ON THE POSSIBILITY AND IMPOSSIBILITY OF ACHIEVING CLOCK SYNCHRONIZATION

Danny Dolev

Hebrew University, Givat Ram
91904 Jerusalem, Israel.

Joe Halpern
H. Raymond Strong

IBM Research Laboratory,
San Jose, CA 95193.

ABSTRACT: It is known that clock synchronization can be
achieved in the presence of faulty clocks numbering more
than one-third of the total number of participating clocks
provided that some authentication technique is used. Without
authentication the number of faults that can be tolerated has
been an open question. Here we show that if we restrict
logical clocks to running within some linear function of real
time, then clock synchronization is impossible, without au-
thentication, when one-third or more of the processors are
faulty. However, if there is a bound on the rate at which a
processor can generate messages, then we show that clock
synchronization is achievable, without authentication, as long
as the faults do not disconnect the network. Finally, we
provide a lower bound on the closeness to which simultaneity
can be achieved in the network as a function of the transmis-
sion and processing delay properties of the network.

1. INTRODUCTION

The problem of achieving clock synchronization in the
prescnce of faults has attracted much attention recently
[LM,HSS,DLPSW Ma]. [HSS] presents an algorithm that uses
authentication (the ability to generate unforgeable signatures)
and achieves synchronization with arbitrarily many faulty
processors or communication links, provided that correct
processors are not disconnected. [LM]} presents an algorithm
that does not require authentication, but will only work if
fewer than one-third of the processors are faulty. It is known
that Byzantine agreement cannot be achieved without authen-
tication if at least one-third of the processors are faulty
[LSP,PSL]. Until now the corresponding question for clock
synchronization has remained open. It has been conjectured

that the answer would be the same [LM]. In his invited

Permission to copy without fee ali or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-133-4/84/004/0504 $00.75

504

address at the PODC Symposium in Montreal, L. Lamport
challenged his listeners to provide a proof of impossibility
{L].

impossibility, and show how sensitive the proofs are to the

In this paper we provide proofs of both possibility and

precise definition of clock synchronization and some features
of the underlying model. For the specific question posed by
Lamport with respect to the model of [LM], we provide the

expected proof of impossibility.

For simplicity, we assume that each processor has a
duration timer D (this is usually thought of as the processor’s
clock) and a designated register TAR called the rime adjust-
ment register. Correct duration timers exhibit only a bounded
rate of drift. The duration timer is never altered by the proc-
essor, but the time adjustment register may be altered as a
result of a processor’s internal operations, receipt of mes-
sages, or an indication from its duration timer that a specific
amount of time has elapsed. (Altering the TAR is equivalent
to starting up a new clock in the notation of [LM] and
[HSS]).
TAR and D. Roughly speaking, an algorithm achieves clock

A processor’s logical clock time C is the sum of the

synchronization if at all times the logical clock times of all

correct processors are only a bounded distance apart.

Note that there is a trivial algorithm for clock syn-
chronization: namely, whenever a processor’s logical clock
reads some predetermined value P, it is reset (by adjusting
TAR) to read 0. We can e¢liminate this trivial solution by
requiring that the range of a processor’s logical clock must be
unbounded. However, as we show in Theorem 1 below, there
is still a clock synchronization algorithm where the range of
every processor's logical clock is unbounded that does not
require any message passing. In this algorithm, a processor’s
logical clock runs at a rate that is roughly the logarithm of
that of its duration timer. We eliminate this solution by
requiring that the logical clock stay within a linear envelope of

the duration timer, i.e. by requiring that there be constants a,

b, ¢, and d such that aD(t)+c<C(t)<bD(t)+d for all times t.
(This condition is satisfied by the clock synchronization al-
gorithms of [HSS] and [LM].) In this case we can show that
clock synchronization is not achievable with one-third or
more fauity processors (Theorem 2). However, this proof
requires that faulty processors have rather unrealistic powers.
In fact, linear envelope clock synchronization is achievable,
even without authentication, provided that there is a bound
on the rate at which a processor can generate messages. In
Theorem 3 we present an algorithm to do this that is a vari-

ant of the algorithm in [HSS].

