
A unique large-scale multicast service

designed for partitionable operation is

examined here.

In the local elections system of the municipality
of “Wiredville”,

1

several computers were used to
establish an electronic town hall. The comput-
ers were linked by a network. When an issue was

put to a vote, voters could manually feed their votes
into any of the computers, which replicated the
updates to all of the other computers. Whenever the
current tally was desired, any computer could be used
to supply an up-to-the-moment count.

On the night of an important election, a room with
one of the computers became crowded with lobbyists
and politicians. Unexpectedly, someone accidentally
stepped on the network wire, cutting communication
between two parts of the network. The vote counting
stopped until the network was repaired, and the
entire tally had to be restarted from scratch.

This would not have happened if the vote-count-
ing system had been built with partitions in mind.
After the unexpected severance, vote counting could
have continued at all the computers, and merged
appropriately when the network was repaired.

The “Wiredville” story illustrates some of the finer
points that motivated our work in the Transis project
[1], a large-scale multicast service designed with the
following goals:
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• Tackling network partitions and providing tools
for recovery from them. Transis was designed to sup-
port partitionable operation, in which multiple net-
work components that are (temporarily)
disconnected from each other operate autonomous-
ly. When network partitions occur, as in “Wiredville”
and in more complicated situations, Transis pro-
vides enhanced facilities for an application pro-
grammer to construct applications that operate
consistently in multiple components of a parti-
tioned network, and to merge these components
gracefully upon recovery.
• Meeting the needs of a large network through a
hierarchical communication structure, with gateways
selectively filtering messages among domains.
• Exploiting the available network multicast within
each local-area network (LAN) and providing fast clus-
ter communication. Transis has an efficient protocol
for reliable multicast, derived from the Trans protocol
[16], that employs the Deering IP-multicast mecha-
nism [6] for disseminating messages using selective
hardware-multicast. Coupled with a network-based
flow control mechanism we developed, the protocol
provides high-throughput group communication.

Partitionable Operation
The Transis approach distinguishes itself in allowing
partitionable operation and in supporting consistent
merging upon recovery. The partitioning of a group
results in several disjoint components. Any algorithm
that depends on the existence of a single component
(a primary component) in the system is unable to meet
the needs of an important class of distributed appli-
cations. Our work assumes that the network might
partition and seeks semantics that provide the appli-
cation with accurate information within each parti-
tioned component. 

Our approach is substantially different from simi-
lar systems that existed before Transis was launched.
For example, the Isis system designates one of the
components as primary, and shuts down the nonpri-
mary components [3, 4]. During the period prior to
shutdown and before the partition is detected, it is
possible for a non-primary component in Isis to con-
tinue operation, and to perform operations inconsis-
tently with the primary component. Moreover, if the
primary component ceases to exist (as, provably, can-
not be prevented [5]), then the entire system blocks
until it can be reestablished.

Another approach, taken in the Trans/Total sys-

tem [16], allows the system to continue operation
only if enough processors are operational and con-
nected to maintain the resiliency requirement. In the
Amoeba system [9], a partitioned group may contin-
ue operation within multiple components, unless the
user specifies otherwise. However, the system pro-
vides no means for merging the components upon
recovery.

Partitionable operation is advantageous in increas-
ing the availability of service. In various environments
(e.g., wireless networks), communication failures fre-
quently occur and the primary component may be
lost. For example, a system of four machines, denot-
ed A, B, C, and D, may shift from a  {A, B }, {C, D }) con-
figuration to a ({A, C }, {B, D }) configuration, and
back. If this occurs, information exchanged between
A and B in the first configuration can reach the rest
of the system while in the second configuration.
Thus, partitionable operation may succeed in diffus-
ing the information gradually. On the other hand, a
primary component model would deny progress in
this scenario.

However, the main concern with the existence of
multiple active components is that inconsistent

operations may occur in different parts of the sys-
tem. Some applications can cope with relaxed con-
sistency and allow actions to be completed within
disconnected components. For example, in the
“Wiredville” story, each component could count
votes presented to it separately, since the tally is
additive. Other examples are Command, Control,
and Communication applications, where it is more
important to present the user with up-to-date infor-
mation rather than trying to maintain systemwide
consistency while preventing the user from getting
access to any information during partitions. The
caveat is that allowing inconsistencies may eventual-
ly require the user’s application to reconcile infor-
mation once the network recovers. Another
example is an airline reservation system that may
allow booking to be performed in detached compo-
nents and suffer some margin of overbooking. More
sophisticated protocols (such as the replication 
protocol in [12]) may allow gradual diffusion of
conflict-prone operations in partitionable environ-
ments.

