
ON TI lE POSSIBILITY AND IMPOSSIBILITY OF ACHIEVING CLOCK SYNCHRONIZATION

Danny Dolev

Hebrew University, Givat Ram
91904 Jerusalem, Israel.

Joe Halpern
H. Raymond Strong

IBM Research Laboratory,
San Jose, CA 95193.

ABSTRACT: It is known that clock synchronization can be
achieved in the presence of faul ty clocks n u m b e r i n g more
than one- th i rd of the total n u m b e r of par t ic ipa t ing clocks
provided that some authentication technique is used. Without
authentication the number of faults that can be tolerated has
been an open question. Here we show that if we restrict
logical clocks to running within some linear function of real
t ime, then clock synchron iza t ion is impossible , wi thou t au-
thent ica t ion , when one- th i rd or more of the processors are
faulty. However, if there is a bound on the rate at which a
p rocessor can generate messages , then we show tha t clock
synchronization is achievable, without authentication, as long
as the faults do not d isconnect the ne twork . Final ly, we
provide a lower bound on the closeness to which simultaneity
can be achieved in the network as a function of the t ransmis-
sion and processing delay properties of the network.

1. I N T R O D U C T I O N

The problem of achieving clock synchronization in the

presence of faul ts has a t t rac ted much a t ten t ion recent ly

[LM,HSS,DLPSW,Ma]. [HSS] presents an algorithm that uses

authentication (the ability to generate unforgeable signatures)

and achieves synchron iza t ion with a rb i t ra r i ly many faul ty

p rocessors or communica t ion links, provided that correct

processors are not disconnected. [LM] pt~esents an algorithm

that does not requi re au then t ica t ion , but will only work if

fewer than one-third of the processors are faulty. It is known

that Byzantine agreement cannot be achieved without authen-

t icat ion if at least one- th i rd of the processors are faul ty

[LSP,PSL]. Until now the corresponding qucstion for clock

synchronization has remained open. It has been conjectured

that the answer would be the same [LM]. In his invited

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-133-4/84/004/0504 $00.75

address at the PODC Sympos ium in Montreal , L. Lampor t

chal lenged his l is teners to provide a proof of imposs ib i l i ty

[L]. In this paper we provide proofs of both possibility and

impossibility, and show how sensitive the proofs are to the

precise definition of clock synchronization and some features

of the underlying model. For the specific question posed by

Lamport with respect to the model of [LM], we provide the

expected proof of impossibility.

For s implici ty, we assume that each processor has a

duration timer D (this is usually thought of as the processor 's

clock) and a designated register TAR called the time adjust-

ment register. Correct duration timers exhibit only a bounded

rate of drift. The duration timer is never altered by the proc-

essor, bat the time adjustment register may be altered as a

resul t of a p rocesso r ' s in ternal opera t ions , receipt of mes-

sages, or an indication from its duration timer that a specific

amount of time has elapsed. (Altering the TAR is equivalent

to s ta r t ing up a new clock in the nota t ion of [LM] and

[HSS]). A processor 's logical clock time C is the sum of the

TAR and D. Roughly speaking, an algorithm achieves clock

synchronization if at all times the logical clock times of all

correct processors are only a bounded distance apart.

Note that there is a trivial a lgor i thm for clock syn-

chroniza t ion : namely, whenever a p rocessor ' s logical clock

reads some predetermined value P, it is reset (by adjusting

TAR) to read 0. We can eliminate this trivial solution by

requiring that the range of a processor 's logical clock must he

unbounded. However, as we show in Theorem 1 below, there

is still a clock synchronization algorithm where the range of

every p rocesso r ' s logical clock is unbounded that does not

require any message passing. In this algorithm, a proeessor 's

logical clock runs at a rate that is roughly the logarithm of

that of its dura t ion t imer. We el iminate this solut ion by

requiring that the logical clock stay within a linear envelope of

the duration timer, i.e. by requiring that there be constants a,

504

b, c, and d such tha t aD(t)+c<_C(t)_<bD(t)+d for all t imes t.

(This condi t ion is sat isf ied by the clock synchroniza t ion al-

gor i thms of [HSS] and [LM].) In this case we can show that

c lock s y n c h r o n i z a t i o n is not a c h i e v a b l e wi th o n e - t h i r d or

m o r e f au l ty p roces so r s (Theorem 2). Howeve r , th is proof

requires that faul ty processors have ra ther unreal is t ic powers.

In fact, l inear envelope clock synchroniza t ion is achievable,

even wi thout au thent ica t ion , provided tha t there is a bound

on the rate at which a processor can generate messages. In

Theorem 3 we present an a lgor i thm to do this that is a vari-

ant of the a lgor i thm in [HSS].

