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ABSTRACT: It is known that clock synchronization can be 
achieved in the presence  of faul ty  clocks n u m b e r i n g  more  
than one- th i rd  of the total n u m b e r  of par t ic ipa t ing  clocks 
provided that some authentication technique is used. Without 
authentication the number  of faults that can be tolerated has 
been an open question. Here we show that if we restrict 
logical clocks to running within some linear function of real 
t ime, then clock synchron iza t ion  is impossible ,  wi thou t  au- 
thent ica t ion ,  when one- th i rd  or more  of the processors  are 
faulty. However,  if there is a bound on the rate at which a 
p rocessor  can generate  messages ,  then we show tha t  clock 
synchronization is achievable, without  authentication, as long 
as the faults  do not d isconnect  the ne twork .  Final ly,  we 
provide a lower bound on the closeness to which simultaneity 
can be achieved in the network as a function of the t ransmis-  
sion and processing delay properties of the network. 

1. I N T R O D U C T I O N  

The problem of achieving clock synchronization in the 

presence of faul ts  has a t t rac ted  much a t ten t ion  recent ly  

[LM,HSS,DLPSW,Ma]. [HSS] presents an algorithm that uses 

authentication (the ability to generate unforgeable signatures) 

and achieves synchron iza t ion  with a rb i t ra r i ly  many  faul ty  

p rocessors  or communica t ion  links, provided that  correct  

processors are not disconnected. [LM] pt~esents an algorithm 

that  does not  requi re  au then t ica t ion ,  but  will only work  if 

fewer than one-third of the processors are faulty. It is known 

that Byzantine agreement cannot be achieved without authen- 

t icat ion if at least one- th i rd  of the processors  are faul ty 

[LSP,PSL]. Until now the corresponding qucstion for clock 

synchronization has remained open. It has been conjectured 

that  the answer  would be the same [LM]. In his invited 
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address  at the PODC Sympos ium in Montreal ,  L. Lampor t  

chal lenged his l is teners  to provide a proof of imposs ib i l i ty  

[L]. In this paper we provide proofs of both possibility and 

impossibility, and show how sensitive the proofs are to the 

precise definition of clock synchronization and some features 

of the underlying model. For the specific question posed by 

Lamport  with respect to the model of [LM], we provide the 

expected proof of impossibility. 

For s implici ty,  we assume that  each processor  has a 

duration timer D (this is usually thought of as the processor 's  

clock) and a designated register TAR called the time adjust- 

ment register. Correct duration timers exhibit only a bounded 

rate of drift. The duration timer is never altered by the proc- 

essor, bat the time adjustment register may be altered as a 

resul t  of a p rocesso r ' s  in ternal  opera t ions ,  receipt  of mes-  

sages, or an indication from its duration timer that a specific 

amount  of time has elapsed. (Altering the TAR is equivalent 

to s ta r t ing  up a new clock in the nota t ion  of [LM] and 

[HSS]). A processor 's  logical clock time C is the sum of the 

TAR and D. Roughly speaking, an algorithm achieves clock 

synchronization if at all times the logical clock times of all 

correct processors are only a bounded distance apart. 

Note that  there  is a trivial  a lgor i thm for clock syn-  

chroniza t ion :  namely,  whenever  a p rocessor ' s  logical clock 

reads some predetermined value P, it is reset (by adjusting 

TAR) to read 0. We can eliminate this trivial solution by 

requiring that the range of a processor 's  logical clock must  he 

unbounded. However,  as we show in Theorem 1 below, there 

is still a clock synchronization algorithm where the range of 

every  p rocesso r ' s  logical clock is unbounded  that  does not 

require any message passing. In this algorithm, a proeessor 's  

logical clock runs at a rate that is roughly the logarithm of 

that  of its dura t ion  t imer.  We el iminate  this solut ion by 

requiring that the logical clock stay within a linear envelope of 

the duration timer, i.e. by requiring that there be constants a, 
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b, c, and d such tha t  aD(t)+c<_C(t)_<bD(t)+d for all t imes t. 

(This condi t ion is sat isf ied by the clock synchroniza t ion  al- 

gor i thms of [HSS] and [LM].) In this case we can show that  

c lock  s y n c h r o n i z a t i o n  is not a c h i e v a b l e  wi th  o n e - t h i r d  or 

m o r e  f au l ty  p roces so r s  (Theorem 2). Howeve r ,  th is  proof  

requires that  faul ty processors have ra ther  unreal is t ic  powers.  

In fact, l inear  envelope clock synchroniza t ion  is achievable,  

even wi thout  au thent ica t ion ,  provided tha t  there  is a bound 

on the rate at  which a processor can generate  messages.  In 

Theorem 3 we present an a lgor i thm to do this that  is a vari-  

ant  of the a lgor i thm in [HSS]. 

Final ly  we consider  (Theorems 4 and 5) the degree to 

which s imul tane i ty  can be achieved in a network.  We show 

tha t  for any ne twork  there  is a lower bound A such tha t  no 

a lgor i thm for clock synchroniza t ion  can ensure tha t  the dif- 

ference between the (real)  t imes at  which two correct  proc- 

essors  read a given value on their  clocks is less than A. A is a 

function of the uncer ta in ty  in the t ime required to t r ansmi t  

and  process  a message .  Re s u l t s  of [HSS] show t h a t  th i s  

bound can essent ia l ly  be achieved. These theorems bound the 

degree to which coordinat ion can be achieved in a given net- 

work.  If we want  two events  to happen s imul taneous ly  in a 

ne twork ,  the best we can do is to guarantee  that  they will  

happen at t imes separated by no more tha t  A. 

