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ABSTRACT: We analyze the problem of constructing a net-
work which will have a fixed routing and which will be high-
ly fault tolerant. A construction is presented which forms a
“product route graph" from two or more constituent "route
graphs." The analysis involves the surviving route graph, which
consists of all non-faulty nodes in the network with two
nodes being connected by a directed edge iff the route from
the first to the second is still intact after a set of component
failures. The diameter of the surviving route graph, that is,
the maximum distance between any pair of nodes, is a meas-
ure of the worst-case performance degradation caused by the
faults. The number of faults tolerated, the diameter, and the
degree of the product graph are related in a simple way to the
corresponding parameters of the constituent graphs. 1n addi-
tion, there is a "padding theorem" which allows one to add
nodes to a graph and to extend a previous routing.

1. Introduction.

We consider the problem of constructing a "fault-
tolerant” routing in a network with an arbitrary number of
nodes. This work is motivated by a practical problem of
message routing in a communications network. A route is a
path from one node to another. The message delivery system
‘must find a route along which to send each message to its
destination. If the route is known beforehand, then it can be
attached to the message, allowing intermediate nodes to send
the message on using only information contained in the mes-
sage itself. Such a simple forwarding function can be built
into fast special-purpose hardware, yielding the desired high

overall network performance.

The problem is greatly simplified if one chooses a route

in advance for each source/destination pair and uses that
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route for all messages from the one node to the other. Such a
choice of routes is called a routing table. 1f the routing table
is computed only once for a given network configuration,
considerable effort can be put into its computation. Even this
effort, however, must be kept within reasonable bounds since
the routing table must be recomputed when the network
configuration changes. All routes in a routing table are cus-
tomarily simple paths and in addition might have other desir-
able properties such as being minimal length and approxi-

mately evenly distributed throughout the network.

In this paper, we are particularly concerned with the
fault-tolerant properties of fixed routings. Namely, when a
node or link fails, all of the routes which go through the
failed component become unusable, leaving certain pairs of

nodes unable to communicate in the normal way. However,

assuming the network remains connected, communication is

still possible by sending a message along a sequence of surviv-

ing routes. We analyze the surviving route graph, which con-

. sists of all non-faulty nodes in the network_with two nodes

being connected by a directed edge iff the route from the first
to the second is still intact after a sct of componcnt failures.
Then the diameter of the surviving route graph, that is, the
maximum distance between any pair of nodes, is a measurc of
the worst-case performance degradation caused by the faults.
There are scveral reasons for continuing to use old rout-
ing tables even after a fault has occurred. One significant
reason is that nodes must communicate in order to compute
the new routing table, so some kind of interim communication
mechanism is essential. Morcover, one node can broadcast to
all others without knowing which routes are still intact -- it
simply "floods" the network by sending its message together
with a "route counter” along all of its routes; any node re-
ceiving the message increments the route counter and reb-
roadcasts it along all of its routes if the route counter does
not exceed the bound on the diamecter of the graph. This type

of flooding done on route graphs frequently results in fewer
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messages than when done along the edges. In addition, for
certain types of fault tolerant protocols, such as those used in
Byzantine Agreement, a node at the endpoint of a route must
do considerably more processing of messages than one which
is an interior point of a route. Consequently, the time it
takes for a message to reach all other nodes is proportional to

the diameter of the surviving route graph.

