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ABSTRACT:  We analyze  the problem of cons t ruc t ing  a net- 
work  which will  have a f ixed rout ing and which will  be high- 
ly fault  to lerant .  A cons t ruc t ion  is presented which forms a 
"product  route  graph" from two or more cons t i tuen t  " route  
graphs."  The ana lys i s  involves  the surviving route graph, which 
c o n s i s t s  of a l l  n o n - f a u l t y  nodes  in the n e t w o r k  w i t h  t wo  
nodes being connected by a directed edge iff the route from 
the first  to the second is still  in tact  af ter  a set of component  
fai lures .  The d iamete r  of the surviv ing route  graph, that  is, 
the m a x i m u m  dis tance  between any pair of nodes, is a meas- 
ure of the wors t -case  per formance  degrada t ion  caused by the 
faults .  The number  of faul ts  tolerated,  the d iameter ,  and the 
degree  of the product  graph are re la ted in a s imple way to the 
corresponding parameters  of the cons t i tuent  graphs.  In addi-  
t ion, there  is a "padding theorem" which a l lows one to add 
nodes to a graph and to ex tend  a previous routing.  

1. In t roduc t ion .  

We c o n s i d e r  the  p rob l e m  of c o n s t r u c t i n g  a " f a u l t -  

to le ran t"  rou t ing  in a ne twork  wi th  an a rb i t r a ry  number  of 

nodes.  This  w o r k  is m o t i v a t e d  by a p r a c t i c a l  p rob l em of 

message rou t ing  in a communica t ions  ne twork.  A route is a 

path from one node to another .  The message del ivery  sys tem 

must  find a route  a long which to send each message to its 

des t ina t ion .  If the route  is known beforehand,  then it can be 

a t tached  to the message,  a l lowing  in te rmed ia te  nodes to send 

the message on using only informat ion contained in the mes- 

sage itself. Such a s imple forward ing  function can be bui l t  

into fast special -purpose hardware ,  y ie lding the desired high 

overall  ne twork  performance.  

The problem is grea t ly  s implif ied if one chooses a route 

in advance  for each s o u r c e / d e s t i n a t i o n  pai r  and uses t h a t  
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route for all messages from the one node to the other.  Such a 

choice of routes  is cal led a routing table. If the rout ing  table 

is c o m p u t e d  only  once  for a g iven n e t w o r k  c o n f i g u r a t i o n ,  

considerable  effort can be put into its computa t ion .  Even this 

effort,  however ,  must  be kept wi thin  reasonable  bounds since 

the  rou t ing  t ab l e  mus t  be r e c o m p u t e d  when  the n e t w o r k  

conf igurat ion changes.  All routes in a rout ing table  are cus- 

tomar i ly  s imple paths and in addi t ion might  have other desir-  

ab le  p rope r t i e s  such as be ing  m i n i m a l  l eng th  and a p p r o x i -  

mate ly  evenly  d i s t r ibu ted  throughout  the ne twork.  

In th is  paper ,  we are  p a r t i c u l a r l y  conce rned  wi th  the  

faul t - to lerant  proper t ies  of fixed rout ings.  Namely ,  when a 

node  or l i nk  fai ls ,  al l  of the  rou te s  wh ich  go t h rough  the  

fa i l ed  c o m p o n e n t  become  unusab le ,  l e av i ng  c e r t a i n  pai rs  of 

nodes unable  to communica te  in the normal  way.  However ,  

assuming  the ne twork  remains  connected,  communica t ion  is 

st i l l  possible by sending a message along a sequence of surviv-  

ing routes. We ana lyze  the surviving route graph, which con- 

. sists of all  non- fau l ty  nodes in the n e t w o r k  wi th  two nodes  

being connected by a d i rected edge iff the route from the first 

to the second is still  in tact  after a set of component  failures.  

Then the d ia lne ter  of the surviving route graph, that  is, the 

max imum dis tance  be tween any pair of nodes, is a measure  of 

the wors t -ease  per formance  degradat ion caused by the faults.  

