at most 3L. 

Proof: Any W2-program P can be uniquely decomposed 
into strict W2-programs Q1 ..... Qt" The proof proceeds by 
induction on t. 

If t=  1 then P is strict and the result is given directly 
from the second part of the proof of Theorem 1. Now 
suppose t> 1. 

Let v be the sink of Q1 which is also a sink of P and 
let u be the other node of P at the same level. Consider the 
W2-program P~ obtained from P by deleting the nodes, 

• ! 
except for u, and edges belonging to QI" Let f be the 
function computed by PP. Also let f l  be the function 
computed by QI '  

If v 1 is l~ibelled by 0, let f -- f lAf p and if v 1 is labelled 
by 1, let f -- f lVf p. Clearly, f is the function computed by 
P. By the induction hypothesis, f l  and f~ have formula size 
at most three times the length of Q1 and PP, respectively. 
Therefore the formula size of f is at most three times the 
length of P. ['1 

Theorem 1, the fact that [ = f ® a ® 5 ,  and deMorgan's 
laws enable us to find more closure properties of SW 2. 
Specifically, if fcSW 2 and a,b are literals, then 
f,fVa, and f v ( a ® b )  are in SW 2. 

Notice that 

E~(xI,x2,x3) = [(x1Ax3) V (Xl(~)x2)]~)X 3 

E03,1(x 1,x2,x3) = [(x I ¢~)x3) V (x l e x 2 )  ] e x  3 

E4(xI,x2,x3,x 4) -- [[((x 1 (~)X3)A(x 1 (~) X4)) (~)x 3 @X 4] 

A(Xl (~)X2)](~Xl @X 3 

E~(x 1 ..... X n) ---- ~IA~2A...A~n 

Enn(Xl ..... Xn) -- x1Ax2A...Ax n and 

E~,n-l(Xl ..... Xn) ffi (Xl(~X2)V(xI(~)x3)V'"V(Xl @Xn 

Thus all these functions are in SW 2. 

Now consider any function gESW 2. The Theorem 1, 
g is either a constant function or a projection or can be 
obtained from one of these by repeated applications of rules 
R1 through R3. Notice that  if only rule R1 is applied, then 
the resulting functions are constant or parity functions. 
Recall that  a parity function has the form xil ~)...(~xit where 
Xil,...,xit are Boolean literals. 

Therefore, if g is not a constant or parity function, 
then either 

m 

g ffi ( fAa)® ® c i or 
iffil 

m 

g = ( f A ( a ® b ) ) ®  ® c i 
iffil 

where m>0, f~SW 2, and a, b and c i, for lg i<m,  are literals. 

In the first case, substituting 0 for a turns g into a 
i n  

constant or parity function, namely ~ e i, while in the 
iffil 

second case, identifying a and b turns g into a constant or 
parity function. This observation yields the following result. 

Lemma 3: Let gESW 2. Then one of the following 
conditions holds: 

(i) g is a constant or parity function. 
(li) There is a literal a such that  substituting 0 for a 

turns g into a constant or parity function. 
(lii) There are two literals a and b such that  identifying 

a and b turns g into a constant parity function. 

We are also able to show that  all functions of SW 2 
can be computed by short strict W2-programs. 

Lemma 4. If gESW 2 is a Boolean function of n variables, 
then there is a strict W2-prngram of length O(n 2) that  
computes g. 

Proof: By inductio.n on n. 

• All Boolean functions of 1 variable can be computed 
by strict W2-programs of length 1. If g is a constant or 
parity function, then g can be computed by a strict 
W2-program of length 0 or n, respectively. Therefore we 
may assume that n>2 and either 

I11 

g ffi ( fAa)® ~ c i or 
iffil 

m 

g - -  ( f A ( a ~ b ) ) ~  ~) c i 
iffil 

where m>0, fcSW 2, and a, b and c i, for l~ i<m,  are literals. 
m 

Consider the function ® c i. If it is the constant 0 
i~l 

function (which is the case when m--0),  then 
m 

g -- fAa or g -- fA(a®b) .  When ® c i is the constant 1 
i=l 

89 



funct ion,  a program to compute  g can be obta ined f rom a 
program to compute  fAa or f A ( a ® b )  by interchanging the 

m 
labels of  the two sinks. Now suppose ® c i is not  constant .  

i=l 
Since c ® c  = 0 and c®E = 1, it is unnecessary  to have 
c i = cj or e i = ~j for 1 ~ i # j ~ m .  In particular, this implies 
m~n.  Therefore- the  length of  the shortest  strict 
W2-program that computes  g exceeds the length of the 
shortes t  strict  W2-program that  computes  f by at most  n+2 .  

