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ABSTRACT: We show that the minimum possible size 

of an n-superconcentrator with depth 2k~4 is e(nX(k, 

n)), where k(k, .) is the inverse of a certain 

function at the k-th level of the primitive 

recursive hierarchy. It follows that the minimum 

possible depth of an n-superconcentrator with linear 

size is 8(~(n)), where ~ is the inverse of a function 

growing more_rapidly than any primitive recursive 

function. Similar results hold for generalizers. 

We give a simple explicit construction for a 

(dl...dk)-generalizer with depth k and size 

(dl+...+dk)dl...dk. This is applied to give a simple 

explicit construction for a generalized n-connector 

with depth 2k-3 and size (2dl+3d2+...+3dk_l+2dk) 

dl...d k. These are the best explicit constructions 

currently available. We also show that, for each 

fixed k~2, the minimum possible size of a 

generalized n-connector with depth k is ~(n l+I/k) 
and O((n log n)l+I/k). 

i. Introduction 

The objects of our study in this paper are 

interconnection networks of various types. An 

n-network is an acyclic directed graph with n 

distinguished vertices called inputs and n other 

distinguished vertices called outputs. We shall be 

concerned with the minimum possible size (number of 
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edges) and depth (number of edges in the longest 

path f~om an input to an output) that n-networks 

with various connectivity properties can possess. 

The properties that we shall be most interested in 

are the following. An n-superconcentrator is an 

n-network such that, for any subset of the inputs 

and any equinumerous subset of the outputs, there 

exist vertex-disjoint paths joining the chosen 

inputs to the chosen outputs. Ann-generalizer is an 

n-network such that, for any assignment of 

non-negative integers summing to at most n to the 

inputs, there exist vertex-disjoint trees joining 

each input to the assigned number of distict 

outputs. An n-connector is an n-network such that, 

for any one-to-one correspondence between certain 

inputs and distinct outputs, there exist 

vertex-disjoint paths joining each chosen input to 

the corresponding output. Finally, a generalized 

n-connector is an n-network such that, for any 

one-to-many correspondence between certain inputs 

and disjoint sets of outputs, there exist 

vertex-disjoint trees joining each chosen input to 

the corresponding set of outputs. 

An n-crossbar is an n-network with depth 1 and 
2 size n , with an edge joining each input to each 

output. For all of the problems considered here, a 

crossbar provides a solution with small depth and 

large size. Our goal is to find alternate solutions 

with larger but limited depth and smaller size. 

These networks, which are the sl~ject of an 

extensive literature, are relevant to theoretical 

computer science in several ways. Firstly, their use 

has been proposed as components of parallel 

computers (see Ofman [15] and Galil and Paul [7]); 
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upper bounds for networks thus give upper bounds for 

parallel computations. Secondly, they have been used 

in the construction of graphs that are hard to 

pebble (see Paul, Tarjan and Celoni [16], Lengauer 

and Tarjan [9] and Pippenger [23]); here, upper 

bounds for networks give lower bounds for pebbling. 

Finally, oblivious computations for many naturally 

occuring functions give rise to such networks (see 

Valiant [28] and Tompa [27]); here, lower bounds for 

networks give lower bounds for computations. Our 

interest in networks with limited depth is 

appropriate to the study of circuits with limited 

depth but unbounded fan-in ({ee, for example, Furst, 

Saxe and Sipser [5]). In particular, our lower 

bounds for weak superconcentrators (see Section 2 

below) can be used to show the optimality of recent 

upper bounds by Chandra, Fortune and Lipton [2, 3] 

for the size and depth of circuits for binary 

addition. 

2. Superconcentrators with Limited Depth 

Let d(n) denote the minimum possible size of an 

n-superconcentrator and let dk(n ) denote the minimum 

possible size of an n-superconcentrator with depth 

at most k. 

Valiant [28] showed that d(n)=O(n). He showed, in 

fact that dk(n)=O(n ) for k=O(n~), for some 0<~<I; 

Pippenger [18] improved this to k=O(log n). The 

sharpest upper bound to size currently available, 

due to Bassalygo [i], is 

dk(n ) ~ 36n + O(log n) 

with k=O(log n). The sharpest lower bound currently 

available, due to Lev and Valiant (see Lev [i0]), is 

d(n) ~ 5n + O(log n). 

depth i, we have dl(n)=n2, trivially. For For 

depth 2, Pippenger [22] showed that 

d2(n) = 0(n(log n) 2) 

and 

d2(n) = ~(n log n). 