Final ly we consider (Theorems 4 and 5) the degree to

which s imul tane i ty can be achieved in a network. We show

tha t for any ne twork there is a lower bound A such tha t no

a lgor i thm for clock synchroniza t ion can ensure tha t the dif-

ference between the (real) t imes at which two correct proc-

essors read a given value on their clocks is less than A. A is a

function of the uncer ta in ty in the t ime required to t r ansmi t

and process a message . Re s u l t s of [HSS] show t h a t th i s

bound can essent ia l ly be achieved. These theorems bound the

degree to which coordinat ion can be achieved in a given net-

work. If we want two events to happen s imul taneous ly in a

ne twork , the best we can do is to guarantee that they will

happen at t imes separated by no more tha t A.

2. T I l E M O D E L

Each processor is connected to others via links. We do

not assume tha t our network is complete ly connected; all our

resul ts hold regardless of the ne twork topology. As in most

previous papers, we assume that a processor can a lways tell

f rom which i m m e d i a t e ne ighbor in the c o m m u n i c a t i o n net -

work a message has come.

We assume the exis tence of a Newtonian t ime frame,

not d i rec t ly observable. As we ment ioned in the introduc-

t ion, each processor has a dura t ion t imer D and a t ime adjust-

ment register TAR. Both of these can be viewed as real-

valued functions of Newtonian time. A correct dura t ion t imer

is one that has a bounded rate of dr i f t from real (Newtonian)

t ime. More precisely, there exis ts a cons tant R > I such that a

correct dura t ion t imer satisfies:

(1/R) (u-v) < D(u)-D(v) <R(u-v)

for all Newtonian times u > v. A correct processor is one that

behaves according to its a lgor i thmic specif icat ions and pos-

sesses a correct durat ion t imer. No assumption is made about

the behavior of a f a u l t y (n o t correct) processor.

We v iew T A R (t) as a step func t ion whose va lue is

cons tant on left-open r ight-closed intervals , in order to have

our results correspond to those of [LM] and [HSS]. All our

resul ts would also hold if TAR were continuous. By defini-

tion, C (t) = D (t) + T A R (t) . Let T A R (t +) = l i m T A g (t ') as t '

approaches t from the right, i.e., the value of TAR just after

it has been reset a t t ime t. We define C(t +) s imilar ly .

Processors send messages to each other along the com-

munication l inks, where a message is just a word over some

fixed a lphabet 2 . We assume tha t there are known upper and

lower bounds on the t ransmiss ion and processing of a message

from one processor to another . We re turn to this point in

more detai l in Section 4.

3. S Y N C H R O N I Z A T I O N W I T t l O U T AUTI IENTICATION

Consider the fol lowing def ini t ion of clock synchroniza-

t ion:

Weak Clock Synchronization Condition: There exis t constants P,

B, and S such that, for each correct clock, TAR is constant

except tha t it changes at clock t imes that are mult iples of P

by an amount with absolu te value less than S, and the differ-

ence be tween the clocks of any correct processors is a lways

bounded by B.

It is left to the r e a d e r to ve r i fy tha t any a l g o r i t h m tha t

a c h i e v e s the c o n d i t i o n e x p r e s s e d by L a m p o r t and Me l l i a r -

Smith [LM] also achieves the WCSC.

As we m e n t i o n e d in the i n t r o d u c t i o n , if we do not

require that C(t) be unbounded, then there is a t r ivial algor-

i t h m to ach ieve WCSC. We choose P a r b i t r a r i l y . Then

w h e n e v e r C (t) = P , we set T A R (t +) = - D (t) (thus m a k i n g

C (t +) = 0) . Clear ly we have S = B f P in this Case, since C(t) is

a lways between 0 and P for any correct processor. However ,

even if we require tha t C(t) have unbounded range, we sti l l

get:

Theorem 1: There is an a lgor i thm which achieves WCSC

independent of the number of faults, using no message ex-

changes, for which C(t) is unbounded.

Proof: The idea is to keep C(t) wi thin the ' in te rva l log(D(t))

and Iog (D(t))+k for some cons tant k at all t imes. Since it is

easy to deduce from the bounded rate of drif t condi t ion that

[log(Dl(t)) - Iog(D2(t) l<21og(g) for any correct processors Pl

a n d p2 , ' i t wi l l fo l low tha t I C t (t) - C 2 (t) l < 2 1 o g (R) + k at all

505

t imes. We proceed as follows. Assume for ease of exposi t ion

tha t C (0) = D (0) = T A R (0) = 0 . Choose P > 0 a rb i t ra r i ly . For

each t ime t such tha t C (t) = i P for some posi t ive integer i, and

Iog (D(t))< (i - 1) P we set T A R (t +) = l o g (D (t)) - D (t) , thus mak-

ing C (t +) = l o g (D (t)) . (Note that the purpose of checking tha t

I o g (D (t)) < (i - l) P , or equivalent ly , that C (t) - l o g (D (t)) > P , is

s imply to prevent TAR from being reset inf ini te ly often in a

bounded amount of t ime.) It is easy to check that 0_<C(t)-

Iog(D(t))<ZP for all t, and that TAR is changed by less than

2P at any t ime. By the a rguments made above, it also follows

that the logical c locks of correct processors differ by at most

21og(R)+ZP at all t imes. []

It is easy to see tha t this a lgor i thm would also work if

we kep t C (t) w i t h i n any l i nea r func t ion of l o g (D (t)) . In

order to achieve an imposs ib i l i ty result , we must s t rengthen

our requi rements for clock synchroniza t ion somewhat . Es-

sen t ia l ly we will do this by requi r ing tha t C(t) s tay wi th in a

l inear funct ion of D(t) .