Finally, we may assume, without  loss of  generali ty 
that  nei ther  a nor  ~ appear  in f. Otherwise,  in the  first  
case, by replacing all occurrences  of a and ~ b~, 1 and 0, 
respectively,  we could obta in  a new funct ion f - con t a in ing  
nei ther  a nor  ~ such that  fPAa = fAa. Similarly, in the 
second  case, all occurrences  of  a and ~ can be replaced by 
and b, respectively. 

Since f contains at most  n-1 variables, it follows that  
there  is a strict W2-program of length O(n  2) that  computes  
g. [ ]  

Lemma 3 is useful for showing that  certain funct ions 
are not  in SW 2. Consider  the following example.  The 
funct ion E 4 is not  a cons tant  or parity function.  Let  

f = E 4 I x o" Since f ( 0 , 0 , 1 ) = l  and f (0  1 ,1)=0,  f is not  
1 ~ . - , 

constant .  Also, notice that  f ( l , l , 1 ) = 0  and, hence,  f is not  a 
parity function.  • Similarly, let g = E 41 x 1" Then  
g(O,0 ,0)=l  and g (0 ,0 ,1 )=g(0 ,1 ,1 )=0 ,  llf--h(x1,x3,x4) -- 
E~l  x - x  then  h(0 0 0 ) = h ( 1 , 0 , 0 ) = 0  and h(0,1 0 ) = 1 .  

- - 2 '  ' ' 4 
Finally, let k(xl ,x3,x4)  = E 1 I x ~ . Then k ( 1 , 0 , 0 ) = l  and 
k (1 ,1 ,0 )=k(1 ,1 ,1 )=0 .  Thus g, h--a~d k are all nei ther  
cons tant  nor  parity functions.  Since E 4 is a symmetric  
function,  it follows f rom Lemma 3 that  E41 i /SW 2. 

Together  with similar arguments  one can show that  
E~,kE SW 2 if and only if one of  the following condit ions is 
true. 

(i) n<3 
(ii) n = 4  and h = k = 2  

(iii) h - - k = 0  
(iv) h = k = n  
(v) h < l  and k>n-1.  

Our next  result shows that ,  in a geometr ic  sense,  the 
funct ions computed  by strict W2-programs are not  too 
complicated.  We have to introduce some notat ion.  

A cube is a subset  of  {0,1] n of  the form 

{xl  xit -- a 1 ..... Xir -- ar} a 1 ..... are {0,1} 

where  0~r~n .  The dimension of the cube is def ined to be 
n - r .  A striped cube is a subset  of {0,1} n of  the form 
{ x l x  i = a 1 ..... x i --',a r a n d x j  ® . . . ®  xj • b }  where  

l r t . 
0~r , t~n  and a I ..... a r ,be{0,1] .  ~ s  above, n - r  is called the 
dimension of  the str iped cube. Let  Z n be the smallest 
number  such that,  for all n-ary  funct ions fESW2, the set of  
accepted inputs f - l ( 1 ) ,  can be represented  as a disjoint 
union of  Z n str iped cubes. 

Lemma 5: Z n ~ 4 × 2 n / 2 - 2 .  

Proof:  By induct ion on n. The theorem is clearly true for 
n =  1. Consider  any n-ary Boolean funct ion fE SW 2 a n d  let 
Z be the smallest number  such that  f - l ( 1 )  can be 
represented  as a disjoint union of  Z str iped cubes. One  of  
the cases of  Lemma 3 applies. 

If f is a cons tant  or parity funct ion,  then  Z ~ I .  

If there  is a literal a such that  subst i tut ing 1 for  a 
turns f into a cons tant  or  parity funct ion f l ,  then  
f = ( aAf l )V(aAf  2) where  f2 is a funct ion of n - 1  variables. 
In this case Z < I + Z n .  1. 