2. T I l E  M O D E L  

Each processor is connected to others  via links. We do 

not assume tha t  our network is complete ly  connected;  all our 

resul ts  hold regardless  of the ne twork  topology. As in most  

previous papers,  we assume that  a processor can a lways  tell 

f rom which  i m m e d i a t e  ne ighbor  in the  c o m m u n i c a t i o n  net -  

work  a message has come. 

We assume the exis tence  of a Newtonian  t ime frame, 

not d i rec t ly  observable.  As we ment ioned in the introduc-  

t ion, each processor has a dura t ion  t imer  D and a t ime adjust-  

ment  register  TAR. Both of these can be viewed as real-  

valued functions of Newtonian  time. A correct dura t ion  t imer  

is one that  has a bounded rate of dr i f t  from real (Newtonian)  

t ime.  More precisely,  there  exis ts  a cons tant  R > I  such that  a 

correct  dura t ion  t imer  satisfies:  

( 1/R) (u-v) < D(u)-D(v) <R(u-v) 

for all Newtonian times u > v. A correct processor is one that 

behaves according to its a lgor i thmic  specif icat ions and pos- 

sesses a correct  durat ion t imer.  No assumption is made about 

the behavior  of a f a u l t y ( n o t  correct)  processor. 

We v iew T A R ( t )  as a step func t ion  whose  va lue  is 

cons tant  on left-open r ight-closed intervals ,  in order to have 

our results  correspond to those of [LM] and [HSS]. All our 

resul ts  would also hold if TAR were continuous.  By defini- 

tion, C ( t ) = D ( t ) + T A R ( t ) .  Let  T A R ( t + ) =  l i m T A g ( t ' )  as t '  

approaches t from the right, i.e., the value of TAR just after 

it has been reset a t  t ime t. We define C(t  +) s imilar ly .  

Processors send messages to each other along the com- 

munication l inks, where  a message is just a word over some 

fixed a lphabet  2 .  We assume tha t  there are  known upper and 

lower bounds on the t ransmiss ion  and processing of a message 

from one processor to another .  We re turn  to this point in 

more detai l  in Section 4. 

3. S Y N C H R O N I Z A T I O N  W I T t l O U T  AUTI IENTICATION 

Consider  the fol lowing def ini t ion of clock synchroniza-  

t ion:  

Weak Clock Synchronization Condition: There exis t  constants  P, 

B, and S such that, for each correct  clock, TAR is constant  

except  tha t  it changes at clock t imes that are mult iples  of P 

by an amount  with absolu te  value less than S, and the differ- 

ence be tween the clocks of any correct  processors is a lways  

bounded by B. 

It is left  to  the  r e a d e r  to ve r i fy  tha t  any  a l g o r i t h m  tha t  

a c h i e v e s  the  c o n d i t i o n  e x p r e s s e d  by L a m p o r t  and Me l l i a r -  

Smith [LM] also achieves the WCSC. 

As we m e n t i o n e d  in the i n t r o d u c t i o n ,  if we do not  

require  that  C(t)  be unbounded,  then there  is a t r ivial  algor-  

i t h m  to ach ieve  WCSC.  We choose  P a r b i t r a r i l y .  Then  

w h e n e v e r  C ( t ) = P ,  we  set T A R ( t + ) = - D ( t )  ( thus  m a k i n g  

C ( t + ) = 0 ) .  Clear ly  we have S = B f P  in this  Case, since C(t)  is 

a lways  between 0 and P for any correct  processor. However ,  

even if we require tha t  C(t) have unbounded range, we sti l l  

get: 

Theorem 1: There is an a lgor i thm which achieves WCSC 

independent  of the number  of faults,  using no message ex-  

changes,  for which C(t)  is unbounded.  

Proof:  The idea is to keep C(t)  wi thin  the ' in te rva l  log(D(t) )  

and Iog (D( t ) )+k  for some cons tant  k at all  t imes.  Since it is 

easy to deduce from the bounded rate of drif t  condi t ion that  

[ log(Dl( t ) ) - Iog(D2(t) l<21og(g ) for any correct  processors Pl 

a n d  p2 , ' i t  wi l l  fo l low tha t  I C t ( t ) - C 2 ( t ) l < 2 1 o g ( R ) + k  at all  
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t imes.  We proceed as follows. Assume for ease of exposi t ion  

tha t  C ( 0 ) = D ( 0 ) = T A R ( 0 ) = 0 .  Choose P > 0  a rb i t ra r i ly .  For 

each t ime t such tha t  C ( t ) = i P  for some posi t ive integer i, and 

Iog (D( t ) )< ( i - 1 ) P  we set T A R ( t + ) = l o g ( D ( t ) ) - D ( t ) ,  thus mak-  

ing C ( t + ) = l o g ( D ( t ) ) .  (Note that  the purpose of checking tha t  

I o g ( D ( t ) ) < ( i - l ) P ,  or equivalent ly ,  that  C ( t ) - l o g ( D ( t ) ) > P ,  is 

s imply to prevent  TAR from being reset inf ini te ly  often in a 

bounded amount  of t ime.)  It is easy to check that  0_<C(t)- 

Iog(D( t ) )<ZP for all t, and that  TAR is changed by less than 

2P at any t ime.  By the a rguments  made above, it also follows 

that  the logical  c locks of correct  processors differ by at  most  

21og(R)+ZP at all t imes.  []  

It is easy  to see tha t  this  a lgor i thm would also work  if 

we  kep t  C ( t )  w i t h i n  any  l i nea r  func t ion  of l o g ( D ( t ) ) .  In 

order  to achieve  an imposs ib i l i ty  result ,  we must  s t rengthen  

our requi rements  for clock synchroniza t ion  somewhat .  Es- 

sen t ia l ly  we will  do this by requi r ing  tha t  C(t)  s tay wi th in  a 

l inear  funct ion of D(t) .  