To describe our results on superconcentrators of 

greater depth, we shall need to define some very 

rapidly and very slowly growing functions. Following 

Tarjan [25], let us define 

A(O, j) = 2j for j~l, 

A(i, I) = 2 for i~l, and 

A(i, j) = A(i-l, A(i, j-l)) for iZl and jZ2. 

For i~0, define 

k(i, X) = min {j: A(i, j)Zx}. 

Then ~(0, x)=Fx/2 ] and 

k(i, ×) = min {j: k(J)(i-l, x)Nl} 

for i~l, where k(1)(i, x)=k(i, x) and k(J)(i, 

x)=k(i, k(J-l)(i, x)) for j~2. The function k(0, x) 

behaves roughly like x/2, k(l, x) like log 2 x, k(2, 

x) like log x and so forth. Define 

8(x) = min {i: A(i, i)~x}. 
Then 

B(x) = min {i: k(i, x)Ni}. 

The function ~ grows more slowly than the inverse of 
any primitive recursive function. 

Theorem i: For kR2, 

d2k(n) = O(nl(k, n)). 
Sketch of Proof: An (!, ~)fpartial 

n-superconcentrator is an n-network in which, for 

any b+iNmNa, any set of m inputs and any set of m 

outputs, there exist m-b vertex-disjoint paths 

joining chosen inputs to chosen outputs. Let dk(n , 

a, b) denote the minimum possible size of an (a, 

b)-partial n-superconcentrator with depth at most k. 
The inequalities 

dk(n) N dk(n, n, 0), 

dl(n, n, tn/2j) N n, 

dk(a, a, c) N dk(n , a, b) + dk(n , b, c) and 

d2(n, a, 0) N 2na are immediate. 

The basic building blocks for our construction of 

partial superconcentrators will be concentrators. An 

(n, m, £)-concentrator is a network with n inputs 

and m outputs such that, for every set of at most £ 

inputs, there exist vertex-disjoint paths joining 

the chosen inputs to outputs. Let ck(n , m, £) denote 

the minimum possible size of .an (n, m, 

£)-concentrator with depth at most k. 

Lemma i.i: If n~2£ and m~£+l, then 

cl(n , m, £) N 9n(log (n/£))/(log (m/£)). 

The proof is a standard probabilistic argument, as 

in Pinsker [17]. This is the only non-constructive 

argument in this section. All further networks will 

be built from concentrators by explicit 

constructions. This lemma is, to within a constant 

factor, the best possible, as has been shown by 

Nakamura and Masson [13]. 

To obtain superconcentrators of depth 2, we shall 

use the inequality 

d2(n , £, Lm/2j) N 2cl(n , m, £). 

Using this inequality twice, we obtain the first 

part of the following proposition. 
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Proposition i.I: If r>2, then 

d2(n , Ln/rj , Ln/2rd) < 135n~(i, r), 

d2(n , n, Ln/rj) < 135n(~(i, r)) 2 

and 

d2(n ) < 135n(~(I, n)) 2. 

The remaining two parts are easy consequences of the 

first. This proposition gives an alternate proof of 

the upper bound in Pippenger [22]. 

To obtain superconcentrators of depth 4 and 

greater, we shall use a special case of Lemma i.I. 

Lemma 1.2: If n>2£, then 

cl(n , L(n£)i/2j, £) < 27n. 

We shall also use the following key inequality, 

valid for aSm<n: 

d2k(n , a, b) < 2cl(n , m, a) + d2k_2(m , a, b). 
An important consequence of this inequality together 

with Lemma 1.2 and Proposition I.i is the following. 

Lemma 1.3: If r->2, then 

d4(n , un/r3, Ln/4r2j) < 2400n. 

Us ing this lemma twice together with the key 

inequality, Lemma 1.2 and Proposition I.i, we obtain 

the first part of the following proposition. 