Finally suppose there  are two literals, a and b which, 
when  identified,  turn f into a cons tan t  or pari ty function.  
Then f = ( aAbAf l )V(~AbAf2)  V(aAb^f3 )V(~AbAf4)  
where  f l  and f2 are cons tant  or parity funct ions and f3 and 
f4 depend  on at most  n - 2  variables. In this case 
Z<2+2Zn_ 2. 

Since f was arbitrary, we have 
Z n < max{1,1+Zn_l ,2+2Zn_2}.  [ ]  

Now consider  the Boolean funct ion 

f (Xl""Xn)  ----" (Xl (~)x2)A(X3(~)X4)A'"A(Xn- 1 (~)Xn) " 
F rom Theorem 1 it is easy to see that  fESW 2. Each  
accepted input contains  exactly n / 2  variables with value 1. 
Therefore  if SO- f - l (1 )  is a str iped eube,  then  #S<2.  In 
particular, this implies that  Zn>2n/2-1 .  

3. L O W E R  B O U N D S  F O R  M O N O T O N E  
W 2 - P R O G R A M S  

Lemma 5 can be used to obta in  lower bounds  on the 
length of  W2-programs and mono tone  W2-programs.  

Let  .9' be  a sys tem of  subsets  of  {0,1} n. For  example,  
.9' might be the sys tem of  cubes or  the sys tem of  str iped 
cubes. An  .9 '-program is a sequence 

(S l , a l ) (S2 , a  2) ..... (Sm,a m) 

where  SiE~' and aiE {0,1} for all i. The length of  the 
program is m. This program computes  an n-ary  funct ion f 
in the following way: Le t  bE{0,1} n. If bCU. S i then  f (b) - -0 .  
If be  Si~jO<iSj, then  f (b ) - -a  i. For  any Boolehn funct ion f, 

the ~ ' -eomplexi ty  C ~ ( f )  of  f is def ined to be the  length of  
the shortes t  a ' - p rog ram that computes  f. 

By Lemma 8, for any funct ion g computable  by a 
strict W2-program,  g - 1 ( 1 )  ean be represen ted  as a disjoint  
union of  at most  4 × 2 n / 2 - 2  str iped cubes. Therefore .  if .9' 
is the sys tem of  all str iped cubes,  then  C.9 , ( f ) / (4  × 2 n / 2 - 2 )  
is a lower bound  for the number  of  strict  W2-programs 
comprising any W2-program that computes  f and, hence,  t h e  
length of  any W2-program that  computes  f. 

If ,9' is the sys tem of  all cubes,  then  
2 ( 3 / 2 )  n- 1 < C~,(x 1 ®""  ® Xn) ~ 5n/3 [0]. 

We call an ~ - p r o g r a m  ( S l , a l )  ..... (Sm,am) monotone if 
a i r  1 for all i. For  any Boolean funct ion f, the mono t one  
,9'-complexity MC g , ( f  ) is def ined as the length of  the 

90 



shortest monotone ,9'-program that computes f. By Lemma 
5, MCa, ( f ) / (4  x 2 n/2 - 2) is a lower bound for the length 
of any monotone W2-program that computes f. 

Theorem 6: Every monotone W2-program that computes 
~ length at least ( k ) / ( ( 4  X2 n / ' 2 -  2)n). 

Proof: Let S = {xJx  i = al,..., Xir m a r, and xj l®. . .® 
~ b }  be any stripe~ cube occurring in a monotone 
,9'-program for E n It is easily seen that at least k - 1  of k,n" 
the ai's are 1. Otherwise the ,9'-program would accept an 
input in which fewer than k variables have value 1. Hence 
the number of inputs x, such that xES and w(x)--k is at 
most n - r ~ n .  Thus MCa , (E~ ,n )> (k ) /n .  I"1 

Let • = {S1,...,~m) be a system of sets. ~ is called a 

A-system if Sir3 S~ = f) S h for all i# j .  Stated alternatively, 
h=l 

any element in h=U1Sh is either contained in every set or is 

contained in exactly one set. 