F i r s t  no te  t h a t  in the  a l g o r i t h m  given in T h e o r e m  1, 

there  may be several  t imes t when C ( t ) = i P  for some i and 

TAR is reset.  If we only a l low changes in TAR the first  t ime 

that  C(t)  reads iP for any i, than  the t ime be tween  changes 

can grow unboundedly  large, and thus there  will  be no bound 

on the difference be tween the logical c locks of cor rec t  proc- 

essors.  A close reading  of the clock synchron iza t ion  condi-  

t ion given in [LM] shows tha t  they indeed require  this  prop- 

er ty .  This leads us to the fol lowing def ini t ion:  

Clock Synchronization Condition: There ex is t  cons tants  P, B, 

and  S such tha t ,  for each  c o r r e c t  c lock ,  TAR is c o n s t a n t  

except  tha t  it can change by an amoun t  with absolu te  value 

less than S at  a Newton ian  t ime t such tha t  C ( t ) = i P > 0  for 

some integer  i and this  is the f irst  t ime that  C reads iP (i.e. 

C ( t ' ) # i P  for al l  t ' < t ) ,  and the difference between the clocks 

of any  two correct  processors  is bounded by B. 

It is easy to check that  the CSC as defined above is 

equiva len t  to the condi t ion defined in [LM], in the sense tha t  

any  a lgor i thm for one can be eas i ly  modif ied to achieve the 

other.  

We need to in t roduce one more general  notion of syn- 

chron iza t ion  in order to get a precise s ta tement  of our resul ts :  

(U.L) Envelope Synchronization: Correct  clocks are bounded 

above by U(D(t) )  and bounded below by L(D(t ) )  and there  

e x i s t s  a c o n s t a n t  B such tha t  a t  any  N e w t o n i a n  t i m e  the  

di f ference between correct  clocks is bounded by B. A special  

case  of (U,L)  Enve lope  S y n c h r o n i z a t i o n  is Linear Envelope 

Synchronization, where  U and L are  t a k e n  to be the  l i n e a r  

funct ions a t + b  and c t + d  respect ively,  wi th  c>0 .  

L inea r  E n v e l o p e  S y n c h r o n i z a t i o n  g u a r a n t e e s  t h a t  the  

t ime value on a correct  clock is wi th in  a l inear  envelope of 

the t ime on the dura t ion  t imer .  But since we have assumed 

tha t  the  d u r a t i o n  t imer  is w i t h i n  a l i nea r  enve lope  of rea l  

t ime (bounded by R and I / R ) ,  Linear  Envelope Synchroniza-  

t ion  a l so  imp l i e s  tha t  the  t ime  va lue  on a co r r ec t  c lock  is 

wi th in  a l inear  envelope of real time'. 

Proposi t ion  1: An a lgor i thm that  achieves the Clock Syn- 

chroniza t ion  Condi t ion  achieves Linear  Envelope Synchroni-  

zation.  

P ro o f :  We leave  it  to the  r e a d e r  to check  t h a t  

( P / ( P + S ) ) D ( t ) - S  < C(t)  < ( ( P + S ) / P ) D ( t ) + S  for any  correc t  

clock C and dura t ion  t imer  D. [] 

Theorem 1 above shows tha t  ( t , log( t ) )  Envelope Syn- 

chroniza t ion  is achievable .  Theorem 2 below will  show tha t  

L i n e a r  E n v e l o p e  S y n c h r o n i z a t i o n  is not  a c h i e v a b l e  if one 

th i rd  or more of the processors  are  faulty.  And thus by Prop- 

o s i t i on  1, the  C l o c k  S y n c h r o n i z a t i o n  C o n d i t i o n  is a lso  not  

achievable  if one third or more of the processors  are  faul ty.  

T h e o r e m  2: L i n e a r  E n v e l o p e  S y n c h r o n i z a t i o n  is in genera l  

impossible  if one third or more of the processors  are faul ty.  

P r o o f :  We f i rs t  p rove  a r e s t r i c t e d  fo rm of T h e o r e m  2 for 

three  processors,  one of which is faul ty.  Suppose that  we 

have an a lgor i thm that  achieves Linear  Envelope Synchroni-  

zat ion of three  processors,  say Pl, P2, and P3, of which one 

may  be f au l ty .  We can suppose  tha t  the  s y n c h r o n i z a t i o n  

guarantees  b D ( t ) + d < C ( t ) < a D ( t ) + c ,  if C and D are the logi- 

cal clock and dura t ion  t imer  respect ively  of a correct  proc- 

essor,  and that  logical clocks of correct  processors  differ by at 

most  B. Recal l  that  ( l / R ) t < D ( t ) < R t  for a correct  dura t ion  

t imer  D. Our proof is based on the fol lowing [emma. 

Lemma: If processor  pj is correct  ( j= 1,2, or 3), then for each 

n, and for every  sequence of messages Pk ( k # j )  sends, there  is 

a sequence of messages that  Pi ( i # j , k )  can send pj tha t  wil l  

cause C j ( t )>bR2nDj ( t )  +d-nB. 