A further application for this model is the case of a net-
work that reconfigures itself according to some shortest path
strategy at certain (relatively rare) intervals. If one wishes to
run a protocol on such a network in which it is assumed that
messages between two nodes are always delivered so long as
neither of the nodes is either down or disconnected, then the
message can be sent over the routes of the surviving route
graph. As mentioned above, if one assumes more extensive
processing at nodes which are the endpoints of routes, then
the maximum delivery time for a message is proportional t(.>
the diameter of the surviving route graph. The length of the
diameter of the surviving route graph is utilized in a clock
synchronization algorithm [HSS] which has been developed
The al-
gorithm has already been implemented in the Highly Availa-

for an arbitrary network that might contain faults.

ble Systems Project currently under development at IBM.
This problem was introduced by Dolev, et al. [DHSS83].
In it, they establish properties of routings in general net-
works. They also give a routing for a specific network (a
t-dimensional hypercube) which can tolerate up to t~1 faults
and still have a surviving graph of diameter at most 2. In
terms of N, the number of nodes in the graph, their construc-
tion tolerates up to t = log,N — 1 faults and can be applied
whenever N is a power of two. Also, the degree of cach node

ist + 1.

In this paper, we look at the problem of finding good
routings for networks where the number of nodes is not a
power of two. We have a general construction which allows
one to form a "product route graph” from two or more con-
stituent route graphs. The tolerance, diameter, and degree of
the product graph are related in a simple way to the corre-
sponding parameters of the constituent graphs, although the
construction of the routing on the product graph is definitely
non-trivial. Applying this construction repeatedly to simple
2-node graphs yields the cube result of Dolev et al. However,
other cardinality graphs can be obtained by starting with a
different basis. In addition, we have a "padding theorem"
which allows us to add nodes to a graph and extend a previ-

ous routing.
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As an example, using the 2-node, 3-node, and S-node
starting graphs of figure 1, one can construct a routed graph
of any cardinality N of the form 2i3i5k. The resulting graph -
will tolerate i+2j+2k—1 faults, have degree i+2j+2k, and
have surviving diameter of 2. Alternatively, if the complete
graph on 5 nodes is substituted for the S-cycle, the resulting
graph will tolerate i+2j+4k—1 faults, have degree i+2j+4k,

and have surviving diameter of 2. Note that in both cases the
fault tolerance is optimal in that any larger group of faults

might disconnect the network.

Figure 1: potential building blocks.

In addition to providing a constructive technique for
building networks and providing them with fault-tolerant
routings, our approach provides the network designer with a
powerful tool. As the above example illustrates, s/he can use
sparse or dense "basic” graphs in constructing the product
graph .according as s/he is interested in minimizing the num-

ber of links or maximizing the fault-tolerance.

2. Graph Routing

A network is modeled as an undirected graph G=(V E),
with nodes representing processors and edges representing
communication links. We do not allow self-loops or parallel
edges. A routing assigns to any pair of nodes in the network a
fixed path between them. All communications between these
nodes will travel along this path. When speaking of a path
between x and y in G, we use the notation rg(X,y). A mini-

mal length routing is one that always gives a path of minimal

length.

More formally, define Pathg(x,y) to be the set of simple
paths between the nodes x and y in G and Path(G) to be the
set of all simple paths in G. A rouring is a partial function
p:VxV —> Path(G) such that p(xy) € Path(x,y). (If-
Pathg(x,y) = ¢, then p(x.,y) is undefined). We call p(x,y)
the route from x to y. A shortest path routing is a routing p
such that for every pair (x,y), p(x,y) is a shortest path be-
tween x and y. A routing p induces the roufe graph R(G,p) =
(V, Dom(p)), where Dom(p) is the domain of definition of p.
If p is defined for every pair x,y for x#y, then R(G,p) is the
We shall abbreviate R(G,p)

as R and ng(x,y) as #(x,y) whenever such an abbreviation is

complete graph on |V | nodes.

unambiguous.



Let p(x,y)p(y.z) be the route from x to y followed by the
route from y to z. The function p can be extended to a func-
tion on V' in an obvious way: p(x},X3,X3,...) =
p(x1.%x,)p(%x2,X3).... In particular, given a path a(x,Xg) =
X1Xp..Xy, then p(w(xy,x)) = p(x1,%2)p(x%2,%3)..p(xy.1,%K)-
Let V,(x.v) be the set of nodes in p(x,y). A routing is
consistent if for all x,y such that p(x,y) is defined and for all z

such that z € V (4 vy, p(x,y) = p(x,2)p(z.y).