F i r s t no te t h a t in the a l g o r i t h m given in T h e o r e m 1,

there may be several t imes t when C (t) = i P for some i and

TAR is reset. If we only a l low changes in TAR the first t ime

that C(t) reads iP for any i, than the t ime be tween changes

can grow unboundedly large, and thus there will be no bound

on the difference be tween the logical c locks of cor rec t proc-

essors. A close reading of the clock synchron iza t ion condi-

t ion given in [LM] shows tha t they indeed require this prop-

er ty . This leads us to the fol lowing def ini t ion:

Clock Synchronization Condition: There ex is t cons tants P, B,

and S such tha t , for each c o r r e c t c lock , TAR is c o n s t a n t

except tha t it can change by an amoun t with absolu te value

less than S at a Newton ian t ime t such tha t C (t) = i P > 0 for

some integer i and this is the f irst t ime that C reads iP (i.e.

C (t ') # i P for al l t ' < t) , and the difference between the clocks

of any two correct processors is bounded by B.

It is easy to check that the CSC as defined above is

equiva len t to the condi t ion defined in [LM], in the sense tha t

any a lgor i thm for one can be eas i ly modif ied to achieve the

other.

We need to in t roduce one more general notion of syn-

chron iza t ion in order to get a precise s ta tement of our resul ts :

(U.L) Envelope Synchronization: Correct clocks are bounded

above by U(D(t)) and bounded below by L(D(t)) and there

e x i s t s a c o n s t a n t B such tha t a t any N e w t o n i a n t i m e the

di f ference between correct clocks is bounded by B. A special

case of (U,L) Enve lope S y n c h r o n i z a t i o n is Linear Envelope

Synchronization, where U and L are t a k e n to be the l i n e a r

funct ions a t + b and c t + d respect ively, wi th c>0 .

L inea r E n v e l o p e S y n c h r o n i z a t i o n g u a r a n t e e s t h a t the

t ime value on a correct clock is wi th in a l inear envelope of

the t ime on the dura t ion t imer . But since we have assumed

tha t the d u r a t i o n t imer is w i t h i n a l i nea r enve lope of rea l

t ime (bounded by R and I / R) , Linear Envelope Synchroniza-

t ion a l so imp l i e s tha t the t ime va lue on a co r r ec t c lock is

wi th in a l inear envelope of real time'.

Proposi t ion 1: An a lgor i thm that achieves the Clock Syn-

chroniza t ion Condi t ion achieves Linear Envelope Synchroni-

zation.

P ro o f : We leave it to the r e a d e r to check t h a t

(P / (P + S)) D (t) - S < C(t) < ((P + S) / P) D (t) + S for any correc t

clock C and dura t ion t imer D. []

Theorem 1 above shows tha t (t , log(t)) Envelope Syn-

chroniza t ion is achievable . Theorem 2 below will show tha t

L i n e a r E n v e l o p e S y n c h r o n i z a t i o n is not a c h i e v a b l e if one

th i rd or more of the processors are faulty. And thus by Prop-

o s i t i on 1, the C l o c k S y n c h r o n i z a t i o n C o n d i t i o n is a lso not

achievable if one third or more of the processors are faul ty.

T h e o r e m 2: L i n e a r E n v e l o p e S y n c h r o n i z a t i o n is in genera l

impossible if one third or more of the processors are faul ty.

P r o o f : We f i rs t p rove a r e s t r i c t e d fo rm of T h e o r e m 2 for

three processors, one of which is faul ty. Suppose that we

have an a lgor i thm that achieves Linear Envelope Synchroni-

zat ion of three processors, say Pl, P2, and P3, of which one

may be f au l ty . We can suppose tha t the s y n c h r o n i z a t i o n

guarantees b D (t) + d < C (t) < a D (t) + c , if C and D are the logi-

cal clock and dura t ion t imer respect ively of a correct proc-

essor, and that logical clocks of correct processors differ by at

most B. Recal l that (l / R) t < D (t) < R t for a correct dura t ion

t imer D. Our proof is based on the fol lowing [emma.

Lemma: If processor pj is correct (j= 1,2, or 3), then for each

n, and for every sequence of messages Pk (k # j) sends, there is

a sequence of messages that Pi (i # j , k) can send pj tha t wil l

cause C j (t)>bR2nDj (t) +d-nB.