Theorem 2 in the case of three processors  fol lows im- 

media te ly  from the lemma.  We s imply choose n such that  

b R z n > a  (which is a lways  possible since R >  l) .  Now suppose 

tha t  PI is faul ty ,  whi le  P2 and P3 are correct .  From the lem- 
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ma it follows that Pl can send messages to P2 that will cause 

C 2 ( t ) > b R 2 n D 2 ( t ) + d - n B  for all t>0 .  Since bR2n>a ,  there 

exists some t '  such that bR 2a t +d -nB >a t +c  for all t> t ' .  Since 

D 2 ( t ) > ( l / R ) t ,  it follows that bR2nD2( t )+d-nB>aD2( t )+c  for 

all t>Rt ' .  Hence C2( t )>aD2( t )+c  for all t >R t ' ,  which con- 

tradicts the fact that the algorithm achieves Linear Envelope 

Synchronization bounded above by aD( t )+c .  It is easy to 

generalize this result to Theorem 2 by considering three sets 

of processors of equal size such that the duration timers are 

identical within each set. 

To prove the lemma, we proceed by induction on n. By 

symmetry,  we can assume without loss of generality that i= 1, 

j=2,  and k=3.  For n=0,  Pl just follows the algorithm cor- 

rectly. By hypothesis, no matter what messages P3 sends, the 

algorithm achieves C2( t )>bD2( t )+d .  

For n = l ,  first consider the case where Pl and P2 are 

correct, P3 is faulty, D l ( t )=Rt ,  D 2 ( t ) = ( l / R ) t ,  and P3 is not 

sending any messages to Pl- If Pl and P2 both follow the 

algorithm correctly, then for all t>_0 we must have C2(t) > 

Ci( t ) -B > bDl ( t )+d-B  = bR2D2(t)+d-B (using the observa- 

tion that Dl( t )  = R2D2(t), by choice of D l and D2). This 

relationship must hold no matter  what messages Pl sends to 

P2, since, by hypothesis, the algorithm tolerates one fault. 

Now suppose Pl sends messages to P2 as if the situation 

were that described above. That is, Pl pretends that its dura- 

t ion t imer is running  at R 2 the rate of that  of P2 (i.e. 

Dt ( t )=R2D2( t ) )  and that P3 is not sending it any messages, 

and then does what the algorithm would have said to do if 

this were the case. No matter  what messages P3 actually 

sends, P2 will not be able to distinguish this situation from 

the one above, so again we will have C2( t )>bR2D2(t )+d-B 

for all t. 

Next, suppose that the lemma holds for n=m;  we want  

to show that it also holds for n = m + l .  Again we first consid- 

er the s i tuat ion where  Pl and P2 are correct ,  P3 is faulty,  

D t ( t ) = R t  , D 2 ( t ) = ( l / R ) t ,  and P3 is sending Pl messages that 

cause it to have Ct ( t )>bR2raDl ( t )+d-mB.  (By the induction 

hypothesis this is always possible no matter what messages P2 

sends Pl and P3, a l though of course  the messages  that  P3 

sends Pl may depend on the messages that Pl sends to P3, 

which in turn may depend on the messages that P2 sends to 

Pl-) Now if Pt and P2 just follow the algorithm correctly, an 

analogous  a rgument  to the one made above shows that  we 

must  have C2( t )>bR2(m+l )D2( t )+d- (m+ 1)B. 

Now suppose again that Pl sends messages to P2 as if 

the situation were that described above. That is, Pl pretends 

that its duration timer is running at R 2 the rate of that of P2 

and P3 is sending it messages that  cause C l ( t )  > 

bR2mDl( t )+d-mB,  Again, P2 will not be able to distinguish 

this situation .from the one above, so again, no matter what 

messages  P3 sends ,  we will have  C2( t )  > 

bR2(m+t)D2(t) + d - ( m +  I)B. 

This completes the proof of the lemma, and with it the 

proof of Theorem 2. []  

We remark that by combining the proof of Theorem 2 

with some of the techniques of [D], we can also show that 

clock synchronization is impossible if the connectivity of the 

network is < 2 t+ 1 and there are t or more faulty processors. 

We omit details here. 

The proof of Theorem 2 requires that a faulty processor 

have some rather unreasonable powers. In order to act as if 

it is receiving messages from another processor that are caus- 

ing it to set its clock running faster than bR2n+d-nB, it might 

have to forge signatures, which is very unlikely if we have a 

good signature scheme. It might also have to generate mes- 

sages at a very great speed. Indeed, as the following theorem 

shows, if there is a bound on the rate at which messages can 

be generated, then there exists an algorithm that can achieve 

the Clock Synchronization Condition, and hence Linear Enve- 

lope Synchronization. 

T h e o r e m  3: If there is a bound on the rate at which messages 

can be generated or there is a protocol for signing unforgeable 

s ignatures  that  can be authent icated,  then the Clock Syn- 

chronization Condition can be achieved as long as the faults 

do not disconnect the network. 

Proof:  In [HSS], there is an algorithm that can easily be 

modified so as to achieve the Clock Synchronization Condi- 

tion, but  requires  a protocol  for signing unforgeable  signa- 

tures that can be authenticated. We now show how to modify 

that algorithm so that it works even without authentication, 

as long as there is a bound on the rate at which messages can 

be transmitted. We proceed as follows. 