A fault in G is cither a node or an edge in G. A route is
affected by a fault if the fault is contained in it. Note that
one fault may affect several routes. Given a set F of faults in
G, we define the fault free routing p/F to be the reduction of
p to fault free routes. As above, the fault free routing p/F
induces the surviving route graph R(G,p)/F = (V/F,
dom(p/F)), where V/F consists of all non-faulty nodes in G.
We use the notation R/F for R(G,p)/F where it is unambigu-

ous.

A (shortest path) routing p is called (d,f}-rolerant if for
every set F of f faults in G, R(G,p)/F has diameter at most d.
A graph G is called (d,f)-tolerant if there exists a shortest
path routing p on G that is (d,f)-tolerant. Note that if G is
(d,f)-tolerant, then the degree of any node in G is at least
f+1.

Lemma 1. If p is consistent, then for every set F of faults in

G, p/F is consistent.

Proof. Immediate. O

Lemma 2. If G is (d,f)-tolerant and >0, then d>1.

Proof. Let F=(x,y) for some edge (x,y) in G. Since
p(x,y)=(x,y) for any-shortest path routing p, d>2. 0O

Lemma 3. Let p be a consistent routing of G and let x,y be
any pair of nodes in G. Let F be a set of faults such that
p(x,y) contains a fault but there is a path ,rR/F(x,y) from x
to y in R/F which does not contain any faults. Then there

exists a node on 7y ,p(x,y) which is not on p(x,y).

Proof. Let Va(x,y) be the set of nodes in mr/e(X,y) and
assume to the contrary that V,(x_y) S V,oxy) Let p(xy) =
XpXj...Xg, where xp=x and xy=y, and let

mr/p(xy)=x"ox"1..x ", where x'g=x and x',=y. Let I be
the largest number less than k such that the edge (x,x1,;) €
F, and let J be the largest number less than m such that x'y =
x; for some i < I. Then x'jx;,1%;,9...X"y,; is a route by the
consistency assumption with respect to p(x,y), and by con-
struction it contains a fault. This contradicts the assumption

that p(7g sp(x,y)) is fault-free. ]

Lemma 4. Let p be a (d,f)-tolerant consistent routing with
f>0, and x,y a pair of distinct nodes in G. For every set F of
faults with |F| < f, there exists a path mg/p(x,y) of length
at most d such that p(mp,p(x,y)) is fault free and o /e(x,¥)

contains a node that is not on p(x,y).

Proof. Let F' be the set of faults F together with an edge
from p(x,y). F' contains at most [ faults, so by definition
there exists a path =g, p{x,y) from x to y such that
plrg/p(%,y)) does not contain any faults in F’. By Lemma

3, mg/p'(x,y) contains a node that is not on p(x,y). [

3. Product of routings.

Given two graphs G = (Vg, Eg) and H = (Vy, Egy),
their cartesian product GxH is a graph (V, E), where V =
VgxVy and ((i.j),(k,1)) € E iff both (i,j) and (k,1) are nodes
in V and either i=k and (j,1) € Ey; or j=1 and (i,k) ¢ Eg. The
H plane defined by i (G plane defined by j) in GxH is the sub-
graph of GxH determined by all nodes having the first
(second) coordinate equal to i (j). We use the notation H;
and G;j for the H plane defined by i and the G plane defined
by j. Isomorphic graphs being considered cqual, it can be
shown that the cartesian product of graphs is commutative,
and that any graph can be uniquely decomposed into a carte-

sian product of indecomposible graphs. For details sec [Sa].