Finally we consider (Theorems 4 and 5) the degree to
which simultaneity can be achieved in a network. We show
that for any network there is a lower bound A such that no
algorithm for clock synchronization can ensure that the dif-
ference between the (real) times at which two correct proc-
essors read a given value on their clocks is less than A. Aisa
function of the uncertainty in the time required to transmit
and process a méssage. Results of [HSS] show that this

bound can essentially be achieved. These theorems bound the

degree to which coordination can be achieved in a given net-
work. If we want two events to happen simultancously in a
network, the best we can do is to guarantee that they will

happen at times separated by no more that A.

2. THE MODEL

Each processor is connected to others via links. We do
not assume that our network is completely connected; all our
results hold regardless of the network topology. As in most
previous papers, we assume that a processor can always tell
from which immediate neighbor in the communication net-

work a message has come.

We assume the existence of a Newtonian time frame,
not directly observable. As we mentioned in the introduc-
tion, each processor has a duration timer D and a time adjust-
ment register TAR. Both of these can be viewed as real-
valued functions of Newtonian time. A correcr duration timer
is one that has a bounded rate of drift from real (Newtonian)
time. More precisely, there exists a constant R>1 such that a

correct duration timer satisfies:
(1/R)(u-v) <D(u)-D{v) <R(u-v)

for all Newtonian times u > v. A correct processor is one that
behaves according to its algorithmic specifications and pos-

sesses a correct duration timer. No assumption is made about

505

the behavior of a faulty (not correct) processor.

We view TAR(t) as a step function whose value is
constant on left-open right-closed intervals, in order to have
our results correspond to those of ‘[LM] and [HSS]. All our
results would also hold if TAR were continuous. By defini-
tion, C(1)=D(t)+TAR(t). Let TAR(t*)= limTAR(t') as t’
approaches t from the right, i.e., the value of TAR just after

it has been reset at time t,. We define C(t*) similarly.

Processors send messages to each other along the com-
munication links, where a message is just a word over some
fixed alphabet £. We assume that there are known upper and
lower bounds on the transmission and processing of a message
from one processor to another. We return to this point in

more detail in Section 4,

3. SYNCHRONIZATION WITHOUT AUTHENTICATION

Consider the following definition of clock synchroniza-

tion:

Weak Clock Synchronization Condition: There exist constants P,
B, and S such that, for each correct clock, TAR is constant
except that it changes at clock times that are multiples of P
by an amount with absolute value less than S, and the differ-
ence between the clocks of any correct processors is always

bounded by B.

It is left to the reader to verify that any algorithm that
achieves the condition expressed by Lamport and Melliar-
Smith [LM] also achieves the WCSC.

As we mentioned in the introduction, if we do not
require that C(t) be unbounded, then there is a trivial algor-
ithm to achieve WCSC. We choose P arbitrarily. Then
whenever C(t)=P, we set TAR(t*)=-D(t) (thus making
C(t*)=0). Clearly we have S=B=P in this case, since C(t) is
always between 0 and P for any correct processor. However,
even if we require that C(t) have unbounded range, we still

get:

Theorem 1: There is an algorithm which achieves WCSC
independent of the number of faults, using no message ex-

changes, for which C(t) is unbounded.

Proof: The idea is to keep C(t) within the interval log(D(t))
and log(D(t)) +k for some constant k at all times. Since it is
easy to deduce from the bounded rate of drift condition that
|log(Dl(t))-log(Dz(l)|<2log(R) for any correct processors p;
and p,. it will follow that |C((t)-C,(1)|<2log(R)+k at all

times. We procecd as follows. Assume for ease of exposition
that C(0)=D(0)=TAR(0)=0. Choose P>0 arbitrarily. For
each time t such that C(t)=iP for some positive integer i, and
fog(D(t)) <(i-1)P we set TAR(t*)=log(D(t))-D(t), thus mak-
ing C(t*)=log(D(t)). (Note that the purpose of checking that
log(D(1))<(i-1)P, or equivalently, that C(t)-log(D(1))>P, is
simply to prevent TAR from being reset infinitely often in a
bounded amount of time.) It is easy to check that 0<C(t)-
log(D(t))<2P for all t, and that TAR is changed by less than
2P at any time. By the arguments made above, it also follows
that the logical clocks of correct processors differ by at most

2log(R)+2P at all times. J

It is easy to see that this algorithm would also work if
we kept C(t) within any linear function of log(D(t)). In
order to achieve an impossibility result, we must strengthen
our requirements for clock synchronization somewhat. Es-
sentially we will do this by requiring that C(t) stay within a

linear function of D(t).