• There are several  reasons for cont inuing  to use old rout-  

ing tables even af ter  a fault  has occurred.  One signif icant  

reason is that  nodes must  communica te  in order to compute  

the new rout ing table,  so some kind of in ter im communica t ion  

mechanism is essent ial .  Moreover,  one node can broadcast  to 

all others wi thout  knowing  which routes are still  intact  -- it 

s imply "f loods" the ne twork  by sending its message together  

wi th  a " route  counter"  along all of its routes;  any node re- 

c e i v i ng  the message  i n c r e m e n t s  the rou te  coun t e r  and  reb-  

roadcasts  it along all of its routes if the route counter  does 

not exceed the bound on the d iamete r  of the graph. This type 

of flooding done on route  graphs f requent ly  results  in fewer 
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messages than when done along the edges. In addit ion,  for 

certain types of fault  tolerant  protocols,  such as those used in 

Byzantine Agreement ,  a node at the endpoint  of a route must  

do cons iderably  more processing of messages than one which 

is an in ter ior  point of a route. Consequently,  the t ime it 

takes for a message to reach all other nodes is proport ional  to 

the d iameter  of the surviving route graph. 

A fur ther  appl icat ion for this model is the case of a net- 

work  that  reconfigures i tself  according to some shortest  path 

s t ra tegy at cer ta in  ( re la t ive ly  rare) intervals .  If one wishes to 

run a protocol on such a ne twork  in which it is assumed tha t  

messages between two nodes are a lways  del ivered so long as 

nei ther  of the nodes is e i ther  down or disconnected,  then the 

message can be sent over the routes of the surviving route  

graph. As ment ioned above, if one assumes more ex tens ive  

processing at nodes which are the endpoints  of rou.tes, then 

the max imum del ivery  t ime for a message is lbroportional to 

the d iameter  of the surviving route graph. The length of the 

d iameter  of the surviv ing route graph is ut i l ized in a clock 

synchroniza t ion  a lgor i thm [HSS]  which has been developed 

for an a rb i t r a ry  ne twork  that  might  contain faults.  The al- 

gori thm has a l ready been implemented in the Highly Availa-  

ble Systems Project cur ren t ly  under development  at IBM. 

This problem was introduced by Dolev, et al. [DHSS83 ]. 

In it, they  e s t a b l i s h  p roper t i e s  of rou t ings  in genera l  net-  

works.  They also give a routing for a specific network (a 

t -d imensional  hypercube)  which can tolerate  up to t - 1  faults 

and still  have a surviving graph of d iameter  at most  2. In 

terms of N, the number of nodes in the graph, their  construc-  

t ion tolerates  up to t = Iog2N - 1 faults and can be applied 

whenever  N is a power of two. Also, the degree of each node 

i s t +  1. 

In th is  paper ,  we look at the p rob lem of f ind ing  good 

rout ings for ne tworks  where the number  of nodes is not a 

power of two. We have a general const ruct ion which al lows 

one to form a "product  route graph" from two or more con- 

s t i tuent  route  graphs. The tolerance,  d iameter ,  and degree of 

the product graph are related in a s imple way to the corre- 

sponding parameters  of the const i tuent  graphs, a l though the 

const ruct ion of the routing on the product graph is def ini te ly  

non-tr ivial .  Applying this  construct ion repeatedly  to simple 

2-node graphs yields the cube result  of Dolev et al. However,  

other ca rd ina l i ty  graphs can be obtained by s tar t ing  with a 

different  basis.  In addit ion,  we have a "padding theorem" 

which al lows us to add nodes to a graph and ex tend  a previ-  

ous routing. 

As an e x a m p l e ,  us ing  the 2-node,  3-node,  and  5-node  

s tar t ing  graphs of figure l, one can construct  a routed graph 

of any ca rd ina l i ty  N of the form 2i3J5 k. The resul t ing graph 

wi l l  t o l e r a t e  i + 2 j + 2 k - I  faul ts ,  have  degree  i + 2 j + 2 k ,  and  

have surviv ing d iameter  of 2. Al terna t ive ly ,  if the complete 

graph on 5 nodes is subst i tu ted for the 5°cycle, the resul t ing 

graph will to lera te  i + 2 j + 4 k - I  faults,  have degree i + 2 j + 4 k ,  

and have surviving d iameter  of 2. Note that  in both eases the 
fault tolerance is optimal in that  any larger  group of faults 

might  disconnect  the 'ne twork .  