Let pg and py be given routings for G and H, and let
x=(i,j) and y=(k,l). We define the product routing pgxppy as
follows. pgxpyu(xy) = py(x,2)pg(z,y), where z=(i,1). In
other words, the route is obtained by concatenating the route
py(x,2) of H; with the route pg(z,y) of G). Clearly, if i=k or
j=1, then one of these routes is the null route. In this case,
we say that x and y are coplanar. The routing pgxpy is a
consistent routing iff both pg and py are consistent. From
now on we shall denote pgxpy by pgxp. although of course

other routings are possible.

Let x = (i,j) and y = (i’,j') be two nodes that are not
coplanar in GxH, and let F be the set of faults in GxH. We
associate to x and y a copy of G, called G(x,y), with the set of
faults Fg(x,y). Fg(x,y) is defined as follows:

a) if the edge (k,)eEg, then (k) e Fg(x,y) if either,

the edge between (k,j) and (1,j) or the edge between k.j"

and (1,j) is faulty (in GxH).

b) if keVg and kgpg(i,i'), then keFg(x,y) if

pu((k.D.(k,i")) is faulty.

c) if keVg, kepglii'), and k#i,i’, then keFg(x,y) if

either of the nodes (k,j) or (k,j’) is faulty.
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H(x,y) and Fy(x,p) are similarly defined. Note that the nodes

j. i in H(x,y) and i, i’ in G(x,y) are always nonfaulty.

Lemma 5. Any fault in F determines a fault in at most one of

Fg(x,y) and F(x,y):

Proof. Let x=(i,j) and y=(i',j'). Supposec that there is
an edge fault f; = (LK), (I'k)) ¢ F. If f, determines an edge
fault (l,l')eEG, then it must satisfy condition a) and, there-
fore, either k=j or k=j. Suppose by contradiction that fy
also determines a node fault. Since keVy, f can determine a
node fault only in Fy(x,y). For condilion b) to hold,
k{pH(j,j'), which is clearly impossible, since either k=j or

k=j'. If condition c¢) holds, then k;ﬁj,j', also impossible.

Suppose that f; does not dctermine an edge fault in Eg,

i.e. condition a) does not hold. Then k;éj,j'. Note that at
most one of conditions b) and ¢) can hold, and therefore f;
can determine at most one fault.

of the form ((1,k).(1,k") is similar).

(The proof for edge faults

Now suppose that there is a node fault f, = (k1) € F.
By definition, a node fault in GxH cannot determine an edge
fault in Fg(x,y) or Fy(x,y). Supposc that f, determines a
node fault iAn Fg(x,y). If condition b) holds, then k{pc(i,i')
and py((k.j).(k,j')) is faulty. k) ¢

py((k,i),(k,j")). 1f {4 also determines a node fault in FH(x.'y),

In particular,

then it must do so by condition c) (since IEpH(j,j')). But for
condition c) to hold, 1#j,j’ and one of the nodes (i,1) or (i,l")
is faulty. This implies that k=i or k=i’, which contradicts
the assumption that k{pG(i,i') (i.e. the assumption of condi-

tion b} by which f, determines a fault in Fg(x,y)).

Finally, suppose that f, determines a node fault in
Fg(x,y) under condition c). Therefore, kepg(x,y), k#i,i’,
and one of the nodes (k,j) or (k,j') is faulty. This implies
that 1=j or I=j. If f, determines a node fault in Fy(x,y),
then sinée 1=j or 1=§', condition ¢) cannot hold. For condi-
tion b) to hold, ltpH(j,j'). Since I=j or 1=§, this is clearly

impossible. O

Corollary. |Fg(x,y}i + |Fu(xy)| < |F].

Lemma 6. Assume pg is (dg.0g)-tolerant, py s

(dy.fyy)-tolerant, at least one of fg and fy is greater than 0,
and both are consistent routings. Let x,y be two nodes in
GxH that are not coplanar. Then for every set F of faults
such that Fg(x,y) (resp. Fy(x,y)) contains fewer than fg
(resp. the distance between x and y in

R(GxH,p5xy)/F is at most dg (resp. dy).

fy) faults,
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Proof. Let x=(i,j) and y=(i',j'). Without loss of generality,
assume that f3>0 and that Fg(x,y) contains f<fg; faults. By
lemma 2, dg>2. By lemma 4 there exists a path = of length
< dg in R(G,pg)/Fg(x,y) from i to i’ such that pg(w) is

fault-free and # contains a node which is not on pG(i,i').