Erd0s and Rado 3 showed that for all natural numbers 
p and k; if 8 is a system of more than 
F(k,p)=k+kk(p-1) k+l  sets each of cardinality at most k, 
then $ contains a subsystem of p sets which is a A-system. 
We will use this fact in order to derive lower bounds for the 
length of monotone W2-programs that compute the 
functions E~. 

Theorem 7: Let P be a monotone We-program that 
~ s  E~. Then length of P is at]east  n ( k ) / F ( k , 4  ). 

'Proof: Suppose that the input aE {0,1 ]n is accepted by P at 
some accepting node v. Among the strict W2-programs 
comprising P, let Q be the one which contains v. Recall 
that any W2-program can be uniquely decomposed into 
strict W2-programs. 

If the length of Q is less than n, then some variable x i 
would,not be tested during the computation of Q on input a. 
Let a be the input obtained from a by changing the value i 
of its ith component. Then a EIQ(V). Recall that IQ(V) is 
the set of inputs which causethe computation of Q to reach 
vertex v. Also note that w(a ) # k  and, therefore a is not 
accepted by P. Since P is monotone, the computation of P 
on input a must reach the source o f  Q. It will continue 
from there to v, thereby accepting a .  Hence the length of Q 
is at least n. 

Next we show that #Ip(v)<F(k,4). Suppose, to the 
contrary, that #Ip(V)>F(k,4). Let 8 = {S(a) ] ado(v )} .  
T h e n ~  contains a A~system ~ = {DI,D2,D3,D4}.'Let 

G =i['llDi and H --i=lt') D i. 

A new strict W2-program Qt can be obtained from Q 
by the following modifeations. For all jcG,  delete all edges 
labelled xi and delete all occurrences of the label x:. This J 
corresponds to fixing the value of the variable x: to be 1. 

J 
For all j I H ,  delete all edges labelled xj and delete all 
occurrences of the label ~j. This corresponds to fixing the 
value of the variable x: to be 0. For i= 1 2,3 4, choose a 
new variable Yi" Then, for each j f fDi \G ,  replace the labels 
xj and .~j by Yi and Yi, respectively. 

. Let b=(b 1 ..... b4)¢{0,1} 4. Then fo,(b) -- fo(c)  where 
c i = l  if j¢G, c j=0 if j g H ,  and cj--b i if j ¢ D i \ G .  Notice that 

w ( c ) - -  ]G]  +lY-lbi ( . =  ID i] - I G ] ) .  Since 

ID II=ID 21=ID 31=ID 4[--k>lGI,itfollowsthat 
w(e)=k if and only if bi= 1 for exactly one value of i. In 
this case S(e) -- Dic& Thus E4(b) = 1 implies e r e (V) .  If 
E4(b) = 0, then P does not accept e and the computation of 
P on input e does not reach the accepting node v. 
However, since P is monotone, the computation does reach 
the source of Q. It follows that fQ, --- E 4. This contradicts 
the fact that Q is a strict W2-program. 

Therefore P must be comprised of at lneaSt~k)/F(k,4) 
strict W2-programs , each of length at least . 

A similar argument can be used to show that the 
length_._ of any program which computes E n is at least h,k 
( ~ ) ( n  -- k + h)/F(k,4)  for 0~h~k~n. 

4. A LOWER BOUND FOR W2-PROGRAMS 

Theorem 8: Every W2-program P that computes E~n/2 ],n 
~as ~e '~ l{  f l(n2/log n). 

Proof: Decompose P into strict W2-programs Q1,Q2 .... 
such that, for all e, the nodes in Qp are closer to the source 
of P than the nodes in Qt+l" F o r / - - 1 , 2  .... let v t be a sink 
of P which is also a sink of Qt" 

Consider the border region 
B={xl  f n / 2 ]  -2~w(x)<  r n / 2 ]  +l}c{0,1} n and, for 
t= l ,2 , . . . ,  let ~'t = y" #(Ip(Vd)nB))" We want to find a 

d<_t 
recurrence relation for the numbers ~'e" 

By Lemma 5, In  (v,) can be represented as a disjoint 
union of striped cube~tSi,~..,Sm where m < 4 x 2 n / 2 - 2 .  
Consider any such striped cube 

S - -  { x ]  Xi l  - -  a 1 . . . . .  x i ,  

---- a r and xjl~.- . t~xjt  -- b} . 