The Transis approach provides the required flexi-
bility for building diverse fault-tolerant applications,
some of which benefit from continued partitioned
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operation, and some of which do not. For the latter
kind of application, it is possible to prevent multiple
components from coexisting. Today, the Transis
approach to partitionable operation has been adopt-
ed in other systems, and we have been collaborating
for several years with the developers of the Horus sys-
tem [19] and the Totem system [17], who have incor-
porated some of our ideas into their architectures.

The Group Service
We begin the description of the Transis system with a
general overview of the group communication ser-
vice. Transis provides transport level multicast com-
munication services. As shown in Figure 1, it resides
below the user application and above the network
layer. 

We use the term service to refer to the collective
work of corresponding modules in all the machines
in the network. Thus, group service refers to the work
of the collection of group modules.

In Transis, the group service is a manager of
group messages and group views. Each group mod-
ule maintains a local view (a list) of the currently
connected and operational participants in the net-
work. Each local view has a certain lifetime, starting
when it is initially reported to the application and
ending when its composition changes through a
view change event (whereby members leave it or join
it). In addition to regular views, a group module
reports hidden views to the application. A hidden
view has the same composition as a regular view, but
is denoted “hidden.” Intuitively, it indicates to the
user that the view has failed to form but may have
succeeded to form at another part of the system (the
next section elaborates on the utility of hidden views
in some applications).

The local view provided by a group service may not
always be accurate, since failure detection in a realis-
tic system is generally unreliable. At any point in

time, local views at different machines may be identi-
cal, overlapping, or nonintersecting. However, the
significance of local views as well as hidden views is 
in the interrelation between views at different
machines. The behavior of the collective group ser-
vice is defined through the requisites given informal-
ly in Figure 2 (for a full specification and a
description of a group membership protocol that
specifies it, see [7]).

Within the lifetime of each view, the group mod-
ule delivers multicast messages. Transis supports sev-
eral types of multicast services: FIFO multicast
guarantees sender-based FIFO delivery order.
Causal multicast preserves the potential causal
order among messages (as defined in [13]). Agreed
multicast enforces a unique order among every pair
of messages in all of their destinations.

2

A safe mul-
ticast guarantees a unique order of message 
delivery, and in addition, delays message delivery
until the message is acknowledged by the transport
layers in all of the machines in the group, thus guar-
anteeing delivery atomicity in case of communica-
tion failures.

View change reporting and message delivery at
different members of the group are coordinated by
the group service. This principle is called virtual syn-
chrony [4] and is extended in Transis to partition-
able environments. Intuitively, the virtual synchrony
principle guarantees that a local view reported to
any member is reported to all other members,
unless they crash. In case of partitions, we guarantee
virtually synchronous behavior within each isolated
component and coherent behavior when compo-
nents merge. The net effect is that the application
builder is presented with coherent system behavior,
and can employ less complex failure-handling code
within the application.

The Partitionable Operation Methodology 
After a network partitions, here is what we would like
the situation to be in any distributed application:

• At least one component of the network should be
able to continue making updates. The situation
should be the same whether other components are
down or the network is detached.
• Each machine should know about the update mes-
sages that reached all of the other machines before
they were disconnected.
• Upon recovery, only the missing messages should
be exchanged to bring the machines back into a con-
sistent state.

Unfortunately, not everything in our wish-list is
possible. When there is no bound on the duration of
message passing in the network (the system is asyn-
chronous), Chandra et al. have shown that it is impos-
sible to maintain a primary component, whose
membership is known and agreed upon in all cir-
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Some prior work refers to this as total or atomic ordering.

Figure 1. The system
model structure



cumstances [5]. The impossibility of
maintaining a primary component
means that progress might completely
halt in applications that disallow all but
one part of the system to perform opera-
tions (e.g., when the primary component
makes decisions or answers on behalf of
the system). Thus, in some applications,
the first item in the preceding list might
be impossible to accomplish.

Furthermore, knowing which messages have been
delivered by all of the computers at any point in
time requires instantaneous knowledge about message
delivery and is provably impossible to achieve in an
asynchronous distributed environment [8]. Thus,
the second item is impossible. 

Therefore, it is inevitable that we must operate with
some margin of uncertainty. This, however, does not
imply that the situation need be completely chaotic.

First, not all applications require that progress is
made exclusively in a primary component. Recall the
“Wiredville” town hall example from the introduc-
tion: It is possible to allow all parts of the partitioned
network to continue counting separately, and 
upon recovery, to merge them (avoiding double-
counting of votes). Simple unordered diffusion of

messages between previously detached
components can be accomplished by 
gossiping after partitions are 
mended.