We first show a fault-free path in GxH from x to y and
then prove that its length in R(GxH,pgxy)/F is bounded by
dg. Let k be a node on = that is not on pG(i,i') and let | be
the node on # immediately after k (i.e. (k) is an edge in
R(G,pg)/Fg(x.y)). Denote n=m(k!)m,. Note that ki’ but
that 1 might equal i’, in which case m,=¢. By the definition
of Fg(x,y), since pg(w) had no faults in Fg(x,y), pg(7y) is
fault free in the Gj. Similarly, both pg(k,1) and pg(w,) are
By condition b) of the definition of
Fg(x.y), pH((k,j),(k,j')) is fault-free (i.e. pH((k,j),(k,j')) con-

tains no fault from F). Therefore, the path in GxH composed

fault-free in the Gj|.

of the corresponding pg(m)ey((k.j).(k,iNeg((k,i)(LiNeg
(n,) is fault-free. But from the definition of the routing in
GxH, it follows that py((k,i).(k.i))eg((k,i'),(1,i")) form just
one route. Hence, this path is of length at most dg in

R(GxH,pgxy)/F.

The proof for Fy(x,y) is similar. The only difference is
that we have to take ! to be the node immediately preceding k

in # to get a path of length dy in R(GxH,pgxy)/F. O

Theorem 1, Let G be (dG,fG)-tolerant and H be
(dy.fy)-tolerant with consistent (dg.fg)- and (dyy,fyy)-tolerant
routings pg and py respectively. Then the graph GxH is
(max{dg,dy,2}, Ig+y+1)-tolerant,

Proof. Let PGXH = PGXPY-

We will show that pgyy is
(max{dg.dy,2}.0g+y+1)-tolerant. It suffices to show that
for any pair of nodes x=(i,j) and y=(i',j'’) and every
fg+fy+1 faults in the product graph, there exists a path of
length bounded by max{dg.d;;,2} from x to y in the graph
R(GxH,pgxy)/F. The proof is by cases.

Case 1: i=i',

Case 1.1: We are done

H; contains fy or fewer faults.
because H; itself is (dy.fy)-tolerant.

Case 1.2: H; contains at least fy;+1 faults. Both node x
and node y have at least fg+1 corresponding adjacent
nodes in their respective G planes. Each pair of corre-
sponding adjacent nodes has a route joining them in an H
plane. These planes are both mutually distinct and also
different from H;. Therefore, these adjacent nodes define

at least fg+1 node disjoint paths, each utilizing a different



H plane, connecting x and y. Since we have at most [

faults among these node disjojnt paths, at least one of

them is fault-free. Each of these fg+1 disjoint paths is
composed of exactly two routes in pgxy. The first route
consists of the edge from x to the H plane and the second
consists of the path in that H plane followed by the edge
to y. Therefore, each one is of length 2 in Rgxy/F.

Case 2: j=j'. The proof is similar to case 1.

Case 3: i#i’ and j#j.

analysis of G(x,y) and H(x,y).

The remainder of the proof is an

Case 3.1: Either |Fg(x,y)|<fg or |Fy(x,y)|<fy. Then
the result follows from lemma 6.