We can assume that {il,...,ir}f) {Ji ..... jt ] = 0 and t #  1. Let 
Od(S ) = (Ip(Vd) oB n S). 

First suppose that v t is an accepting node of P. When 
l =  1, no inputs have yet been rejected. Therefore, at least 
[ n / 2 ] - I  of the ai's are 1 and Ol(S)=#(SnB)~n2.  Hence 

in 

"1 ----hXl°l(Sh ) <n2(4 × 2n/2 -- 2). 

More generally, if at least r n / 2 ] - 2  of the ai's are 1, 
we have ot(S ) <#(SOB)_<n 3. Now consider the case when 
fewer than r n / 2 ] - 2  of the ai's are 1. Let x¢Ip(vt)nBnS.  

Since w(x) ffi r n / 2  ] or r n /2  ] + 1, there exist at least 
three indices q~ {i 1 ..... ir} such that Xq= 1. Among these 
indices, at least two, say ql  and q2, must both be elements 
of {Ji,"',Jt] or both be elements of the complement of this 
set. In either case, let x t be obtained from x by changing 
both Xql and Xq to 0. Then xP¢S. However, 

2 . 
x ~I~.. (v t) because v t is an accepting node and 
w(x ) = r n / 2  ] - 2  or f n /2  ] - 1. It follows that x I was 

91 



rejected previously and thus xtcU (Ip(Vd) nBoS). On the 
d<? 

other hand every such x t can be obtained in this way from 
at most ( 2 )  vectors x. Therefore 

a t (S)<  max {n 3, ( 2 )  #dO<t (Ip(vd)nBnS)! " 

Since the cubes S1,...,S m are disjoint, 
m 

~t ffi ~t- l  + ~ °t(Sh) 
hffil 

m [ (~) d~< t ] ~_ "rt_ 1 + ~ n 3 + #(Ip(Vd)nBnS h) 
hffil 

m 

(n)d~<t ~ '  "#(Ip(Vd) nBn Sh) ---- ~ t - I  + n3m + 2 hffil 

n 
<_ ,rt_ I + n3(4×2 n/2 -- 2) + ( 2 ) Z  #(Ip(Vd)nB) 

d</ 

-" n3(4×2 n / 2 -  2)+ ((2) + 1)  "rt-1 

n 2 
< n 3 2 n / 2 + 2  + -~- ~t-1 " 

Similarly, if v t is a rejecting node, then the same inequalities 
concerning ~t can be derived. Thus 

~-! < 2n/2-t+4 n2 t .  

Let Lf(5n/16-4)/(2 logn-1) .  Then ~t<213n/16 for all 
e<L. Therefore P must be composed of more than L strict 
W2-programs. 

Let Xfmin{length(Qd) l l<d<L}. If X>n/8 the 
theorem is proven. Thus, assume X<n/8. 

Consider Qt where l<t~<L and length (Qt) = X. On 
any path from the source of Qt to v t at most h variables 
are examined. Therefore IQ (v t) can be represented as a 
union of striped cubes of d~ens ion  at least n - h  (this 
follows directly from the proof of Lemma 5). Consider any 
such striped cube 

S -- {x I xi n = ar ..... Xir -- a r and Xjl(~)...(~)xjt -- b} . 

Assume v t is an accepting node of P. Let a be the number 
of ai's that are 1 and let/3 be the the number of ai's that are 
0. We want to estimate from below, the number of vectors 
in S that have weight F n / 2 ] - I  or P n / 2 ] - 2 .  We first 
consider 

ffi -- a r and C ffi {x I xi 1 al ..... Xir , 

W(X) = [ n / 2 q - - 1  or fn /21 - -2} .  