Theorem 2 in the case of three processors fol lows im-

media te ly from the lemma. We s imply choose n such that

b R z n > a (which is a lways possible since R > l) . Now suppose

tha t PI is faul ty , whi le P2 and P3 are correct . From the lem-

506

ma it follows that Pl can send messages to P2 that will cause

C 2 (t) > b R 2 n D 2 (t) + d - n B for all t>0 . Since bR2n>a , there

exists some t ' such that bR 2a t +d -nB >a t +c for all t> t ' . Since

D 2 (t) > (l / R) t , it follows that bR2nD2(t)+d-nB>aD2(t)+c for

all t>Rt ' . Hence C2(t)>aD2(t)+c for all t >R t ' , which con-

tradicts the fact that the algorithm achieves Linear Envelope

Synchronization bounded above by aD(t)+c . It is easy to

generalize this result to Theorem 2 by considering three sets

of processors of equal size such that the duration timers are

identical within each set.

To prove the lemma, we proceed by induction on n. By

symmetry, we can assume without loss of generality that i= 1,

j=2, and k=3. For n=0, Pl just follows the algorithm cor-

rectly. By hypothesis, no matter what messages P3 sends, the

algorithm achieves C2(t)>bD2(t)+d .

For n = l , first consider the case where Pl and P2 are

correct, P3 is faulty, D l (t)=Rt , D 2 (t) = (l / R) t , and P3 is not

sending any messages to Pl- If Pl and P2 both follow the

algorithm correctly, then for all t>_0 we must have C2(t) >

Ci(t) -B > bDl (t)+d-B = bR2D2(t)+d-B (using the observa-

tion that Dl(t) = R2D2(t), by choice of D l and D2). This

relationship must hold no matter what messages Pl sends to

P2, since, by hypothesis, the algorithm tolerates one fault.

Now suppose Pl sends messages to P2 as if the situation

were that described above. That is, Pl pretends that its dura-

t ion t imer is running at R 2 the rate of that of P2 (i.e.

Dt (t)=R2D2(t)) and that P3 is not sending it any messages,

and then does what the algorithm would have said to do if

this were the case. No matter what messages P3 actually

sends, P2 will not be able to distinguish this situation from

the one above, so again we will have C2(t)>bR2D2(t)+d-B

for all t.

Next, suppose that the lemma holds for n=m; we want

to show that it also holds for n = m + l . Again we first consid-

er the s i tuat ion where Pl and P2 are correct , P3 is faulty,

D t (t) = R t , D 2 (t) = (l / R) t , and P3 is sending Pl messages that

cause it to have Ct (t)>bR2raDl (t)+d-mB. (By the induction

hypothesis this is always possible no matter what messages P2

sends Pl and P3, a l though of course the messages that P3

sends Pl may depend on the messages that Pl sends to P3,

which in turn may depend on the messages that P2 sends to

Pl-) Now if Pt and P2 just follow the algorithm correctly, an

analogous a rgument to the one made above shows that we

must have C2(t)>bR2(m+l)D2(t)+d- (m+ 1)B.

Now suppose again that Pl sends messages to P2 as if

the situation were that described above. That is, Pl pretends

that its duration timer is running at R 2 the rate of that of P2

and P3 is sending it messages that cause C l (t) >

bR2mDl(t)+d-mB, Again, P2 will not be able to distinguish

this situation .from the one above, so again, no matter what

messages P3 sends , we will have C2(t) >

bR2(m+t)D2(t) + d - (m + I)B.

This completes the proof of the lemma, and with it the

proof of Theorem 2. []

We remark that by combining the proof of Theorem 2

with some of the techniques of [D], we can also show that

clock synchronization is impossible if the connectivity of the

network is < 2 t+ 1 and there are t or more faulty processors.

We omit details here.

The proof of Theorem 2 requires that a faulty processor

have some rather unreasonable powers. In order to act as if

it is receiving messages from another processor that are caus-

ing it to set its clock running faster than bR2n+d-nB, it might

have to forge signatures, which is very unlikely if we have a

good signature scheme. It might also have to generate mes-

sages at a very great speed. Indeed, as the following theorem

shows, if there is a bound on the rate at which messages can

be generated, then there exists an algorithm that can achieve

the Clock Synchronization Condition, and hence Linear Enve-

lope Synchronization.

T h e o r e m 3: If there is a bound on the rate at which messages

can be generated or there is a protocol for signing unforgeable

s ignatures that can be authent icated, then the Clock Syn-

chronization Condition can be achieved as long as the faults

do not disconnect the network.

Proof: In [HSS], there is an algorithm that can easily be

modified so as to achieve the Clock Synchronization Condi-

tion, but requires a protocol for signing unforgeable signa-

tures that can be authenticated. We now show how to modify

that algorithm so that it works even without authentication,

as long as there is a bound on the rate at which messages can

be transmitted. We proceed as follows.