Figure 1: potential building blocks. 

In a d d i t i o n  to p rov id ing  a c o n s t r u c t i v e  t echn ique  for 

b u i l d i n g  n e t w o r k s  and p rov id ing  them wi th  f a u l t - t o l e r a n t  

routings,  our approach provides the ne twork  designer with a 

powerful  tool. As the above example  i l lustrates ,  s / h e  can use 

sparse  or dense  "ba s i c "  graphs  in c o n s t r u c t i n g  the produc t  

graph according as s / h e  is interested in minimizing the num- 

ber of l inks or maximiz ing  the fault- tolerance.  

2. Graph Routing 

A ne twork  is modeled as an undirected graph G=(V,E) ,  

w i th  nodes r ep r e sen t i ng  p rocessors  and edges r e p r e s e n t i n g  

communica t ion  l inks.  We do not al low self-loops or parallel  

edges. A routing assigns to any pair of nodes in the ne twork  a 

fixed path between them. All communicat ions  between these 

nodes will travel along this  path. When speaking of a path 

between x and y in G, we use the notat ion ~G(x,y). A mini- 

mal length rout ing is one that  a lways  gives a path of minimal  

length. 

More formally,  define PathG(x,y) to be the set of simple 

paths between the nodes x and y in G and Path(G) to be the 

set of all s imple paths in G. A routing is a part ial  function 

p : V x V  - ->  P a t h ( G )  such tha t  p (x ,y )  ¢ P a t h ( x , y ) .  (If 

Pa tho (x ,y  ) = 0, then p(x,y) is undefined).  We call p(x,y) 

the route from x to y. A shortest path routing is a rout ing p 

such that  for every pair (x,y),  p(x,y)  is a shortest  path be- 

tween x and y. A rout ing p induces the route graph R(G,p) -- 

(V, Dora(p)),  where Dora(p) is the domain of defini t ion of p. 

If # is defined for every  pair x,y for x # y ,  then R(G,p) is the 

complete  graph on I V [  nodes. We shall abbrevia te  R(G,p) 

as R and nG(x,y) as ~(x,y)  whenever  such an abbreviat ion is 

unambiguous.  
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Let p(x,y)p(y,z) be the route from x to y followed by the 

route from y to z. The function p can be extended to a func- 

t ion on V" in an obvious  way:  p(xl,X2,X3,...) m 

p (x t ,x2 )p (x2 ,x3)  .... In par t icu lar ,  given a path ~ ( x l , x  k) = 

xtx2. . .x k, then g(~(xt ,xk))  = p(xl,x2)p(x2,x3)...V(Xk.t,Xk). 

Let Vp(x,y ) be the set of nodes in p(x ,y) .  A rout ing  is 

consistent if for all x,y such that p(x,y) is defined and for all z 

such that z c V~(x,y ), p(x,y) = p(x,z)p(z,y).  

A f a u l t i n  G i s  either a r~ode or a n e d g e i n  G. A route is 

affected by a fault if the fault is contained in it. Note that 

one fault may affect several routes. Given a set F of faults in 

G, we define the fault free routing p / F  to be the reduction of 

p to fault free routes. As above, the fault free routing p/F 

induces  the surviving route graph R(G,p)/F = ( V / F ,  

dora (p /F) ) ,  where V / F  consists of all non-faulty noses  in G. 

We use the notation R / F  for R ( G , p ) / F  where it is unambigu- 

ous. 

A (shortest  path) routing p is called (d,f)-tolerant if for 

every set F of f faults in G, R ( G , p ) / F  has diameter at most d. 

A graph G is called (d,f)-tolerant if there exists a shortest  

path routing p on G that is (d,f)-tolerant. Note that if G is 

(d,f)-tolerant,  then the degree of a n y  node in G is at least 

f + l .  

Lemma 1. If p is consistent,  then for every set F of faults in 

G, p / F  is consistent. 

Proof.  Immediate. [ ]  

Lemma 2. If G is (d,f)-tolerant and f>0 ,  then d >  1. 