Proposition 1.2: If r>2, then 

d4(n , tn/rj , Ln/2rj ) < 5000n, 

d4(n , n, Ln/r]) < 5000n%(2, r) 

and 

d4(n ) < 5000nX(2, n). 
Finally, using Lemma 1.3, the key inequality, 

Lemma 1.2 and Proposition 1.2, we obtain the first 

two parts of the following proposition by 

simultaneous induction on k. 

Proposition 1._3: If r->2, then 

d2k(n , Ln/rj, Ln/A(k-l, r)j) <- 5000n, 

d2k(n , n, Ln/rj) < 5000n%(k, r) 

and 

d2k(n ) ~ 5000n%(k, n). 
This completes the proof of Theorem I. a 

Combining this result with a result of Bassalygo 

[i], we obtain linear-sized superconcentrators with 

the best available constant in the size bound, but 

much smaller depth. 

Corollary I.I: For some k=2B(n)+0(log B(n)), 

dk(n ) <- 36n + O(n/B(n)). 

Proof: Bassalygo [i] shows that 

< d2k.2(FSn/9] ) + 16n +i0. d2k(n) 

this recurrence F21og9/5 ~(n) l times, then Using 
applying Theorem 1 with k=2~(n), yields the 

corollary, o 

Let us say that a network is synchronous if all 

paths from an input to an output have the same 

length. In a synchronous network with depth k, the 

vertices are partitioned into (karl) ranks (the 

inputs form rank 0 and the outputs rank k), and the 

outputs are partitioned into k stages (the edges 

directed out of inputs form stage 1 and the edges 

directed into outputs stage k). Synchronous networks 

have obvious relevance in situations where 

"pipelining" is desired. Let d (n) denote the 

minimum possible size of a synchronous 

n-superconcentrator. 

Corollary 1.2: 

d (n) = O(n~(n)). 

This is an immediate consequence of Corollary i.i 

and the following easy lemma. 

Lemma 1.4: 

d (n) S kdk(n ). 

We shall give lower bounds for networks having a 

weaker property than that of being a 

superconcentrator. Consider n-networks in which the 

inputs and ouputs are regarded as elements from the 

set {i, ..., n}. We shall say that a set A=(al, ..., 

am}Of inputs and a set B=(bl, ..., bm} of outputs are 

interleaved if al<bl<...<am<bm . A weak 
n-superconcentrator is an n-network such that, for 

any subset of the inputs and any equinumerous and 

interleaved set of outputs, there exist 

vertex-disjoint paths joining the chosen inputs to 
the chosen outputs. 

Let w k (n) denote the minimum possible size of a 

synchronous weak n-superconcentrator with depth 

exactly k. 

Theorem 2: For k~l, 

W2k (n) = ~(n%(k, n)). 
Sketch of Proof: We shall begin with a technical 

lemma. 

Lemma 2.1: For every k~l and every x~l, there exist a 

set H and functions Cl, ..., c k such that the 

following conditions are satisfied. 

(i) For all hsH, Cl(h)~l ..... Ck(h)Zl. 

(2) For all hsH, Cl(h)...Ck(h)Sx. 

(3) For all y~l, 

ZhsH,Ck(h)<y c k ~ 2y. 

(4) For all yZl, 

EhsH,Ck(h)~y i/Ck(h ) ~ 2/y. 

(5) For all IKj~k-i and y~l, 
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1 / c j ( h ) . . . c  k l(h) S 1. ZhsH,cj(h)<y~_cj(h)...Ck(h ) 
(6) We have 

Zhe H i/Cl(h)...Ck_l(h ) ~ k(k, x)/6-1. 
Sketch of Proof: For each £Zl, we shall construct a 

labeled ordered rooted tree Th(£ ). The tree Tk(£) 
will have height k (every path from the root to a 

leaf will have length k) and its edges will be 

labeled with integral powers of 2. The out-degree of 

the root will be £. The out-degree of every other 

vertex that is not a leaf will be equal to the label 

of the unique edge directed into that vertex. At 

each level of the tree (edges directed out of the 

root are at level k and edges directed into leaves 

are at level i), the label of the first edge to be 

created will be i. To determine the label of the j-th 

edfe to be created at a given level, consider the 

(j-l)-st edge created at that level and consider all 

paths starting with that edge and continuing to a 

leaf. The label of the j-th edge will be 2 times the 

maximum over all such paths of the product of the 

labels of the edges on that path. This completes the 

specification of Tk(£). 