We assume that each processor Pi has an internal varia-

ble ET i (expected t ime of next synchroniza t ion) and has

access to a continuously updated variable C i which gives its

logical clock time. (We will omit the subscript i when it is

clear from context. As explained in Section 2, C is the sum

of the t imes on a processor ' s dura t ion t imer and its t ime

507

adjus tment register . C can be reset (by changing the t ime

ad jus tment regis ter TAR) and read. There is a global con-

s tant PER (period of resynchron iza t ion) common to all proc-

essors. We fur ther assume ET is in i t ia l ly PER for all proc-

essors, and tha t in i t ia l ly C < PER. Final ly , we assume that

if Pi and pj are neighbors in the ne twork (i.e are connected by

di rect l ink) then as long as they and the l ink between them

are nonfaul ty , then messag/~s from Pi to Pi are received in the

order tha t they are sent. (If the communica t ion ne twork does

not have this property, we can s imply number all messages

c o n s e c u t i v e l y and i gno re a m e s s a ge n u m b e r e d n un t i l al l

messages wi th a lower number have been received.)

The a lgor i thm consis ts of two tasks that are run inde-

pendent ly and concurrent ly . The first task consists of one

ins t ruct ion:

if C = E T

then E T : = E T + P E R ; send ' to all neighbours

a message saying "The t ime is ET"

fi

The second task descr ibes wha t to do upon the receipt of a

message saying "The t ime is T":

if a message saying "The t ime is T" is received,

and T = E T and C < E T

then C : = E T ; E T : = E T + P E R ; send to all neighbors

a message saying "The t ime is ET"

else do noth ing

fi.

To p rove the c o r r e c t n e s s of the a l g o r i t h m above we

proceed as follows. F ix a ne twork G and suppose there exis ts

a set F of fau l ty nodes and l inks in G which do not discon-

nect G. Let G / F be the surv iv ing graph (G wi th all the faults

in F removed) and let D I A M (G / F) be its d iamete r ; i.e. the

wors t case d i s tance be tween two nodes in G / F . Let TDEL be

the w o r s t - c a s e t ime for a m e s s a g e to be b r o a d c a s t by one

nonfaul ty processor to all its nonfaul ty neighbors, and sup-

pose that the bound on the rate of message t ransmiss ion is m

messages per uni t t ime. We now show that if Pi and pj are

nonfaul ty , then ICi(t)-Cj(t)l < mIG[DIAM(G/F) (TDEL)(PER) ,

where IGI is the number of nodes in G.

Using techniques of [HSS] one can show that the algor-

i thm has the fol lowing propert ies :

(a) for any nonfaul ty processor Pi, we a lways have

ET-PER _< C < ET

(b) if Pi is nonfaul ty , then, for all k, Pi will b roadcas t the

message " the t ime is (k+ I)PER" to its neighbors af ter it has

b r o a d c a s t the message " the t i m e is k P E R " , but a t mos t

R (PER) af ter this t ime (recall that R is an upper bound on

the rate of dr i f t of the dura t ion t imer from real t ime) .

(c) if Pi and pj are neighbors in G and are nonfaul ty , and pj

receives a mes'sage from Pi saying " the t ime is kPER" , then

e i ther E T j = k P E R or C j > k P E R .

(d) all nonfaul ty processors wil l set their c locks to k P E R

wi th in D I A M (G / F) T D E L of the t ime tha t the f irst nonfaul ty

processor does so.

To comple te the proof of the result , note tha t from the

assumpt ion tha t m is an upper bound on the number of mes-

sages that can be generated by one processor in one t ime unit ,

i t fo l lows tha t in D I A M (G / F) T D E L t ime un i t s , a t mos t

m I G I D 1 A M (G / F) T D E L messages can be g e n e r a t e d in the

ne twork . Any message received by a processor can force it to

push its c lock forward by at most PER. Using part (d) it is

now easy to see that at all t imes the clocks of nonfaul ty proc-

essors differ by at most m[G[DIAM(G/F) (TDEL)(PER) . []

4. LOWER B O U N D S ON S Y N C I t R O N I Z A T I O N

Suppose we have an a lgor i thm that guarantees tha t the

t imes on the clocks of any correct processors are no more

t h a n B a p a r t at any real time. It is easy to see that, for any e

> 0, we can modify this a lgor i thm to obtain an a lgor i thm tha t

guarantees tha t the t imes on the clocks of correct processors

are no more than rB apar t at any real t ime, s imply by s lowing

down all c locks by a factor of r. Of course, the slope of

l inear envelope that we wish to achieve will l imi t the choice

of E.

To i n v e s t i g a t e th i s i ssue more c a r e f u l l y , we tu rn our

a t t e n t i o n f rom the t i g h t n e s s of s y n c h r o n i z a t i o n a long the

clock t ime axis to the t ightness of synchroniza t ion along the

real t ime axis . We show that there is a lower bound A, which

depends on the uncer ta in ty of t ransmiss ion delay, such tha t

no clock synchroniza t ion a lgor i thm that achieves l inear enve-

lope s y n c h r o n i z a t i o n can g u a r a n t e e t h a t the d i f f e r ence be-

tween the real t imes at which clocks read a given value is less

than A. In fact, we prove an even s t ronger result : we show

tha t there is no a lgor i thm that can guarantee tha t any act ion

can be p e r f o r m e d by t wo p roces so r s w i t h i n less t h a n A of

each o ther , for an a p p r o p r i a t e l y de f ined no t ion of ac t ion .