Proof .  Let F = ( x , y )  for some edge (x,y)  in G. Since 

p (x ,y )=(x ,y )  for a n y s h o r t e s t  path routing p, d>2.  [] 

Lemma 3. Let p be a consistent routing of G and Ict x,y be 

any pair of nodes in G. Let F be a set of faults such that 

p(x,y) contains a fault but there is a path ~-g/F(x,y) from x 

to y in R / F  which does not contain any faults. Then there 

exists a node on ~'R/F(x,y) which is not on p(x,y).  

Proof .  Let Vn(x,y ) be the set of nodes in n g / F ( x , y )  and 

assume to the contrary that V,,(x,y ) c_ Vp(x.y). Let p(x,y) = 

X0Xl..,Xk, w h e r e  Xo=X and x k = y  , and let 

srg/F(X,y)=x'0x'l . . .X'rn, where x ' 0 = x  and X'm=y. Lct I be 

the largest number less than k such that the edge (Xl,Xl+l) E 

F, and let J be the largest number  less than m such that x'.l = 

x i for some i < I. Then x' . lxi+txi+2.. .x ' j+ l is a route by the 

consistency assumption with respect to p(x,y),  and by con- 

struction it contains a fault. This contradicts the assumption 

that p (~g /F(x ,y ) )  is fault-free. []  

Lemma 4. Let p be a (d,f)-tolerant consistent routing with 

f>0,  and x,y a pair of distinct nodes in G. For every set F of 

faults with I F I  < f, there exists a path ¢rg/F(x,y ) of length 

at most d such that p (~g/F(x ,y) )  is fault free and Wg/F(x,y) 

contains a node that is not on p(x,y).  

Proof.  Let F'  be the set of faults F together with an edge 

from p(x,y). F' contains at most f faults, so by definition 

there  exists  a path ~K/F'(X,Y) f rom x to y such that  

p(~R./F,(x,y)) does not contain any faults in F'.  By Lemma 

3, eK/F'(X,Y) contains a node that is not on p(x,y).  []  

3. Product of routings. 

Given two graphs  G = (V G, EG) and H = (V H, t/H), 

their cartesian product G xH is a graph (V, E), where V = 

V G x V  H and ((i,j),(k,l)) ~ E iff both (i,j) and (k,l) are nodes 

in V and either i=k and (j,I) ~ El! or j=l and (i,k) E E G. The 

H plane defined by i (G plane defined by j) in G x H  is the sub- 

graph of G x H  determined by all nodes hav, ing the first  

(second) coordinate equal to i (j). We use the notation H i 

and Gj for the H plane defined by i and the G plane defined 

by j. Isomorphic graphs being considered equal, it can be 

shown that the cartesian product of graphs is commutative,  

and that any graph can be uniquely decomposed into a carte- 

sian product of indecomposible graphs. For details see [Sa ]. 

Let PG and PH be given routings for G and H, and let 

x=(i , j )  and y=(k, I ) .  We define the product routing pGxPH as 

follows, pG×PH(X,y) = PH(X,Z)pG(z,y), where z=(i ,I) .  In 

other words, the route is obtained by concatenating the route 

PH(X,g) of H i with the route pG(z,y) of G 1. Clearly, if i=k  or 

j=l,  then one of these routes is the null route. In this case, 

we say that x and y are coplanar. The routing PGXPH is a 

consistent routing iff both PG and PH are consistent. From 

now on we shall denote PGXPH by PGXH, although of course 

other routings are possible. 

Let x = (i,j) and y = (i ' ,j ') be two nodes that are not 

coplanar in G x H ,  and let F be the set of faults in G x H .  We 

associate to x and y a copy of G, called G(x,y), with the set of 

faults FG(x,y). FG(x,y) is defined as follows: 

a) if the edge (l~,l)cE G, then (k,l) E FG(x,y) if e i ther  

the edge between (k,j) and (I,j) or the edge between (k,j ') 

and (I,j') is faulty (in G x H). 

b) if k e V  G and k#pG(i , i ' ) ,  then k c F G ( x , y )  if 

pH((k,j),(k,j ')) is faulty. 

c) if k c V  G, kePG(i,i ') ,  and k#i , i ' ,  then keFG(X,y) if 

either of the nodes (k,j) or (k,j ') is faulty. 
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H(x,y) and FH(X, M are similarly defined. Note that the nodes 

j, j' in H(x,y) and i, i' in G(x,y) are always nonfaulty. 