First note that in the algorithm given in Theorem 1,
there may be several times t when C(t)=iP for some i and
TAR is reset. If we only allow changes in TAR the first time
that C(t) reads iP for any i, than the time between changes
can grow unboundedly large, and thus there will be no bound
on the difference between the logical clocks of correct proc-
essors. A close reading of the clock synchronization condi-
tion given in [LM] shows that they indeed require this prop-

erty. This leads us to the following definition:

Clock Synchronization Condition: There exist constants P, B,
and S such that, for each correct clock, TAR is constant
except that it can change by an amount with absolute value
less than S at a Newtonian time t such that C(t)=iP>0 for
some integer i and this is the first time that C reads iP (i.e.
C(t')#iP for all t'<t), and the difference between the clocks

of any two correct processors is bounded by B.

It is easy to check that the CSC as defined above is
equivalent to the condition defined in [LM], in the sense that
any algorithm for one can be easily modified to achieve the

other.

We need to introduce one more general notion of syn-

chronization in order to get a precise statement of our results:

(U.L) Envelope Synchronization: Correct clocks are bounded
above by U(D(t)) and bounded below by L(D(t)) and there
exists a constant B such that at any Newtonian time the

difference between correct clocks is bounded by B. A special

506

case of (U,L) Envelope Synchronization is Linear Envelope
Synchronization, where U and L arc taken to be the linear

functions at+b and ct+d respectively, with ¢>0.

Linear Enveclope Synchronization guarantees that the
time value on a correct clock is within a linear envelope of
the time on the duration timer. But since we have assumed
that the duration timer is within a linear envelope of real
time (bounded by R and 1/R), Linear Envelope Synchroniza-
tion also implies that the time value on a correct clock is

within a linear envelope of real time.

Proposition 1: An algorithm that achieves the Clock Syn-

chronization Condition achieves Linear Envelope Synchroni-

zation.

Proof: We leave it to the reader to check that
(P/(P+S))D(1)-S < C(t) < ((P+S)/P)D(t)+S for any correct

clock C and duration timer D.

Theorem 1 above shows that (t,log(t)} Envelope Syn-
chronization is achievable. Theorem 2 below will show that
Linear Envelope Synchronization is not achievable if one
third or more of the processors are faulty. And thus by Prop-
osition 1, the Clock Synchronization Condition is also not

achievable if one third or more of the processors are faulty.

Theorem 2: Linear Envelope Synchronization is in genecral

impossible if one third or more of the processors are faulty.

Proof: We first prove a restricted form of Theorem 2 for
three processors, one of which is faulty. Suppose that we
have an algorithm that achieves Linear Envelope Synchroni-
zation of three processors, say p;, py., and p3, of which one
may be faulty. We can suppose that the synchronization
guarantees bD(t) +d<C(t)<aD(t)+c, if C and D are the logi-
cal clock and duration timer respectively of a correct proc-
essor, and that logical clocks of correct processors differ by at
most B. Recall that (1/R)t<D(t)<Rt for a correct duration

timer D, Our proof is based on the following lemma.

Lemma: If processor p; is correct (j=1,2, or 3), then for each
n, and for every sequence of messages py (k#j) sends, there is
a sequence of messages that p; (i#jk) can send p; that will

cause Cj(t)>bR2“Dj(t) +d-nB.

Theorem 2 in the case of three processors follows im-
mediately from the lemma. We simply choose n such that
bR2%»a (which is always possible since R>1). Now suppose

that p, is faulty, while p, and py are correct. From the lem-

ma it follows that p; can send messages to p, that will cause
Cz(l)>bR2"D2(t)+d-nB for all t>0. Since bR2%>a, there
exists some t’ such that bR2%t+d-nB>at+c for all t>t’. Since
D,(t)>(1/R)t, it follows that bR2%D,(t) +d-nB>aD,(t) +c for
all t>Rt’. Hence C,(t)>aDy(t) +c for all t>Rt’, which con-
tradicts the fact that the algorithm achieves Linear Envelope
Synchronization bounded above by aD(t)+c. It is easy to
generalize this result to Theorem 2 by considering three sets
of processors of equal size such that the duration timers are

identical within each set.

To prove the lemma, we proceed by induction on n. By
symmetry, we can assume without loss of generality that i=1,
j=2, and k=3. For n=0, p; just follows the algorithm cor-
rectly. By hypothesis, no matter what messages p3 sends, the

algorithm achieves C,(t)>bD,(t) +d.