Case 3.2: Both |Fg(x,y)|=fg and [Fy(xy)|=fy. If
either pG(i,i') or pH(j,j') contains a fault, then the result
follows from techniques similar to those of lemma 6. So
suppose that both pg(i,i') and py(j,j') are fault-free in
G(x,y) and H(x,y) respectively. By lemma 5 there can be
at most one fault in GxH which has not determined a
fault in either Fg(x,y) or Fy(x,y). If this fault is not in
either p((i,j),(i,i')) or p((i.j’),(i".j')), then the route from x
to y is fault-free, and the distance from x to y in GxH is
one. If there is a fault in either of the above routes, then
by the definition of Fg(x,y) and Fu(x,y), it must be the
point (i,j'). Therefore, the point (i’,j) must be fault-free
and a path of length two from x to y in Rgyx;y/Fgxy can
be obtained by concatenating pG(i,i') in Gj with pH(j,j') in
H;.

Case 3.3: Either |Fg(x,y)l=fg and |Fy(x,y)|=I4+1 or
IFg(x,y)I=fg+1 and |Fy(x,y)|=fy. Assume
[Fg(x.y) | =fg and [Fy(x,y) | =fy+1. If pgi,i’) has a
fault, the proof follows using previous techniques. So
suppose that pG(i,i') is fault-free. If pH(j,j') is fault free in
H;, then p((i,j).(ii"e((1.i'),(i".i")} is a path of length one.
It H;,
p((L1).G".))p(G".).(°,i')) is a path of length two. So sup-

pH(j,j') is fault free in then

pose that pH(j,j') contains a fault in both H; and H;:. Since
both H planes contain at least one fault, neither contains
more than fy faults. Therefore, we can travel from (i,j) to
@i.i") in H; along a path of length no greater than dy. If
p((i.i")(i",j")) is concatenated to this path, the length of the
path is not increased. The proof is similar if instead we

have Fg(x,y)=fg+1 and |Fy(x,y)|=fy. I

4. Padding Graphs.

Theorem 2. Let G = (V,E) be (d,f)-tolerant with every node
in G having degree no greater than pg. Thenfor |V| < N <
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IVI+(IVI|/12), G can be extended to a graph G'=(V'E’)
and a routing p’ such that G’ is (d,f)-tolerant, | V'{ =N, and

the maximum degree in G’ is no more than p+1.

Proof. We extend G to a graph G'=(V’,E’) with [V'|=N as
follows. Let M=N—|V|. Match one of the new nodes, say
‘X, to a node in the original network, say x’, and connect x to
all of x's neighbors in G. Next, choose another new node,
say y, and match it to a node in the original network, say y’,
which has no neighbors in common with x’ in G.: Connect y
to all the neighbors of y'. This procedure can be repeated so
long as there exist nodes in G which are neither matched to a
new node nor have neighbors in common with an already
matched node. Note that each iteration eliminates at most u?
nodes from G, since both x’ and each of its neighbors have

degree at most .

Let p be a routing in G which is (d,f)-tolerant. We ex-
tend p to p’ as follows. For x,y € V, p'(x,y)=p(x.y). For x
€ V'=Vand y € V, let x’ be the node in V to which x is
matched. If y is a neighbor of x', then p'(x,y)=(x,y). If y is
not a neighbor of x’, then let w be the neighbor of x' which
lies on p(x’,y). We define p'(x,y) to be the same as p(x"y)
with the edge (x',w) replaced by the edge (x,w). p'(y.x) is
similariy defined to be p(y,x’) with its last edge (w,x') re-
placed by the edge (w,x). For x,y ¢ V'—V, let x’ and y' be
the nodes in V to which x and y are matched, and let w and v
be the neighbors of x’ and y’ respectively which lie on
p(x',y’). Note that by construction, w#v. Then, p'(x,y) is
the same as p(x’,y’) with the edge (x',w) replaced by (x,w)

and (v,y’) replaced by (v,y).

The consistency of p’ follows trivially from the consisten-
cy of p. Since G tolerates f faults and since all new nodes are
connected to at least f+1 distinct nodes in G, it is easy to

show that G’ tolerates f faults.