We assume that each processor Pi has an internal varia- 

ble ET i (expected t ime of next  synchroniza t ion)  and has 

access to a continuously updated variable C i which gives its 

logical clock time. (We will omit the subscript i when it is 

clear from context. As explained in Section 2, C is the sum 

of the t imes on a processor ' s  dura t ion  t imer  and its t ime 
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adjus tment  register .  C can be reset  (by changing the t ime 

ad jus tment  regis ter  TAR)  and read. There is a global con- 

s tant  PER (period of resynchron iza t ion)  common to all proc- 

essors.  We fur ther  assume ET is in i t ia l ly  PER for all proc- 

essors,  and tha t  in i t ia l ly  C < PER. Final ly ,  we assume that  

if Pi and pj are  neighbors  in the ne twork  (i.e are connected by 

di rect  l ink) then  as long as they and the l ink between them 

are  nonfaul ty ,  then messag/~s from Pi to Pi are received in the 

order tha t  they  are sent. (If the communica t ion  ne twork  does 

not have this  property,  we can s imply  number  all messages 

c o n s e c u t i v e l y  and i gno re  a m e s s a ge  n u m b e r e d  n un t i l  al l  

messages  wi th  a lower number  have been received.)  

The a lgor i thm consis ts  of two  tasks  that  are  run inde- 

pendent ly  and  concurrent ly .  The first  task  consists  of one 

ins t ruct ion:  

if  C = E T  

then E T : = E T + P E R ;  send ' to  all neighbours  

a message saying  "The t ime is ET" 

fi 

The second task  descr ibes  wha t  to do upon the receipt  of a 

message saying  "The t ime  is T":  

if  a message  saying "The t ime is T" is received,  

and T = E T  and C < E T  

then C : = E T ;  E T : = E T + P E R ;  send to all  neighbors  

a message saying  "The t ime is ET" 

else  do noth ing  

fi. 

To p rove  the  c o r r e c t n e s s  of the  a l g o r i t h m  above  we 

proceed as follows.  F ix  a ne twork  G and suppose there  exis ts  

a set F of fau l ty  nodes and l inks in G which do not discon- 

nect  G. Let G / F  be the surv iv ing  graph (G wi th  all the faults  

in F removed)  and let D I A M ( G / F )  be its d iamete r ;  i.e. the 

wors t  case d i s tance  be tween two nodes in G / F .  Let TDEL be 

the  w o r s t - c a s e  t ime  for a m e s s a g e  to be b r o a d c a s t  by one 

nonfaul ty  processor  to all  its nonfaul ty  neighbors,  and sup- 

pose that  the bound on the rate  of message t ransmiss ion  is m 

messages  per uni t  t ime.  We now show that  if Pi and pj are 

nonfaul ty ,  then ICi(t)-Cj(t)l  < mIG[DIAM(G/F) (TDEL)(PER) ,  

where  IGI is the number  of nodes in G. 

Using techniques  of [HSS] one can show that  the algor-  

i thm has the fol lowing propert ies :  

(a) for any  nonfaul ty  processor  Pi, we a lways  have 

ET-PER _< C < ET 

(b) if Pi is nonfaul ty ,  then, for all  k, Pi will  b roadcas t  the 

message " the  t ime is ( k+  I )PER"  to its neighbors  af ter  it has 

b r o a d c a s t  the  message  " the  t i m e  is k P E R " ,  but  a t  mos t  

R (PER)  af ter  this  t ime (recall  that  R is an upper bound on 

the rate  of dr i f t  of the dura t ion  t imer  from real t ime) .  

(c) if Pi and pj are neighbors  in G and are nonfaul ty ,  and pj 

receives a mes'sage from Pi saying " the  t ime is kPER" ,  then 

e i ther  E T j = k P E R  or C j > k P E R .  

(d) all  nonfaul ty  processors  wil l  set their  c locks to k P E R  

wi th in  D I A M ( G / F ) T D E L  of the t ime tha t  the f irst  nonfaul ty  

processor  does so. 

To comple te  the proof of the result ,  note tha t  from the 

assumpt ion  tha t  m is an upper bound on the number  of mes- 

sages that  can be generated by one processor in one t ime  unit ,  

i t  fo l lows  tha t  in D I A M ( G / F ) T D E L  t ime  un i t s ,  a t  mos t  

m I G I D 1 A M ( G / F ) T D E L  messages  can be g e n e r a t e d  in the  

ne twork .  Any message received by a processor  can force it to 

push its c lock forward  by at most  PER. Using part (d) it is 

now easy to see that  at all t imes the clocks of nonfaul ty  proc- 

essors differ by at most  m[G[DIAM(G/F) (TDEL)(PER) .  []  

4. LOWER B O U N D S  ON S Y N C I t R O N I Z A T I O N  

Suppose we have an a lgor i thm that  guarantees  tha t  the 

t imes on the clocks of any correct  processors  are no more  

t h a n B a p a r t  at  any real time. It is easy to see that,  for any e 

> 0, we can modify this  a lgor i thm to obtain an a lgor i thm tha t  

guarantees  tha t  the t imes  on the clocks of correct  processors  

are  no more than  rB apar t  at  any real t ime,  s imply by s lowing 

down all c locks by a factor of r. Of course, the slope of 

l inear  envelope that  we wish to achieve will  l imi t  the choice 

of  E. 

To i n v e s t i g a t e  th i s  i ssue  more  c a r e f u l l y ,  we tu rn  our  

a t t e n t i o n  f rom the t i g h t n e s s  of s y n c h r o n i z a t i o n  a long  the  

clock t ime axis  to the t ightness  of synchroniza t ion  along the 

real t ime axis .  We show that  there  is a lower bound A, which 

depends on the uncer ta in ty  of t ransmiss ion  delay,  such tha t  

no clock synchroniza t ion  a lgor i thm that  achieves l inear  enve- 

lope  s y n c h r o n i z a t i o n  can g u a r a n t e e  t h a t  the d i f f e r ence  be- 

tween the real t imes at  which clocks read a given value is less 

than A. In fact,  we prove an even s t ronger  result :  we show 

tha t  there  is no a lgor i thm that  can guarantee  tha t  any act ion 

can  be p e r f o r m e d  by t wo  p roces so r s  w i t h i n  less  t h a n  A of 

each  o ther ,  for an a p p r o p r i a t e l y  de f ined  no t ion  of ac t ion .  