Lemma 5. Any fault in F determines a fault in at most one of 

FG(x,y) and Fil(x,y): 

Proof.  Let x=(i , j )  and y=( i ' , j ' ) .  Suppose that there is 

an edge fault fl = ((I,k),(l ' .k)) c F. If ft determines an edge 

fault ( I , l ' )cE G, then it must satisfy condition a) and, there- 

fore, either k=j  or k=j ' .  Suppose by contradiction that fl 

also determines a node fault. Since kcVtt, fl can determine a 

node fault only in Fl t (x ,y) .  For condit ion b) to hold, 

kePH(j , j ' ) ,  which is clearly impossible,  since ei ther k = j  or 

k=j ' .  If condition c) holds, then k#j, j ' ,  also impossible. 

Suppose that fl does not determine an edge fault in E G, 

i.e. condition a) does not hold. Then kej , j ' .  Note that at 

most one of conditions b) and c) can hold, and therefore fl 

can determine at most one fault. (The proof for edge faults 

of the form ((I,k),(I,k') is similar). 

Now suppose that there is a node fault f2 = (k,l) ¢ F. 

By definition, a node fault in G x H cannot determine an edge 

fault in FG(x,y) or FH(X,y ). Suppose that f2 determines a 

node fault in FG(X,y). If condition b) holds, then k~PG(i,i' ) 

and pH((k , j ) , (k , j ' ) )  is faulty.  In part icular ,  (k,l) ¢ 

ptl((k,j),{k,j')). If [2 also determines a node fault in FH(X~y), 

then it must do so by condition c) (since IePH(j,j ')). But for 

condition c) to hold, I#j , j '  and one of the nodes 0,1) or (i,l') 

is faulty. This implies that k=i  or k=i ~, which contradicts 

the assumption that k#PG(i,i ') (i.e. the assumption of condi- 

tion b) by which f2 determines a fault in FG(X,y)). 

Finally,  suppose that f2 determines  a node fault  in 

FG(X,y) under  condit ion c). Therefore,  kePG(X,y),  k~i , i ' ,  

and one of the nodes (k,j) or (k,j') is faulty. This implies 

that l=j  or l=j ' .  If f2 determines a node fault in FH(X,y), 

then since I=j  or l=j ' ,  condition c) cannot hold. For condi- 

tion b) to hold, lePH(j,j ').  Since l=j  or l=j ' ,  this is clearly 

impossible. [] 

Corollary. [FG(X,Y) I + IFH(X.y)[ _< [ F [ .  

Lemma 6. Assume  PG is (dG,fG)-tolerant ,  PH is 

(dH,ft0-tolerant, at least one of fG and fH is greater than 0, 

and both are consistent routings. Let x,y be two nodes in 

G x H  that are not coplanar. Then for every set F of faults 

such that F o ( x , y )  (resp.  Fll(X,y)) contains  fewer than fo 

(resp. fH) faults,  the distance between x and y in 

R(GxH,PGXH)/F  is at most d o (resp. dH). 

Proof.  Let x=(i , j )  and y=( i ' , j ' ) .  Without loss of generality, 

assume that fG>0 and that FG(X,y ) contains f<fG faults. By 

lemma 2, dG>2. By lemma 4 there exists a path ~, of length 

< d o in R(G,PG)/FG(X,y  ) f rom i to i '  such that pG(~') is 

fault-free and ~ contains a node which is not on PG(i,i'). 