Second, when local views merge in
Transis, the diffusion of messages can be
done very efficiently. After merging sev-
eral previously-detached components,
each component can be represented by a

single member. So for example, in the “Wiredville”
town hall application, a single computer in each half
of the network could replay messages upon merging
on behalf of its entire component. The set of mes-
sages delivered within the component before merg-
ing, within the duration it was detached from the rest
of system, can be replayed by this representative
member alone. If further failures occur during merg-
ing, then representatives must be chosen out of any
previously connected component for which message-
replaying has not been completed. Due to virtual
synchrony, it is guaranteed that all of the other mem-
bers in the component have delivered during the
detached period the same set of messages as the rep-
resentative.

In the “Wiredville” application, partitioning is
exceptionally easy to handle since the tally is addi-
tive. Unfortunately, many applications can allow
updates only within a primary component. For this
kind of application, our approach provides support
for recovering a primary component if it has been
lost. In order to maintain progress in face of parti-

tions, members in all of
the components can
remain operational and
wait to merge with a pri-
mary component or to
generate a new one if it is
lost. Members of different
components have infor-
mation allowing them to
totally order past view
change events. Thus, it is
possible to track a primary
component and eventual-
ly recover from the possi-
ble loss of it (even in the
case of a total network
failure). The difficulty in
recovering from the loss
of a primary component is
that the recovered
machines may be in a sym-
metrical situation after
the recovery, as illustrated
in the following example.
Transis assists the applica-
tion developer in such sit-
uations by reporting
hidden-views, and thus
breaking the apparent
symmetry.
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Terminology:

Local View: A list of machines, reported to a member. The local view is modified by a
          view change event.

Messages: Messages are multicast to the group, with varying requirements: FIFO, causal,
          agreed, safe.

Requisites:

Self Inclusion: A local view at a machine always includes the machine itself.

Same Order: View changes occur in the same order at all their overlapping members.

Virtual Synchrony: Between consecutive view change events, the same set of messages
          is delivered by all overlapping members.

          In addition, message delivery maintains the multicast requisites, FIFO, causal,
          agreed or safe.

Uniformity: A view change reported to a member is reported to all of the other 
          members, as either a regular or a hidden view change (a hidden view has the
          same view composition as a regular one, but is marked “hidden”).

          A hidden view change reported to a member may be reported as a regular view
          change elsewhere, in an execution that is otherwise identical to this member's.

Liveness: A machine that does not respond to messages sent to it is removed from the
          local view of the sender within a finite amount of time. Every connected set of
          machines eventually forms a common view, reported to all of the members.

Safety: Machines are removed from a view only by the Liveness property. 

Figure 2. A frame-
work for partitionable
group service



We illustrate the breaking of
symmetry through an example
scenario (see Figure 3).

There are three machines in
the system, denoted A, B, and C,
and each majority of two or more
machines is considered primary.
A, B, and C start as one connected
component { A, B, C }. Later, C
splits from { A, B }. A reports the
local view { A, B }, but B detaches
from A before B succeeds in
reporting it. Following that, B con-
nects back with C, and C reports
the view { B, C }, B crashes, and C joins with A. First,
think of this scenario without the hidden (dashed)
view { A, B } reported at B. A and C seem to be in sym-
metrical state; A’s history of view change events con-
sists of { A, B, C }, { A, B } and C’s history is { A, B, C }, 
{ B, C }. Unless B had passed information to C about
the possible hidden view { A, B }, A and C cannot deter-
mine which has a more up-to-date state, since B is
missing. On the other hand, if B is indeed informed of
the hidden view { A, B }, then it can carry this infor-
mation into the next connected component { B, C }.

Exactly how the hidden view information is used is
application-dependent. The interested reader is
referred to [2, 11, 12] for applications that use the
Transis partitionable group service.

The Hierarchical Broadcast Domain
We have previously discussed the Transis partition-
ing mechanism, which is crucial in large and dynam-

ic settings. A large network also presents challenges
due to the diversity of communication media and its
structure. Transis provides high-throughput commu-
nication through protocols that exploit the underly-
ing network structure and was a pioneer in
demonstrating high-performance communication in
practice. We model a wide-area network (WAN) as a
hierarchy of multicast clusters, as depicted in Figure 4.
Each multicast cluster represents a domain of
machines capable of communicating via broadcast
hardware or via selective-multicast hardware (e.g.,
the Deering IP-multicast [6]). In reality, such a clus-
ter could be within a single local-area network
(LAN) or multiple LANs interconnected by trans-
parent gateways or bridges.