For n=1, first consider the case where p, and p, are
correct, py is faulty, Dy(t)=Rt, D,(t)=(1/R)t, and p;3 is not
sending any messages to p;. If p; and p, both follow the
algorithm correctly, then for all t>0 we must have C,(t) >
C;{t)-B > bD(t)+d-B = szDz(t)+d-B (using the observa-
tion that Dy(t) = R2D,(t), by choice of D, and D,). This
relationship must hold no matter what messages p; sends to

pa, since, by hypothesis, the algorithm tolerates one fault.

Now suppose p; sends messages to p, as if the situation
were that described above. That is, p; pretends that its dura-
tion timer is running at R2Z the rate of that of p, (i.e.
Dl(t)=R2D2(t)) and that py is not sending it any messages,
and then does what the algorithm would have said to do if
this were the case. No matter what messages p; actually
sends, p, will not be able to distinguish this situation from
the one above, so again we will have C,(t)>bR2D,(t)+d-B
for all t.

Next, suppose that the lemma holds for n=m; we want
to show that it also holds for n=m+1. Again we first consid-
er the situation where p; and p, are correct, p3 is faulty,
Dy (t)=Rt, D,(1)=(1/R)t, and p3 is sending p; messages that
cause it to have C{(t)>bR?™D,(t)+d-mB. (By the induction
hypothesis this is always possible no matter what messages p;
sends p, and pj, although of course the messages that p;
sends p; may depend on the messages that p; sends to p3,
which in turn may depend on the messages that p, sends to
py.) Now if py and p; just follow the algorithm correctly, an
analogous argument to the one made above shows that we

must have C,(t)>bR2M+UD,(t) +d-(m+1)B.

507

Now suppose again that p; sends messages to p, as if
the situation were that described above. That is, p; pretends
that its duration timer is running at R? the rate of that of p;
and py is sending it messages that cause C,(t) >
bR2mD, (t)+d-mB. Again, p, will not be able to distinguish
this situation from the one above, so again, no matter what
P3 C(1)y >

bR2(M+1)p, (t)+d-(m+1)B.

messages sends, we will have

This completes the proof of the lemma, and with it the

proof of Theorem 2. [J

We remark that by combining the proof of Theorem 2
with some of the techniques of [D], we can also show that
clock synchronization is impossible if the connectivity of the
network is < 2t+1 and there are t or more faulty processors.

We omit details here.

The proof of Theorem 2 requires that a faulty processor
have some rather unreasonable powers. In order to act as if
it is receiving messages from another processor that are caus-
ing it to set its clock running faster than bR2"4d-nB, it might
have to forge signatures, which is very unlikely if we have a
good signature scheme. It might also have to generate mes-
sages at a very great speed. Indeed, as the following theorem
shows, if there is a bound on the rate at which messages can
be generated, then there exists an algorithm that can achieve
the Clock Synchronization Condition, and hence Linear Enve-

lope Synchronization.

Theorem 3: If there is a bound on the rate at which messages
can be generated or there is a protocol for signing unforgeable
signatures that can be authenticated, then the Clock Syn-
chronization Condition can be achieved as long as the faults

do not disconnect the network.

Proof: In [HSS], there is an algorithm that can easily be
modified so as to achieve the Clock Synchronization Condi-
tion, but requires a protocol for sigﬁing unforgeable signa-
tures that can be authenticated. We now show how to modify
that algorithm so that it works even without authentication,
as long as there is a bound on the rate at which messages can

be transmitted. We proceed as follows.

We assume that each processor p; has an internal varia-
ble ET; (expected time of next synchronization) and has
access to a continuously updated variable C; which gives its
logical clock time. (We will omit the subscript i when it is
clear from context. As explained in Section 2, C is the sum

of the times on a processor's duration timer and its time

adjustment register. C can be reset (by changing the time
adjustment register TAR) and read. There is a global con-
stant PER (period of resynchronization) common to all proc-
essors. We further assume ET is initially PER for all proc-
essors, and that initially C < PER. Finally, we assume that
if p; and p; are neighbors in the network (i.e are connected by
direct link) then as long as they and the link between them
are nonfaulty, then messages from p; to p; are received in the
order that they are sent. (If the communication network does
not have this property, we can simply number all messages
consecutively and ignore a message numbered n until all

messages with a lower number have been received.)