We first show a fault-free path in O x H  from x to y and 

then prove that its length in R(GxH,PGXH)/F is bounded by 

d o . Let k be a node on ~ that is not on PG(i,i') and let I be 

the node on ~ immediately after k (i.e. (k,l) is an edge in 

R(G,PG)/FG(X,y)). Denote ~r=~l(k,l)~ 2. Note that k# i '  but 

that l might equal i', in which case ~2=@. By the definition 

of FG(X,y), since pG(Tr) had no faults in FG(x,y), pG(Crl) is 

fault free in the Gj. Similarly, both pG(k,l) and pG(~r2) are 

fault-free in the Gj,. By condition b) of the definition of 

FG(X,y), pH((k,j),(k,j ')) is fault-free (i.e. pH((k,j),(k,j ')) con- 

tains no fault from F). Therefore, the path in G x H composed 

of the corresponding pG(Wl)plt((k,j),(k,j '))pG((k,j '),(l,j '))pG 

(~r2) is fault-free. But from the definition of the routing in 

G x H, it follows that pH((k,j),(k,j '))pG((k,j ') ,(I,j ')) form just 

one route.  Hence, this path is of length at most  d G in 

R(Gx  H,PGXH)/F. 

The proof for FH(x,y) is similar. The only difference is 

that we have to take 1 to be the node immediately preceding k 

in *r to get a path of length d H in R(GxH,PGXH)/F.  [] 

Theorem ! .  Let G be (do, fG)- to lerant  and H be 

(dH,fH)-tolerant with" consistent (dG,fG)- and (dll,fH)-tolerant 

routings PG and PH respectively. Then the graph G x H  is 

(max[dG,dH,2}, fG+fH+ l)-tolerant.  

Proof.  Let PGXH = PGXPH • We will show that PGXH is 

(max{d G,dH,2I,fG +fH + l ) - t ° l e r a n t .  It suffices to show that 

for any pair of nodes x=( i , j )  and y = ( i ' , j ' )  and every 

fG+fH+l  faults in the product graph, there exists a path of 

length bounded by max[do,dH,2 } from x to y in the graph 

R(GxH,PGXH)/F.  The proof is by cases. 

Case 1: i=i ' .  

Case 1.1: H i contains fH or fewer faults. We are done 

because H i itself is (dH,fll)-tolerant. 

Case 1.2: H i contains at least fH+l  faults. Both node x 

and node y have at least f G + l  cor responding  adjacent 

nodes in their respective G planes. Each pair of corre- 

sponding adjacent nodes has a route joining them in an H 

plane. These planes are both mutually distinct and also 

different from H i . Therefore, these adjacent nodes define 

at least fG+ 1 node disjoint paths, each utilizing a different 
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H plane, connecting x and y. Since we have at most fG 

faul ts  among  these node disjoint  paths,  at least one of 

them is fault-free. Each of these fG+l  disjoint paths is 

composed of exactly two routes in PGXH. The first route 

consists of the edge from x to the H plane and the second 

consists of the path in that H plane followed by the edge 

to y. Therefore, each one is of length 2 in RGxH/F.  

Case 2: j=j ' .  The proof is similar to case 1. 

Case 3: i~i t and j#j ' .  The remainder of the proof is an 

analysis of G(x,y) and H(x,y).  

Case 3.1: Either ]Fo(x ,y )  l< fG or IFH(x,y)  l<fH.  Then 

the result follows from lemma 6. 

Case 3.2: Both [FG(x,y ) I =fG and IFH(X,Y) I =fa" If 

either PG(i,i') or pH(j,j ~) contains a fault, then the result 

follows from techniques similar to those of lemma 6. So 

suppose  that  both  pG(i , i ' )  and Ptt(J,J') are  faul t - f ree  in 

G(x,) ')  and H(x,y) respectively. By lemma 5 there can be 

at most  one fault  in G × H  which has not de te rmined  a 

fault in either FG(x,y ) or FH(X,y ). If this fault is not in 

either p((i, j) ,(i , j ' ))  or p((i , j ' ) , ( i ' , j ' ) ) ,  then the route from x 

to y is fault-free, and the distance from x to y in G x H  is 

one. If there is a fault in either of the above routes, then 

by the definition of FG(X,y ) and FH(x,y), it must  be the 

point (i,j '). Therefore, the point (i',j) must be fault-free 

and a path of length two from x to y in RGXH/FGX H can 

be obtained by concatenating PG(i,i') in Gj with PH(J,J') in 

Hi,. 