We now show that R(G',p’)/F has diameter no greater
than d for |F}<f. Letx,y € V' =V with x matched to x’ and
y to y’' (x',y'eV), and assume G’ contains at most { faults.
Let F' consist of the set F with the following two changes: 1)
xi;y';fF', 2) if (x,w)ei’, then (x,w)¢F’ but weF'. Note that
|E'] <'f. Therefore, therc exists a path in R(G,p)/F’ from
x’ to y'. Replacing x’ by x and y’ by y gives a path from x to
y in R(G,p)/F. We leave to the rcader the verification that
the distance between nodes in R(G’,p’), when at least one of

the nodes is in V, remains no greater than d.

If the maximum indegree in the original graph is g, then

in the new graph we have degree p+1. It is straightforward



to generalize this construction to handle the case where |V |
< N < 2|V|]. As N increases in size relative to | V|, how-

ever, the maximum degree of G’ increases accordingly. J

A construction similar to the one in the padding iemma
can be used to extend a graph with | V| nodes to a graph
with up to 2| V| nodes at the cost of at most doubling the
maximum degree while maintaining the same diameter and

fault tolerance.

5. Other bounds.

For a graph G of ng nodes, denote by ng the minimum
degree of the nodes in G.
Theorem 3. GxH is

(3.f)-tolerant, where { =

‘max{min{ny,ng-1}, minfng,ny-11}.

Proof. Let GxH have fewer than f faults. Without loss of
generality assume { = min{ny, ng—1}. Therefore, there is at
least one fault-free H plane; denote it by Hy. Define PGXH as
before, with the difference being that pG and py are arbitrary

(not necessarily shortest path) routings on G and H.

Let x,y be any two nodes in GxH. Assume first that y is
not a neighbor of x. To each of the 34 neighbors u of x in its
H plane, associate a different neighbor v of y in its H plane,
or u itself if u is also a neighbor of y. Let U be the set of
pairs constructed in this manner together with the pair (x,y).
The set U defines in an obvious way 1+ 1 paths from x to y,
all of them going through H, and disjoint outside Hy. There-
fore, at least one of them is fault free and has length no more

than 3 in the induced graph.

In the case that x and y are neighbors, if the edge (x,y)
is not faulty, the distance is 1. Otherwise, the corresponding
set U will have 5y pairs with at worst ny~1 faults on them.
=]

Usiﬁg similar observations about faultiness in G and H
planes one can obtain other bounds similar to the one in

Theorem 3.

6. Remarks.

The proof of the main theorem can be greatly simplified
if the following conjecture due to Joe Halpern is true. Let G
be a (d,f)-tolerant graph and let p be a (d,f)-tolerant consist-
ent routing on G. Then between every pair of nodes in
R(G,p) there are at least f+1 node disjoint paths wy, w,, ...,
wge1 Of length d or less such that the paths p(=;), p(wy), ...,
p(wg) are node disjoint. This property does not hold for in-

consistent routings.
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7. Open problems,

Our "building blacks" usually will be small graphs with
a prime number of nodes, py, pj, .... Starting from these
blocks, we can construct (2,f)-tolerant graphs that have
p‘lpﬁp’a‘ nodes. If we want to construct a (2,f)-tolerant graph

with N nodes and if the gaps in such a sequence are not

- greater than O(N/(log N)?), then we can use a generalization )

of the padding theorem to construct such graphs where the
maximum degree is less than log N + c for some constant ¢
independent of N. Hence we have the following number
theoretic question: what is the minimum number of prime
numbers such that, for any N, the gaps in the above sequence
are no greater than O(N/(log N)2)? 1t scems plausible that
the answer is 3 and that the desired bound can be obtained
using 2-, 5-, and 7-cycles. (For 2-, 3-, 5-, and 7-cycles the
maximum gap up to 10,000 nodes is 199). For known results

on this problem, see [Til], [Ti23], and references therein.

In general, we would like to know what is the optimum
N node graph and what is its optimum routing for any N

given a ‘desired (d,f)-tolerance.
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