These resul ts  thus give lower bounds on the degree of syn- 

chroniza t ion  achievable  in a ne twork .  We call  A the essential 
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temporal imprecision, or jus t  imprecision, of the  n e t w o r k .  

For  th i s  a n a l y s i s ,  we  wi l l  c o n s i d e r  a m o r e  d e t a i l e d  mode l  

of t r a n s m i s s i o n  and  p roces s ing  de l ay .  F i x  a c o m m u n i c a t i o n  

n e t w o r k  G. P r o c e s s o r s  can  on ly  c o m m u n i c a t e  ove r  the  l i nks  

in the  n e t w o r k ,  We  a s s u m e  tha t  t h e r e  a re  k n o w n  upper ,  and  

l o w e r  b o u n d s  on t he  t i m e  to  t r a n s m i t  and  p roces s  a m e s s a g e  

f r o m  p to q if t hey  a re  jo ined by  a d i r ec t  l i n k .  Thus ,  we  can  

de f ine  the  f o l l o w i n g  func t i ons  on p roces so r s  p and  q such  t h a t  

t h e r e  is a d i r e c t  l ink  b e t w e e n  p and  q: 

HG(p,q)  = u p p e r  b o u n d  on t r a n s m i s s i o n  a n d  p r o c e s s i n g  

t i m e  for  messages  b e t w e e n  p and  q.  

LG(p,q)  = l o w e r  b o u n d  on t r a n s m i s s i o n  a n d  p r o c e s s i n g  

t i m e  for messages  b e t w e e n  p and  q. 

VG(P, q) = v a r i a t i o n  in t r a n s m i s s i o n  and  p roces s ing  t i m e  

for m e s s a g e s  b e t w e e n  p and  q 

= Ho(p,q)-Lo(p,q). 

We e x t e n d  H G, L G, and  V O so t h a t  t hey  a p p l y  to  a l l  pa i r s  of 

p roces so r s  by  s e t t i ng  H o ( p , q )  = L o ( p , q )  = V o ( p , q )  = ,o for  

p r o c e s s o r s  p, q such  t h a t  the re  is no d i r ec t  l i n k  f rom p to  q. 

We  n o w  e x t e n d  V 0 so t h a t  i t  a l so  app l i e s  to  s equences  of 

p rocesso r s .  F o r  any  sequence  of p roces so r s  ~r = P0,PI ," ' ,Pn,  

le t  VG(~r ) be the  sum of the  v a l u e s  V o ( p i , P i + l ) ,  for  i f rom 0 

to  n - t .  F i n a l l y ,  le t  UG(p,q)  ( the  uncertainty in t r a n s m i s s i o n  

t i m e  f r o m  p to  q) = min{Vo(~r)  I ~r is a s e q u e n c e  of p roces so r s  

s t a r t i n g  w i t h  p a n d  e n d i n g  w i t h  q ] ,  a n d  l e t  U G = 

m a x { U o ( p , q )  I P,q a re  p rocesso r s  in  G] .  

F o r  ease  of e x p o s i t i o n  in w h a t  fo l lows ,  w e  wi l l  a s s u m e  

t h a t  each  p r o c e s s o r  has  a spec ia l  r eg i s t e r  w h i c h  i n i t i a l l y  con-  

t a i n s  the  v a l u e  0. A t  some  po in t  the  v a l u e  m u s t  be c h a n g e d  

to  1. The  p r o b l e m  is to  ob ta in  an  a l g o r i t h m  w h i c h  g u a r a n t e e s  

t h a i  all. p roces so r s  c h a n g e  the  va lue  to  1 a t  as  c lose  to  the  

s a m e  rea l  t i m e  as poss ib le .  The  a l g o r i t h m  m u s t  be d e t e r m i n -  

i s t ic ,  i n  tha t  w h a t  each  p roces so r  does  can  d e p e n d  o n l y  on i t s  

d u r a t i o n  t i m e r  a n d  m e s s a g e  h i s t o r y .  To m a k e  th i s  p rec i se ,  

n o t e  t h a t  t h e r e  is some  i n h e r e n t  n o n d e t e r m i n i s m  in the  sys -  

t e m  b e c a u s e  of the  u n c e r t a i n t y ,  of the  t r a n s m i s s i o n  t i m e  of 

m e s s a g e s  and  the  r a t e  of d r i f t  of c locks .  Let  a run r of a lgo r -  

i t h m  A in n e t w o r k  G be a p a r t i c u l a r  cho i ce  of t r a n s m i s s i o n  

t i m e s  for  e a c h  message  t r a n s m i t t e d  and  a cho i ce  for  the  r a t e  

of d r i f t  of e a c h  p r o c e s s o r ' s  d u r a t i o n  t i m e r ,  s u b j e c t  to  t he  

c o n s t r a i n t s  d i s c u s s e d  above .  If a g iven  p r o c e s s o r  p p e r f o r m s  

a c e r t a i n  a c t i o n  a a t  a g iven  t i m e  T on i t s  d u r a t i o n  t i m e r  (i .e.  