Case 3.3: Either I FG(X,y ) l = f o  and [Ft l(x,y ) l = f H + l  or 

[ FG(x,Y) I : f G +  1 and [ FH(x,Y) [ =fH" Assume  

[FG(X,Y) I = f G  and IFH(x ,y  ) l = f l t + l .  If PG(i,i ') has a 

fault ,  the proof fol lows using previous  techniques .  So 

suppose that PG(i,i') is fault-free. If PH(J,J') is fault free in 

H i, then p((i , j ) , ( i , j ' ) )p((i , j ' ) , ( i ' , j ' ) )  is a path of length one. 

If PH(J,J ') is fau l t  f ree  in Hi, , t hen  

p((i , j ) , ( i ' , j ))p((i ' , j ) , ( i ' , j ' ) )  is a path of length two. So sup- 

pose that PH(J,J') contains a fault in both H i and Hi,. Since 

both H planes contain at least one fault, neither contains 

more than fH faults. Therefore, we can travel from (i,j) to 

(i,j') in H i along a path of length no greater than d H. If 

p(( i , j ' ) ( i ' , j ' ) )  is concatenated to this path, the length of the 

path is not increased. The proof is similar if instead we 

h a v e F G ( X , y ) : f G + l  and [FH(X,y) l = f  H. 

4. Padding Graphs. 

Theorem 2. Let G = (V,E) be (d,f)-tolerant with every node 

in G having degree no greater than /~o. Then for IV [ < N 

IV J + ( ] V [ / ~ 2 ) ,  G can be extended to a graph G ' = ( V ' , E ' )  

and a routing p' such that G' is (d,f)-tolerant, I V' ] =N,  and 

the maximum degree in G'  is no more than ~+ 1. 

Proof .  We extend G to a graph G ' : ( V ' , E ' )  with IV '  ] : N  as 

follows. Let M = N - - ] V [ .  Match one of the new nodes, say 

x ,  to a node in the original network, say x',  and connect x to 

all of x's neighbors in G. Next, choose another new node, 

say y, and match it to a node in the original network, say y',  

which has no neighbors in common with x '  in G .  Connect y 

to all the neighbors of y'. This procedure can be repeated so 

long as there exist nodes in G which are neither matched to a 

new node nor  have neighbors  in common with  an a l ready 

matched node. Note that each iteration eliminates at most /u 2 

nodes from G, since both x '  and each of its neighbors have 

degree at most ~. 

Let p be a routing in G which is (d,f)-tolerant. We ex- 

tend p to p'  as follows. For x,y ¢ V, p ' (x ,y )=p(x ,y ) .  For x 

c V ' - -V and y E V, let x'  be the node in V to which x is 

matched. If y is a neighbor of x ' ,  then p ' (x ,y )= (x ,y ) .  If y is 

not a neighbor of x',  then let w be the neighbor of x '  which 

lies on p(x' ,y) .  We define p ' (x,y)  to be the same as p(x ' ,y)  

with the edge (x ' ,w)  replaced by the edge (x,w). p ' (y,x)  is 

similarly defined to be p(y,x ' )  with its last edge (w,x ' )  re- 

placed by the edge (w,x).  For x,y c V'--V,  let x '  and y'  be 

the nodes in V to which x and y are matched, and let w and v 

be the neighbors  of x r and y '  respect ively  which lie on 

p(x ' ,y ' ) .  Note that by construction, w # v .  Then, p ' (x,y)  is 

the same as p(x ' ,y ' )  with the edge (x ' ,w)  replaced by (x,w) 

and (v,y') replaced by (v,y). 

The consistency of p' follows trivially from the consisten- 

cy of p. Since G tolerates f faults and since all new nodes are 

connected to at least f + f  distinct nodes in G, it is easy to 

show that G'  tolerates f faults. 

We now show that R ( G ' , p ' ) / F  has diameter no greater 

t h a n d  for IFl_<f.  Let x,y • V ' - V  w i t h x  matched t o x ' a n d  

y to y'  ( x ' , y ' eV) ,  and assume G'  contains at most f faults. 