The algorithm consists of two tasks that are run inde-
pendently and concurrently, The first task consists of one

instruction:

if C=ET
then ET:=ET+PER; send to all neighbours
a message saying "The time is ET"

fi

The second task describes what to do upon the receipt of a

message saying "The time is T":

if a message saying "The time is T" is received,
and T=ET and C<ET
then C:=ET; ET:=ET+PER; send to all neighbors
a message saying "The time is ET"
else do nothing .

fi. ’

To prove the correctness of the algorithm above we
proceed as follows. Fix a network G and suppose there exists
a set F of faulty nodes and links in G which do not discon-
nect G. Let G/F be the surviving graph (G with all the faults
in F removed) and let DIAM(G/F) be its diameter; i.e. the
worst case distance between two nodes in G/F. Let TDEL be
the worst-case time for a message to be broadcast by one
nonfaulty processor to all its nonfaulty neighbors, and sup-
pose that the bound on the rate of message transmission is m
messages per unit time. We now show that if p; and p; are
nonfaulty, then |C;(1)-C;(t)| £ m|G|DIAM(G/F)(TDEL)(PER),

where |G| is the number of nodes in G.

Using techniques of [HSS] one can show that the algor-

ithm has the following properties:

(a) for any nonfaulty processor p;, we always have
ET-PER < C < ET
(b) if p; is nonfaulty, then, for all k, p; will broadcast the

5n8

message "the time is (k+1)PER" to its neighbors after it has
broadcast the message "the time is kPER", but at most
R(PER) after this time (recall that R is an upper bound on
the rate of drift of the duration timer from real time).

(c)
receives a message from p; saying "the time is kPER", then
either ET;=kPER or CjszER.

(d)
within DIAM(G/F)TDEL of the time that the first nonfauity

processor does so.

if p; and pj are neighbors in G and are nonfaulty, and p;

all nonfaulty processors will set their clocks to kPER

To complete the proof of the result, note that from the
assumption that m is an upper bound on the number of mes-
sages that can be generated by one processor in one time unit,
it follows that in DIAM(G/F)TDEL time units, at most
m|G|DIAM(G/F)TDEL messages can be generated in the
network. Any message received by a processor can force it to
push its clock forward by at most PER. Using part (d) it is
now easy to sec that at all times the clocks of nonfaulty proc-

essors differ by at most m|G|DIAM(G/F}TDEL)(PER). O

4. LOWER BOUNDS ON SYNCHRONIZATION

Suppose we have an algorithm that guarantces that the
times on the clocks of any correct processors are no more
than B apart at any real time. It is easy to see that, for any ¢
> 0, we can modify this algorithm to obtain an algorithm that
guarantees that the times on the clocks of correct processors
are no more than «B apart at any real time, simply by slowing
down all clocks by a factor of ¢. Of course, the slope of

linear envelope that we wish to achieve will limit the choice

of &.

To investigate this issue more carefully, we turn our
attention from the tightness of synchronization along the
clock time axis to the tightness of synchronization along the
real time axis. We show that there is a lower bound A, which
depends on the uncertainty of transmission delay, such that
no clock synchronization algorithm that achieves linear enve-
lope synchronization can guarantec that the difference be-
tween the real times at which clocks read a given value is less
than A. In fact, we prove an even stronger result: we show
that there is no algorithm that can guarantee that any action
can be performed by two processors within less than A of
each other, for an appropriately defined notion of action.

These results thus give lower bounds on the degree of syn-

chronization achievable in a network. We call A the essential

temporal imprecision, or just imprecision, of the network.

For this analysis, we will consider a more detailed model
of transmission and processing delay. Fix a communication
network G. Processors can only communicate over the links
in the network. We assume that there are known upper-and
lower bounds on the time to transmit and process a message
from p to q if they are joined by a direct link. Thus, we can
define the following functions on processors p and q such that

there is a direct link between p and q:

Hg(p.q) = upper bound on transmissi;m and processing
time for messages between p and q.

Lg(p.q) = lower bound on transmission and processing
time for messages between p and q.

Vg(p.g) = variation in transmission and processing time
for messages between p and g

= Hg(p.q)-Lg(p.9).

We-extend Hg, Lg, and Vg so that they apply to all pairs of
processors by setting Hg(p.q) = Lg{p.Q) = Vg(p.q) = = for
processors p, q such that there is no direct link from p to q.
We now extend Vg so that it also applies to sequences of
processors. For any sequence of processors 7 = pg,Py,---Pps
let Vg(7) be the sum of the valués Vg (pipi41), for i from 0
to n-1. Finally, let Ug(p,q) (the uncerrainty in transmission
time from p to q) = min{Vg(«)| 7 is a sequence of processors
starting with p and ending with q}, and let Ug =

max{Ug(p.q) | p.q are processors in G}.