These resul ts thus give lower bounds on the degree of syn-

chroniza t ion achievable in a ne twork . We call A the essential

598

temporal imprecision, or jus t imprecision, of the n e t w o r k .

For th i s a n a l y s i s , we wi l l c o n s i d e r a m o r e d e t a i l e d mode l

of t r a n s m i s s i o n and p roces s ing de l ay . F i x a c o m m u n i c a t i o n

n e t w o r k G. P r o c e s s o r s can on ly c o m m u n i c a t e ove r the l i nks

in the n e t w o r k , We a s s u m e tha t t h e r e a re k n o w n upper , and

l o w e r b o u n d s on t he t i m e to t r a n s m i t and p roces s a m e s s a g e

f r o m p to q if t hey a re jo ined by a d i r ec t l i n k . Thus , we can

de f ine the f o l l o w i n g func t i ons on p roces so r s p and q such t h a t

t h e r e is a d i r e c t l ink b e t w e e n p and q:

HG(p,q) = u p p e r b o u n d on t r a n s m i s s i o n a n d p r o c e s s i n g

t i m e for messages b e t w e e n p and q.

LG(p,q) = l o w e r b o u n d on t r a n s m i s s i o n a n d p r o c e s s i n g

t i m e for messages b e t w e e n p and q.

VG(P, q) = v a r i a t i o n in t r a n s m i s s i o n and p roces s ing t i m e

for m e s s a g e s b e t w e e n p and q

= Ho(p,q)-Lo(p,q).

We e x t e n d H G, L G, and V O so t h a t t hey a p p l y to a l l pa i r s of

p roces so r s by s e t t i ng H o (p , q) = L o (p , q) = V o (p , q) = ,o for

p r o c e s s o r s p, q such t h a t the re is no d i r ec t l i n k f rom p to q.

We n o w e x t e n d V 0 so t h a t i t a l so app l i e s to s equences of

p rocesso r s . F o r any sequence of p roces so r s ~r = P0,PI ," ' ,Pn,

le t VG(~r) be the sum of the v a l u e s V o (p i , P i + l) , for i f rom 0

to n - t . F i n a l l y , le t UG(p,q) (the uncertainty in t r a n s m i s s i o n

t i m e f r o m p to q) = min{Vo(~r) I ~r is a s e q u e n c e of p roces so r s

s t a r t i n g w i t h p a n d e n d i n g w i t h q] , a n d l e t U G =

m a x { U o (p , q) I P,q a re p rocesso r s in G] .

F o r ease of e x p o s i t i o n in w h a t fo l lows , w e wi l l a s s u m e

t h a t each p r o c e s s o r has a spec ia l r eg i s t e r w h i c h i n i t i a l l y con-

t a i n s the v a l u e 0. A t some po in t the v a l u e m u s t be c h a n g e d

to 1. The p r o b l e m is to ob ta in an a l g o r i t h m w h i c h g u a r a n t e e s

t h a i all. p roces so r s c h a n g e the va lue to 1 a t as c lose to the

s a m e rea l t i m e as poss ib le . The a l g o r i t h m m u s t be d e t e r m i n -

i s t ic , i n tha t w h a t each p roces so r does can d e p e n d o n l y on i t s

d u r a t i o n t i m e r a n d m e s s a g e h i s t o r y . To m a k e th i s p rec i se ,

n o t e t h a t t h e r e is some i n h e r e n t n o n d e t e r m i n i s m in the sys -

t e m b e c a u s e of the u n c e r t a i n t y , of the t r a n s m i s s i o n t i m e of

m e s s a g e s and the r a t e of d r i f t of c locks . Let a run r of a lgo r -

i t h m A in n e t w o r k G be a p a r t i c u l a r cho i ce of t r a n s m i s s i o n

t i m e s for e a c h message t r a n s m i t t e d and a cho i ce for the r a t e

of d r i f t of e a c h p r o c e s s o r ' s d u r a t i o n t i m e r , s u b j e c t to t he

c o n s t r a i n t s d i s c u s s e d above . If a g iven p r o c e s s o r p p e r f o r m s

a c e r t a i n a c t i o n a a t a g iven t i m e T on i t s d u r a t i o n t i m e r (i .e.

a t rea l t i m e t such t h a t D p (t) = T) in a c e r t a i n run r, t h e n

a c t i o n a wi l l be p e r f o r m e d a t t i m e T on i ts d u r a t i o n t i m e r in

a n y o the r r un r ' w i t h the same m e s s a g e h i s t o r y ; i.e. a n y run

w h e r e m e s s a g e s f rom o ther p rocesso r s to p a r r i v e at the

s a m e t i m e on p 's d u r a t i o n t imer . C l e a r l y the t i m e at w h i c h a

p roces so r c h a n g e s the va lue in i ts spec ia l r eg i s t e r f rom 0 to 1

wi l l depend on the run . The e s sen t i a l t e m p o r a l imprec i s i on

i n h e r e n t in a p a r t i c u l a r a l g o r i t h m A is the w o r s t case d i f fer -

e n c e in t he t i m e s t h a t t w o p r o c e s s o r s c h a n g e t he v a l u e in

t h e i r spec ia l r eg i s te r , w h e r e the d i f f e rence is t a k e n ove r al l

p o s s i b l e runs . The e s s e n t i a l t e m p o r a l imprec i s i on in a ne t -

w o r k is the m i n i m u m es sen t i a l t e m p o r a l i m p r e c i s i o n ove r a l l

p o s s i b l e a l g o r i t h m s . M o r e f o r m a l l y , g iven an a l g o r i t h m A,