Let F '  consist of the set F with the following two changes: 1) 

x i ly '¢F  ', 2) if ( x ,w)cF ,  then ( x , w ) ¢ F '  but w e F ' .  Note that 

I F ' I  _<'f. Therefore, there exists a path in R(G,p)/F' from 

x ' t o y ' .  Replacing x '  by x and y' by y gives a path from x to 

y in R(G,p ) /F .  We leave to the reader the verification that 

the distance between nodes in R(G' ,p ' ) ,  when at least one of 

the nodes is in V, remains no greater than d. 

If the maximum indegree in the original graph is Z, then 

in the new graph we have degree #+ 1. It is s t raightforward 
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to generalize this construction to handle the case where I VI  

< N < 2 1 V I .  As N increases in size relative to I V I ,  how- 

ever, the maximum degree of G' increases accordingly. [] 

A construction similar to the one in the padding lemma 

can be used to extend a graph with I VI  nodes to a graph 

with up to 2 I V I  nodes at the cost of at most doubling the 

m a x i m u m  degree while mainta in ing the same diameter  and 

fault tolerance. 

5. Other  hounds. 

For a graph G of n G nodes, denote by "~G the minimum 

degree of the nodes in G. 

Theorem 3. G x H  is (3 , f ) - to lerant ,  where  f = 

: max{min{'~H,nG-I }, min{nG,nH-I ]}. 

Proof.  Let G x H  have fewer than f faults. Without loss of 

generality assume f = min{~H, n G -  1 ]. Therefore, there is at 

least one fault-free H plane; denote it by H k. Define PGXH as 

before, with the difference being that PG and OH are arbitrary 

(not necessarily shortest path) routings on G and H. 

Let x,y be any two nodes in G x H .  Assume first that y is 

not a neighbor of x. To each of the T/H neighbors u of x in its 

H plane, associate a different neighbor v of y in its H plane, 

or u itself if u is also a neighbor of y. Let U be the set of 

pairs constructed in this manner together with the pair (x,y). 

The set U defines in an obvious way .~tt+l paths from x to y, 

all of them going through H k and disjoint outside H k. There- 

fore, at least one of them is fault free and has length no more 

than 3 in the induced graph. 

In the case that x and y are neighbors, if the edge (x,y) 

is not faulty, the distance is 1. Otherwise, the corresponding 

set U will have ~H pairs with at worst  ni l--I  faults on them.  

[]  

Using similar observations about  faultiness in G and H 

planes one can obtain other  bounds  similar  to the one in 

Theorem 3. 

6. Remarks. 

The proof of the main theorem can be greatly simplified 

if the following conjecture due to Joe Halpern is true. Let G 

be a (d,f)-tolerant graph and let o be a (d,f)-tolerant consist- 

ent rout ing on G. Then between every pair of nodes in 

R(G,p) there are at least f + l  node disjoint paths ~1, ~r2 . . . . .  

~rf+ t of length d or less such that the paths P(~t),  pot2) . . . . .  

p(wf) are node disjoint. This property does not hold for in- 

consistent routings. 

7. Open problems. 

Our "building blocks" usually will be small graphs with 

a pr ime numbe r  of nodes, Pl, P2 . . . . .  Star t ing f rom these 

blocks, we can construct (2,f)-tolerant graphs that have 

pilp~2p~.., nodes. If we want to construct a (2,f)-tolerant graph 

wi th  N nodes and if the gaps in such a sequence are not 

• greater than O( N/ ( l og  N)2), then we can use a generalization 

of the padding theorem to construct such graphs where the 

maximum degree is less than log N + c for some constant c 

independent  of N. Hence we have the fol lowing number  

theoret ic  quest ion:  what  is the min imum number  of prime 

numbers  such that, for any N, the gaps in the above sequence 

are no greater than O(N/ ( log  N)2)7 It seems plausible that 

the answer is 3 and that the dcsired bound can be obtained 

using 2-, 5-, and 7-cycles. (For 2-, 3-, 5-, and 7-cycles the 

maximum gap up to 10,000 nodes is 199). Fo r known results 

o n t h i s  problem, see [Ti l  1, ETi2 ], and references therein. 

In general, we would like to know what is the optimum 

N node graph and what  is its op t imum rout ing for any N 

given a desired (d,f)-tolerancc. 
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