Then, 

#C 

n + l - r  
ffi ( r 2 3 _ 1 _ a ]  

n +  l - -a - - /3  
= ( r n / 2 l  + ( 1 - a - / 3 ) / 2 - ( 3  + a - ~ ) / 2 )  

n +  1 - a - ~  
= ( r ( n +  1-a--[3)/2]--(c+a--[3)/2) 

where c¢ {2,3,4}. This is minimized if/3---0 and a---r. 
Hence 

[ n + l - r  3 _ n + l - X  
#C > \ r n / 2 1 - 1 - r !  > ( f n / 2 ] - I - h )  

, , 7 n / 8 x ,  
-> t 3 n / 8 ) / n  

= (7n/8)Tn/S/((3n/8)3n/S(n/2)n/20(n3/2)) 

__ 2n((log7-3)7/8+(3-1og3)3/8+1/2/O(n 3/2) 

> n22 n(-14/80+39/80+1/2) __ n2213n/16 " 

Next we show that any vector xc C can be obtained from 
some vector x t in CnS bychanging at most 2 bits of x ~. 
From any x ~ C n S ,  we can obtain fewer than n 2 vectors x in 
this way. Therefore 

n 2 #(SnC) a #C. 

Let xe C \ S .  We construct x t. We first assume that 
w(x)= f n / 2  ] - 2 .  If Xq=0 for some q~ {Jl ..... jt }, set Xq= 1. 
If x h . . . . .  .xjt.= 1 find a .component q~{a 1 ..... ar} such 
that xq=0; this Is possible since h<n/8. Set 
x h = 0 and Xq = 1. The case w(x)ffi f n / 2 ] - 1  is handled 
stfifilarly. 

Recall that v t is assumed to be an accepting node of 
P. Hence all elements in SaC must have been rejected 
previously. Thus 

<213n/16 213n/16<#(SnC) < t"i_ 1 

If v t is a rejecting node of P the same inequality is derived 
using analogous arguments. []  

5. CONCLUSIONS AND OPEN PROBLEMS 

Obviously, we are just beginning to understand the 
limited power of bounded width branching programs. The 
few examples given (both positive and negative) all concern 
"counting". In some cases (e.g., E 4) we observe nontrivial 
ways of counting. 

92 



Our nonpolynomial lower bounds hold only for 
monotone W2-programs. Many interesting problems remain 
open, including the following. 

(i) Prove nonpolynomial lower bounds on the length of 
W2-programs. 

(ii) Prove lower bounds on the length of 
,q'-programs, where ,9' is the system of cubes or 
striped cubes. 

Of course~ we need not restrict ourselves to counting 
functions. However, counting is a basic component in many 
computationally nontrivial problems, and eventually we 
should be able to understand the extent to which bounded 
width programs can count. 

ACKNOWLEDGMENTS 

The authors would like to thank Michael Fischer for 
helpful discussions. 

REFERENCES 

0. B.R. Plumstead and J. B. Pinmstead, Bounds for 
Cube Coloring, Preprint, Berkeley, 1982. 

U V 

b 

1 0 

1. A. Borodin, M. Fischer, D. Kirkpatrick, N. Lynch and 
M. Tompa, A Time-Space Tradeof f for  Sorting on 
Non-oblivious Machines, Proceedings of 20th Annual 
Symposium on Foundations of Computer Science, 
1979, pp. 319-327. 

2. A. Cobham, The Recognition Problem for the Set of 
Perfect Squares, Research Paper RC-I 704, IBM 
Watson Research Center, Yorktown Heights, 
New York, April 1966. 

3. A Chandra, M. Furst and R. Lipton, private 
communication. 

4. P. Erd6s and R. Rado, Intersection Theorems for 
Systems o f  Sets, J. London Math Society, 35, 1960, 
pp. 85-90. 

5. Michael J. Fischer, Albert R. Meyer and 
Michael S. Paterson, f/(n log n) Lower Bounds on 
Length of Boolean Formulas, Siam J. Comput, 11, 3 
(1982), pp. 416-427. 

6. M. Furst, J. Saxe and M. Sipser, Parity, Circuits and 
the Polynomial-Time Hierarchy, Proceedings of 22nd 
Annual Symposium on Foundations of Computer 
Science, 1981, pp. 260-270. 

7. W. Masek, A Fast 11 lgorithm for the String Editing 
Problem and Decision Graph Complexity, M. Sc. 
Thesis, MIT, May 1976. 

8. E.I .  Neciporuk, A. ,4 Boolean Function, Soviet Math 
DokL, 2, 4 (1966), pp. 999-1000. 

U V 

i o 

U V 
b 

b 

1 0 

(i) ( i i )  

Figure 1 

(iii) 

U v 

1 o 

Figure 2 

93 