-processors p and q in G, and run r de f ine

AG,A(p,q,r) = the a b s o l u t e va lue of the d i f f e rence of the

r e a l t i m e s a t w h i c h p r o c e s s o r s p a n d q

c h a n g e the va lue of t he i r s p e c i a l r eg i s t e r

in r u n r of c l o c k s y n c h r o n i z a t i o n a l g o r -

i t h m A.

AG,A(p, q) = maxr lAO(p ,q , r)]~

AG(p,q) = minA{AO.A(p ,q) l .

AG, A = maXp,q{AG,A(p,q)].

A O = minA{AO,A}.

T h e o r e m 4: Fo r al l c o m m u n i c a t i o n n e t w o r k s G and al l p roc-

e s so r s p, q in G, we h a v e Ao(p ,q) > U o (p , q) / 2 ; i.e, the im-

p r e c i s i o n is a t l eas t ha l f the u n c e r t a i n t y .

Proof sketch: F i x n e t w o r k G and p roces so r s p and q in G.

We c o n s i d e r l w o runs wh ich , as we sha l l show, a re i n d i s t i n -

g u i s h a b l e f rom the po in t of v i ew of a n y processor . In the

f i r s t run, a l l p roces so r s a re s t a r t e d at the s a m e t ime , w i t h

t h e i r d u r a t i o n t i m e r s sct t o 0 and p r o c e e d i n g at e x a c t l y the

r a t e of real t i m e (i.e. t he re is no d r i f t) . If t he re is .a l i nk f rom

p r o c e s s o r r to p roces so r r ' in G, then m e s s a g e s f rom r to r '

t a k e t i m e L G (r , r ') + m a x (U G (P , r) - U G (P , r ') , 0) . We l eave i t to

the r eade r to c h e c k t h a t UG(P , r) -UG(p , r ') < VG(r , r ') , so a

m e s s a g e f r o m r to r ' can indeed t ake t h i s l eng th of t ime .

In the second run , we wi l l s t a r t p r o c e s s o r p f i rs t , and

s t a r t e a c h p r o c e s s o r r a t r e a l t i m e UG(p , r) l a t e r t h a n p.

A g a i n , e a c h p r o e e s s o r ' s d u r a t i o n t i m e r r e a d s 0 w h e n i t is

s t a r t e d and .proceeds at e x a c t l y ' t h e r a t e of rea l t ime . If r and

r ' a re jo ined by a l i nk in G, t h e n m e s s a g e s f rom p roces so r r

to r ' t ake t i m e L o (r , r ') + m a x (U G (P , r ') - U G (P , r) , 0) to a r r ive .

A g a i n i t is e a s y to c h e c k t h a t t h i s m e e t s t he c o n s t r a i n t s

above , and t h a t no m e s s a g e wi l l r each a p roces so r before i t

has been s t a r t ed . We now show t h a t these two r u n s are in-

d i s t i n g u i s h a b l e f rom the po in t of v i ew of a n y p rocesso r ; i.e.

t h e y p roduce the s a m e message h i s to ry .

509

Suppose r and r ' are joined by a l ink in G, and r sends r '

a message when r 's dura t ion t imer reads T. We first consider

the case where UG(p,r)>UG(P,r '). In the first run, this mes-

sage will a r r ive at r ' in t ime LG(r , r ')+UG(P,r) -UG(P,r ') , when

the dura t ion t imer of r ' reads T+LG(r , r ')+UG(P , r) -UG(P , r ').

In the second run, th i s m e s s a g e wi l l a r r i v e at r ' in t ime

LG(r , r ') , bu t aga in the d u r a t i o n t i m e r of r ' wi l l r ead

T + L G (r , r) + " , , ' U G (P , r) - U G (P , r), s i n c e r is s t a r t e d

UG(P,r)-UG(P,r ') ahead of r. The a rgument in the case where

UG(P,r)<UG(p,r ') is s imi lar , and is omi t ted here.