a t  rea l  t i m e  t such t h a t  D p ( t ) = T )  in a c e r t a i n  run  r, t h e n  

a c t i o n  a wi l l  be  p e r f o r m e d  a t  t i m e  T on i ts  d u r a t i o n  t i m e r  in 

a n y  o the r  r un  r '  w i t h  the  same  m e s s a g e  h i s t o r y ;  i.e. a n y  run  

w h e r e  m e s s a g e s  f rom o ther  p rocesso r s  to p a r r i v e  at  the  

s a m e  t i m e  on p 's  d u r a t i o n  t imer .  C l e a r l y  the t i m e  at  w h i c h  a 

p roces so r  c h a n g e s  the va lue  in i ts  spec ia l  r eg i s t e r  f rom 0 to  1 

wi l l  depend  on the run .  The  e s sen t i a l  t e m p o r a l  imprec i s i on  

i n h e r e n t  in a p a r t i c u l a r  a l g o r i t h m  A is the  w o r s t  case  d i f fer -  

e n c e  in  t he  t i m e s  t h a t  t w o  p r o c e s s o r s  c h a n g e  t he  v a l u e  in  

t h e i r  spec ia l  r eg i s te r ,  w h e r e  the  d i f f e rence  is t a k e n  ove r  al l  

p o s s i b l e  runs .  The e s s e n t i a l  t e m p o r a l  imprec i s i on  in  a ne t -  

w o r k  is the  m i n i m u m  es sen t i a l  t e m p o r a l  i m p r e c i s i o n  ove r  a l l  

p o s s i b l e  a l g o r i t h m s .  M o r e  f o r m a l l y ,  g iven  an  a l g o r i t h m  A, 

-processors  p and  q in G, and  run  r de f ine  

AG,A(p,q,r)  = the  a b s o l u t e  va lue  of the  d i f f e rence  of the  

r e a l  t i m e s  a t  w h i c h  p r o c e s s o r s  p a n d  q 

c h a n g e  the  va lue  of t he i r  s p e c i a l  r eg i s t e r  

in  r u n  r of c l o c k  s y n c h r o n i z a t i o n  a l g o r -  

i t h m  A. 

AG,A(p, q) = maxr lAO(p ,q , r ) ]~  

AG(p,q)  = minA{AO.A(p ,q) l .  

AG, A = maXp,q{AG,A(p,q)].  

A O = minA{AO,A}. 

T h e o r e m  4: Fo r  al l  c o m m u n i c a t i o n  n e t w o r k s  G and  al l  p roc-  

e s so r s  p, q in  G, we  h a v e  Ao(p ,q )  > U o ( p , q ) / 2  ; i.e, the  im-  

p r e c i s i o n  is a t  l eas t  ha l f  the  u n c e r t a i n t y .  

Proof  sketch:  F i x  n e t w o r k  G and  p roces so r s  p and  q in G. 

We  c o n s i d e r  l w o  runs  wh ich ,  as  we  sha l l  show,  a re  i n d i s t i n -  

g u i s h a b l e  f rom the  po in t  of v i ew of a n y  processor .  In  the  

f i r s t  run,  a l l  p roces so r s  a re  s t a r t e d  at  the  s a m e  t ime ,  w i t h  

t h e i r  d u r a t i o n  t i m e r s  sct  t o  0 and  p r o c e e d i n g  at  e x a c t l y  the  

r a t e  of real  t i m e  (i.e. t he re  is no d r i f t ) .  If t he re  is .a  l i nk  f rom 

p r o c e s s o r  r to  p roces so r  r '  in G, then  m e s s a g e s  f rom r to r '  

t a k e  t i m e  L G ( r , r ' ) + m a x ( U G ( P , r ) - U G ( P , r ' ) , 0 ) .  We l eave  i t  to 

the  r eade r  to  c h e c k  t h a t  UG(P , r ) -UG(p , r '  ) < VG(r , r ' ) ,  so a 

m e s s a g e  f r o m  r to  r '  can  indeed  t ake  t h i s  l eng th  of t ime .  

In the  second  run ,  we  wi l l  s t a r t  p r o c e s s o r  p f i rs t ,  and  

s t a r t  e a c h  p r o c e s s o r  r a t  r e a l  t i m e  UG(p , r )  l a t e r  t h a n  p. 

A g a i n ,  e a c h  p r o e e s s o r ' s  d u r a t i o n  t i m e r  r e a d s  0 w h e n  i t  is 

s t a r t e d  and  .proceeds  at  e x a c t l y ' t h e  r a t e  of rea l  t ime .  If r and  

r '  a re  jo ined  by  a l i nk  in G, t h e n  m e s s a g e s  f rom p roces so r  r 

to  r '  t ake  t i m e  L o ( r , r ' ) + m a x ( U G ( P , r ' ) - U G ( P , r ) , 0  ) to  a r r ive .  

A g a i n  i t  is  e a s y  to  c h e c k  t h a t  t h i s  m e e t s  t he  c o n s t r a i n t s  

above ,  and  t h a t  no m e s s a g e  wi l l  r each  a p roces so r  before  i t  

has  been  s t a r t ed .  We now show t h a t  these  two  r u n s  are  in- 

d i s t i n g u i s h a b l e  f rom the  po in t  of v i ew of a n y  p rocesso r ;  i.e. 

t h e y  p roduce  the  s a m e  message  h i s to ry .  
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Suppose r and r '  are joined by a l ink in G, and r sends r '  

a message when r 's dura t ion  t imer  reads T. We first  consider  

the case where  UG(p,r )>UG(P,r '  ). In the first  run, this mes- 

sage will  a r r ive  at r '  in t ime LG(r , r ' )+UG(P,r ) -UG(P,r ' ) ,  when 

the dura t ion  t imer  of r '  reads T+LG(r , r ' )+UG(P , r ) -UG(P , r '  ). 