For ease of exposition in what follows, we will assume
that each processor has a special register which initially con-
tains the value 0. At some point the value must be changed
“to1. The problem is to obtain an algorithm which guarantees
that, all processors change the value to 1 at as close to the
same real time as possible. The algorithm must be determin-
istic, in that what each processor does can depend only on its
duration timer and message history. To make this precise,
note that there is some inherent nondeterminism in the sys-
tem because of the uncertainty. of the transmission time of
messages and the rate of drift of clocks. Let a run r of algor-
ithm A in network G be a particular choice of transmission
times for each message transmitted and a choice for the rate
of drift of each processor's duration timer, subject to the
constraints discussed above. If a given processor p performs
a certain action a at a given time T on its duration timer (i.e.
at real time t such that Dp(t)=T) in a certain run r, then
action a will be performed at time T on its duration timer in

any other run r’ with the same message history; i.e. any run

509

where messages from other processors to p arrive at the
same time on p's duration timer. Clearly the time at which a
processor changes the value in its special register from 0 to 1
will depend on the run. The essential temporal imprecision
inherent in a particular algorithm A is the worst case differ-
ence in the times that two processors change the value in
their special register, where the difference is taken over all
possible runs. The essential temporal imprecision in a nel-.
work is the minimum essential temporal imprecision over all
possible algorithms. More formally, given an algorithm A,

processors p and q in G, and run r define

AG'A(p.q,r) = the absolute value of the difference of the
real times at which processors p and q
change the value of their special register
in run r of clock synchronization algor-
ithm A.

Ag.alp.g) = max {Ag(p,q.0)l.

Ag(p.a) = miny{Ag A(p.9)}.

Ag,a = max, o {8g Alp.a)l

AG = minA{AG'A}.

Theorem 4: For all communication networks G and all proc-

essors p, q in G, we have Ag(p,q) 2 Ug(p.q)/2; i.e. the im-

precision is at least half the uncertainty.

Proof sketch: Fix network G and processors p and q in G.
We consider two runs which, as we shall show, are indistin-

guishable from the point of view of any processor. In the

“first run, all processors are started at the same time, with

their duration timers set to O and proceeding at exactly the
rate of real time (i.e. there is no drift). If there is-a link from
processor r to processor r' in G, then messages from r to ¢
take time LG(r,r')+max(UG(p,r)-UG(p,r').O). We leave it to
the reader to check that UG(p.r)-UG(p,r') 5.VG(r,r'), so a

message from r to r’ can indeed take this length of time.

In the second run, we will start processor p first, and
start each processor r at real time Ug(p,r) later than p.
Again, each processor’s duration timer reads 0 when it is
started and proceeds at cxaclly.lhc rate of real time. M r and
r' are joined by a link in G, then messages from processor r
to r’ take time LG(r,r')+max(UG(p,r')-UG(p,r),O) to arrive.
Again it is easy to check that this meets the constraints
above, and that no message will reach a processor before it
has been started. We now show that these two runs are in-
distinguishable from the point of view of any processor; i.c.

they produce the same message history.

Suppose r and r' are joined by a link in G, and r sends r’
a message when r's duration timer reads T. We first consider
the case where UG(p,r)zUG(p,r'). In the first run, this mes-
sage will arrive at r’ in time Lg(r,r')+Ug(p,r)-Ug(p.r’), when
the duration timer of r’ reads T+LG(r,r')+UG(p,r)-UG(p,r').
In the second run, this message will arrive at r’ in time
LG(r,r'), but again the duration timer of r’ will read
T+Lg(r,r)+Ug(p,r)-Ug(p.r'),
U(;(p,r)-UG(p,r') ahead of r. The argument in the case where

. 1 .
since r is started

UG(p,r)<UG(p,r') is similar, and is omitted here.

Because messages are being sent and received at the same
time on each processor’s duration timer in both runs, proc-
essors will perform the same action at a given time on their
duration timers in both runs. Suppose processor p changes
the value of its special register at time T; on its duration
timer, while processor q changes the value at time T, on its
duration timer. Let t; and t, be the real times that the dura-
tion timers of p and q read T, and T, respectively in the first
run. Note that in the second run, processor p's duration
timer still reads T; at t;, but processor q's duration timer
reads T, at t,+Ug(p.q) (since processor q was started
Ug(p.q) later in the second run). It is now easy to see that
max(| ty-t; |, 113 +Ug(p.a)-ty 1) 2 Ug(p.a)/2, which gives us

our result.]