Because messages are being sent and received at the same

t ime on each processor ' s dura t ion t imer in both runs, proe.-

essors will perform the same ac t ion at a given t ime on their

du ra t ion t imers in both runs. Suppose processor p changes

the va lue of i t s spec ia l r e g i s t e r a t t i m e T t on i ts d u r a t i o n

t imer , whi le processor q changes the value at t ime T 2 on its

dura t ion t imer . Let t 1 and t 2 be the real t imes that the dura-

t ion t imers of p and q read T 1 and T 2 respect ively in the first

run. Note t h a t in the second run , p roces so r p's d u r a t i o n

t imer still reads T 1 at t t, but processor q's dura t ion t imer

r eads T 2 at t 2+UG(P , q) (s ince p rocesso r q was s t a r t e d

UG(p,q) la ter in the second run). It is now easy to see tha t

max(I t2- t l I, I t2+UG(P,q) - t t I) ~. UG(P,q) /2 , which gives us

our result . []

Remarks : Note that the lower bound holds even if there are

no faults in the ne twork. We can also prove a version of this

resul t in which all processors all s tar t the second run at the

same t ime wi th their dura t ion t imers synchronized, but then

the dura t ion t imers of some processors drif t so that p's dura-

t ion t imer is UG(P,r) ahead of tha t of r. F rom this point we

can essen t ia l ly repeat the proof above.

Corol la ry 1: For all communica t ion ne tworks G, we have A G

_> UG/2 .

Proof: Note tha t A G >_ maXp,qAG(p,q), since we cannot do

worse by a l lowing dif ferent a lgor i thms to synchronize differ-

ent pairs of processors ra ther than using the same a lgor i thm

to synchronize all pairs. The resul t follows now immed ia t e ly

from Theorem 4 and the def ini t ions. []

C o r o l l a r y 2: For a ny c lock s y n c h r o n i z a t i o n a l g o r i t h m in

which there are at least two values which all logical clocks

t ake at some t ime, there is a value T such tha t the real t ime

at which two processors first read T in some run differs by >_

U o / 2 .

Theorem 5: For all e > 0, there ex is t a ne twork G such tha t

A G _> UG-e.

Proof: This resul t follows from a resul t of [LL], where it is

shown tha t if G i s ' a c o m p l e t e l y c o n n e c t e d g raph w i t h n

nodes, such tha t for all processors p, q we have VG(p,q)=8,

so tha t UG=8, then A G = ((n - 1) / n) d = U G - (I / n) 8 . This c lear ly

gives us the desired result . []

Theorem 5 is essent ia l ly the best we can do, as the fol lowing

theorem shows.

Theorem 6: There exis ts a clock synchroniza t ion a lgor i thm

A such that for all communica t ion ne tworks G and processors

p and q in G, AG,A(p, q) _< UG(p,q); i.e. the imprecis ion is no

grea ter than the uncer ta in ty .

Proof: The clock synchroniza t ion a lgor i thm of [HSS] can be

used to guarantee tha t for all T, there is a T ' > T such that the

real t imes at which the logical clocks of processors read T'

differ by at most U G in any run. Each processor can thus use

its logical clock to decide when to change the value in its

special register . D

We remark that the a lgor i thm of [HSS] works even in the

presence of faults. However, we seem to require au then t ica -

t ion if we are to keep the imprecis ion no greater than the

uncer ta in ty in the presence of faults.

Corollary 3: For all communica t ion ne tworks G, A G <_ U G.

Final ly , we observe that we can easi ly t rans la te the re-
i

suits of Theorem 4 to bounds on the t ightness of synchroniza-

t ion for a lgor i thms which achieve Linear Envelope Synchroni-

zation.

Theorem 7: If A achieves l inear envelope synchroniza t ion in

communica t ion ne twork G wi th bound B and lower envelope

c D (t) + d , then B >_ cRUG/ 2 .

Thus we can see tha t there is a t radeoff be tween t ight-

ness of clock t ime synchron iza t ion and t ightness of the l inear

envelope.

510

REFERENCES

[DI D. Dolev, The Byzantine generals strike again,

Journal o f Algorithms, 3, 1982, pp. 14-30.

[DLPSW] D. Dolev, N. A. Lynch, S. Pinter, E. Stark, and

W. Weihl, Reaching approximate agreement in the

presence of faults, Proceedings of the 3rd Annual

IEEE Symposium on Distr ibuted Software and

Databases, 1983 (also available as MIT/LCS/TM-

251).

[DS] D. Dolev and H. R. Strong, Authenticated algor-

i thms for Byzantine agreement , S lAM J. o f

Computing, to appear, 1983.

[HSS] J. Y. Halpern, B. B. Simons, and H. R. Strong,

An efficient faul t - tolerant a lgori thm for clock

synchronization, IBM RJ4094, 1983.

[L M] L. Lamport and P. M. Melliar-Smith, Synchroniz-

ing clocks in the presence of faults, SRI Interna-

tional Report1 1982.

[LSP] L. Lamport, R. Shostak, and M. Pease, The By-

zant ine Generals problem, ACM Trans. on Prog.

Lang. and Systems 4:3, 1982, 382-401,

I L L]

[M a]

[PSL]

J. Lundelius and N. Lynch, Synchronizing clocks

in a distributed system, unpublished manuscript,

1984.

K. Marzullo, Loosely-coupled dis t r ibuted serv-

ices: a distributed time system, Ph.D. disserta-

tion, Stanford University, 1983.

M. Pease, R. Shostak, and L. Lamport, Reaching

agreement in the presence of faults, JACM 27:2,

1980, 228-234.

511