Clusters are arranged in a hierarchical group
structure, with representatives from each local
domain participating in the next level up the hierar-
chy. Each level of the hierarchy is a group domain
that maintains the group services (discussed in the
section “The Group Service”) internally. Each cluster
employs the Trans-based reliable message recovery
engine, described in the next section, which achieves
very high message throughput. Between clusters,
other forms of communication are used. In each 
cluster, a representative selectively filters messages leav-
ing the cluster and forwards incoming messages into
the cluster.

There are several key ideas in the design of the
hierarchical structure:

• Each level of the hierarchy abstracts the levels below
it and maintains group services at the level itself. In
this way, group services are made scalable and main-
tainable in a WAN.
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• Each port selectively passes messages 
to and from the clusters it belongs to, 
thus avoiding flooding a WAN with local
traffic.
• The multicast protocol within a multi-
cast cluster exploits the available broad-
cast hardware to achieve high-throughput
group communication.

A High-Performance Reliable Multicast Engine
The transport service within a multicast cluster
employs the reliable multicast engine presented
(briefly) in the sidebar "The Reliable Multicast Com-
munication Protocol" (a detailed description can be
found in [14]). There are several important principles
that underlie our design:

• In systems that do not lose messages very often, it is
preferable to use a negative acknowledgment-based
protocol. Thus:

– Messages are not retransmitted unless explicitly
requested to do so by means of a negative acknowl-
edgment.

– Positive acknowledgments, required for deter-
mining the arrival of messages, are piggybacked onto
regular messages. If no regular message is transmit-
ted, then periodically, an empty message containing
only acknowledgments and an “I am alive” indication
will be sent.

Modern networks exhibit extremely low message-loss
rates, hence these mechanisms have become widely
used (see, for example, [3, 10, 16, 18]).
• Detection of lost messages must occur as soon as

possible. Suppose that machines A, B, and
C send successive messages. If machine D
uses sender-based FIFO order to detect
message loss, and misses the message
from A, then it will not detect the loss
until A transmits another message. On the
other hand, if there are additional rela-
tionships between messages sent by differ-
ent machines, then as soon as B transmits

its message with a reference to A’s message, D can
possibly detect the loss of A’s message. Early detec-
tion saves buffer space by allowing prompt garbage
collection, regulates the flow, and prevents cascading
losses.
• Under high communication loads, the network and
the underlying protocols can be driven to high loss

rates. For example, based on experi-
ments using UDP/IP communication
between Sun Sparcstations intercon-
nected by 10Mb Ethernet, we found
that under normal load, the loss rate
was approximately 0.1%, but under
extreme conditions, the loss rate went
up to 30%. Such high loss rates would
make the recovery of lost messages cost-
ly, and can cause an avalanche effect
further increasing the load on the com-
munication medium. To prevent this, it
is crucial to control the flow of mes-
sages in the network. In the Transis sys-
tem, we employ a flow control method
called the network sliding window (see [1,
15] for further details). 

Details on the performance of the reli-
able multicast engine are provided in
[14].

Conclusion
Transis is a transport-level group com-
munication service that simplifies the
development of fault-tolerant distrib-
uted applications, in that it presents a
coherent behavior to the user upon fail-

ures. In a world of growing dependency on computers,
the ability to continue operation in a dynamic envi-
ronment is crucial. We were able to extend a success-
ful approach for developing fault-tolerant distributed
applications using group communication—limited by
primary-component assumptions—into large-scale
environments where challenges like partitioning and
exploiting the network hardware abound. Transis sup-
ports partitionable operation and provides the strictest
semantics possible in the case of network failures.
Through a precise definition of partitionable opera-
tion, we provide the means of recognizing the difficul-
ties inherent in distributed coordination and of
reconciling wishes with impossibilities, such as the
ones cited previously in the section “The Partitionable
Operation Methodology.”

The process of converting uniprocessor software to

GroupCommunication
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utilizes the available broadcast hardware for 

disseminating messages in a single transmission. 

Acknowledgments are piggybacked on regular 

messages, and are thus also broadcast once. Messages 

form a “chain” of acknowledgments, which implicitly 

acknowledge former messages in the chain. We 
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on message C .1, requesting its retransmission. Machine 
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a distributed fault-tolerant program is not made auto-
matic by our tools. Future development in this area
must better explore programming methodologies
integrated with group communication frameworks. In
Transis, we have emphasized methodologies and
enhanced tools for taking advantage of the partition-
able membership service. We are now taking the next
step by pursuing the development of services that
implement higher-level building blocks (e.g., replica-
tion services that automatically reconcile merged par-
titions, presented in [2] and [12]).
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In a world of growing dependency 
on computers, the ability to continue operation 

in a dynamic environment is crucial.