Remarks: Note that the lower bound holds even if there are
no faults in the network. - We can also prove a version of this
result in which all processors all start the second run at the
same time with their duration timers synchronized, but then
the duration timers of some processors drift so that p’s dura-
tion timer is Ug(p,r) ahead of that of r. From this point we

can essentially repeat the proof above.

Corollary 1: For all communication nctworks G, we have Ag

2 UG/Z.

Proof: Note that Ag 2

maxp‘qAG(p,q), since we cannot do
worse by allowing different algorithms to synchronize differ-
ent pairs of processors rather than using the same algorithm
to synchronize all pairs. The result follows now immediately

from Theorem 4 and the definitions. (]

Corollary 2: For any clock synchronization algorithm in
which there are at least two values which all logical clocks
take at some time, there is a value T such that the real time
at which two processors first read T in some run differs by >

Ug/2.

510

Theorem 5: For all € > 0, there exist a network G such that

Ag 2 Ug-e.

Proof: This result follows from a result of [LL], where it is
shown that if G is'a completely connected graph with n
nodes, such that for all processors p, q we have Vg(p.q)=8,
so that Ug=4, then Ag=((n-1)/n)é=Ug-(1/n)8. This clearly

gives us the desired result. 3

Theorem 5 is essentially the best we can do, as the following

theorem shows.

Theorem 6: There exists a clock synchronization algorithm
A such that for ali communication networks G and processors
p and q in G, Ag A(p.q) £ Ug(p.q); i.c. the imprecision is no

greater than the uncertainty.

Proof: The clock synchronization algorithm of [HSS] can be
used to guarantee that for all T, there is a T'>T such that the
real times at which the logical clocks of processors read T’
differ by at most Ug in any run. Each processor can thus use
its logical clock to decide when to change the value in its

special register. [J

We remark that the algorithm of {HSS] works even in the
presence of faults. However, we secem to require authentica-
tion if we are to keep the imprecision no greater than the

uncertainty in the presence of faults.
Corollary 3: For all communication networks G, Ag < Ug.

Finally, we observe that we can easily translate the re-

sults of Theorem 4 to bounds on the tightness of synchroniza-

tion for algorithms which achieve Linear Envelope Synchroni-

zation.

Theorem 7: If A achieves linear envelope synchronization in
communication network G with bound B and lower envelope

cD(t) +d, then B > cRUg/2.

Thus we can see that there is a tradeoff between tight-
ness of clock time synchronization and tightness of the linear

envelope.

REFERENCES

D]

[DLPSW]

[DS]

D. Dolev, The Byzantine generals strike again,

Journal of Algorithms, 3, 1982, pp. 14-30.

D. Dolev, N. A. Lynch, S. Pinter, E. Stark, and
W. Weihl, Reaching approximate agreement in the
presence of faults, Proceedings of the 3rd Annual
IEEE Symposium on Distributed Software and
Databases, 1983 (also available as MIT/LCS/TM-
251).

D. Dolev and H. R. Strong, Authenticated algor-

. ithms for Byzantine agrcement, SIAM J. of

[HSS]

[LM]

[LSP]

fLL]

{Ma)

[PSL]

Computing, to appear, 1983,

J. Y. Halpern, B. B, Simons, and H. R. Strong,
An efficient fault-tolerant algorithm for clock

synchronization, IBM RJ4094, 1983.

L. Lamport and P. M. Melliar-Smith, Synchroniz-
ing clocks in the presence of fauits, SRI Interna-

tional Report, 1982.

L. Lamport, R. Shostak, and M. Pease, The By-
zantine Generals problem, ACM Trans. on Prog.

Lang. and Systems 4:3, 1982, 382-401.

J. Lundelius and N. Lynch, Synchronizing clocks
in a distributed system, unpublished manuscript,

1984.

K. Marzullo, Loosely-coupled distributed serv-
ices: a distributed time system, Ph.D. disserta-

tion, Stanford University, 1983.

M. Pease, R. Shostak, and L. Lamport, Reaching
agreement in the presence of faults, JACM 27:2,
1980, 228-234.

511