In the second run,  th i s  m e s s a g e  wi l l  a r r i v e  at  r '  in t ime  

LG(r , r ' ) ,  bu t  aga in  the  d u r a t i o n  t i m e r  of r '  wi l l  r ead  

T + L G ( r , r  ) +  " , , ' U G ( P , r ) - U G ( P , r  ), s i n c e  r is s t a r t e d  

UG(P,r)-UG(P,r ')  ahead of r. The a rgument  in the case where  

UG(P,r )<UG(p,r ' )  is s imi lar ,  and is omi t ted  here. 

Because messages  are  being sent  and received at  the same 

t ime  on each processor ' s  dura t ion  t imer  in both runs,  proe.- 

essors  will  perform the same ac t ion  at  a given t ime  on their  

du ra t ion  t imers  in both runs. Suppose processor  p changes 

the  va lue  of i t s  spec ia l  r e g i s t e r  a t  t i m e  T t on i ts  d u r a t i o n  

t imer ,  whi le  processor  q changes the value at t ime T 2 on its 

dura t ion  t imer .  Let t 1 and t 2 be the real t imes  that  the dura-  

t ion t imers  of p and q read T 1 and T 2 respect ively  in the first  

run.  Note  t h a t  in the  second  run ,  p roces so r  p's d u r a t i o n  

t imer  still  reads  T 1 at t t, but processor  q's dura t ion  t imer  

r eads  T 2 at  t 2+UG(P ,  q) ( s ince  p rocesso r  q was  s t a r t e d  

UG(p,q) la ter  in the second run).  It is now easy to see tha t  

max(  I t2- t l  I, I t2+UG(P,q) - t t  I ) ~. UG(P,q) /2 ,  which gives us 

our result .  [ ]  

Remarks :  Note  that  the lower bound holds even if there  are  

no faults  in the ne twork.  We can also prove a version of this  

resul t  in which  all processors all  s tar t  the second run at the 

same t ime wi th  their  dura t ion  t imers  synchronized,  but then 

the dura t ion  t imers  of some processors  drif t  so that  p's dura-  

t ion t imer  is UG(P,r) ahead of tha t  of r. F rom this point we 

can essen t ia l ly  repeat  the proof above. 

Corol la ry  1: For  all communica t ion  ne tworks  G, we have A G 

_> UG/2 .  

Proof:  Note tha t  A G >_ maXp,qAG(p,q), since we cannot  do 

worse  by a l lowing  dif ferent  a lgor i thms  to synchronize  differ-  

ent  pairs of processors  ra ther  than using the same a lgor i thm 

to synchronize  all pairs.  The resul t  follows now immed ia t e ly  

from Theorem 4 and the def ini t ions.  [ ]  

C o r o l l a r y  2: For  a ny  c lock  s y n c h r o n i z a t i o n  a l g o r i t h m  in 

which  there  are  at  least  two values  which all logical clocks 

t ake  at  some t ime,  there  is a value T such tha t  the real t ime 

at  which two processors  first  read T in some run differs by >_ 

U o / 2 .  

Theorem 5: For all e > 0, there  ex is t  a ne twork  G such tha t  

A G _> UG-e. 

Proof:  This resul t  follows from a resul t  of [LL], where  it is 

shown tha t  if G i s ' a  c o m p l e t e l y  c o n n e c t e d  g raph  w i t h  n 

nodes, such tha t  for all processors  p, q we have VG(p,q)=8,  

so tha t  UG=8, then A G = ( ( n - 1 ) / n ) d = U G - ( I / n ) 8 .  This c lear ly  

gives us the desired result .  []  

Theorem 5 is essent ia l ly  the best  we can do, as the fol lowing 

theorem shows. 

Theorem 6: There exis ts  a clock synchroniza t ion  a lgor i thm 

A such that  for all communica t ion  ne tworks  G and processors  

p and q in G, AG,A(p, q) _< UG(p,q); i.e. the imprecis ion is no 

grea ter  than the uncer ta in ty .  

Proof:  The clock synchroniza t ion  a lgor i thm of [HSS] can be 

used to guarantee  tha t  for all T, there  is a T ' > T  such that  the 

real t imes at  which the logical  clocks of processors read T' 

differ  by at  most  U G in any run. Each processor can thus use 

its logical clock to decide when to change the value in its 

special register .  D 

We remark  that  the a lgor i thm of [HSS] works  even in the 

presence of faults.  However,  we seem to require  au then t ica -  

t ion if we are  to keep the imprecis ion no greater  than the 

uncer ta in ty  in the presence of faults.  

Corollary 3: For all  communica t ion  ne tworks  G, A G <_ U G. 

Final ly ,  we observe that  we can easi ly  t rans la te  the re- 
i 

suits  of Theorem 4 to bounds on the t ightness  of synchroniza-  

t ion for a lgor i thms  which achieve Linear  Envelope Synchroni-  

zation. 

Theorem 7: If A achieves  l inear  envelope synchroniza t ion  in 

communica t ion  ne twork  G wi th  bound B and lower envelope 

c D ( t ) + d ,  then B >_ cRUG/ 2 .  

Thus we can see tha t  there is a t radeoff  be tween t ight-  

ness of clock t ime synchron iza t ion  and t ightness  of the l inear  

envelope. 
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