It can be shown that the maximum over all paths 

from the root to a leaf of the product of the labels 

of the edges on that path is as most A(k, 6£). Choose 

~=L(X(k, x)-l)/6jZX(k, x)/6-1, let H be the set of 

leaves in Tk(£) and let Cl(h) ..... Ck(h) be the 
successive labels of the edges on the path from the 

root to h. The conditions of the lemma follow easily 

from the construction of Tk(£). 
Let G be a synchronous weak n-superconcentrator 

with depth 2k and size W2k (n). If v is a vertex in 

G, let fv and gv denote the in-degree and 

out-degree, respectively, of v. For 0Sj~2k, let Vj 

denote the set of vertices in rank j. Then 

W2k (n) = ~l~j~k Ev~Vj fv + EkSj~2k-i Ev~Vj gv" 

It remains to estimate these sums from below. 

Set x=n/2 and let H and c I, ..., c k be as in Lemma 

2.1. For each hsH, set p(h)=i/Cl(h)...Ck(h). Let A 

be a random sBbset of the inputs obtained by taking 

each of the inputs {i, ..., n} independently with 

probability p(h). Let B be a random subset of the 

outputs obtained by taking each of the outputs {I, 

..., n} independently with probability p(h). From A 

and B, we can obtain interleaved, subsets A' and B' by 

a "greedy algorithm" and show that the expected size 

of A' and B' is at least (np(h)-l)/2. It follows that 

there is a set ~ of vertex-disjolnt paths joining A 

and B with E(l~l)~(np(h)-l)/2. 

With each path ~=(v0, ..., V2k ) in ~ we shall 
associate a vertex w(~) in the following way. If 

fvl>Cl(h), then w(~)=v I. If fvlSCl(h) but 

g >c.(h) then w(~)--V2k_l. For 2SjSk-I, if 
V2k_l i ' 

fvlSCl(h), ..., fvj_l~Cj_l(h) and gv2k_l~Cl(h), .. , 

gv2k_j+iNCj_l(h) but fvj>Cj(h), then w(~)=vj. For 

fvlSCl(h), Sc.(h)j and 2~jSk-l, if "''' fvj 

- .. ~c. l(h) but gv2k_l<Cl(h), ., gv2k_j+l J- 

gv2k_j>cj(h), then w(~)=V2k.j. Finally, if 

fvlSCl(h), fVk_l~Ck_l(h) and _ • .., gv2k.l<Cl(h), ..., 

gvk+iSCk_l(h), then w(~)=v k- 

Let W be the set of vertices w(~) associated with 

paths ~ in ~. Since ~ passes through w(~), and since 

the paths in ~ are vertex-disjoint, the associated 

vertices in W are distinct. Thus IWI=I~I and 

E(IwI)Z(np(h)-I)/2. 

If v. is a vertex in V. for some ISjSk, let X 
J J v. 

J 
denote the set of inputs v 0 that are joined to vj by 

a path (v 0 .... , vj) for which fvlSCl(h) .... , 

f SCj_l(h). If ~=IXv.l, then ~fv. 
vj-i j J 

Cl(h)...Cj_l(h). If vj is a vertex in V2k_j for some 
ISj~k, let Yv. denote the set of outputs V2k that are 

J 
joined to vj by a path (vj, ..., V2k ) for which 

- , .. Sc. l(h). If ~=IY v l, gv2k_l<Cl (h) ", gv2k_j+l J- j 
then ~gv.Cl(h)...Cj.l(h ). For lSj~k-l, if v. 

j J 
appears in W, then Xv. meets A. The probability of 

J 
this event is l-(l-p(h))$S$p(h) (using Bernoulli's 

inequality). This probability is, of course, also at 

most i, Thus the expected number of vertices in VI, 

..., Vk_ I that appear in W is at most 

EiSj~k'l ~veVj,fv>cj(h ) 

min {fvCl(h)...Cj_l(h)p(h), I}. 

Similarly, the expected number of vertices in Vk+l, 

• .., V2k_l that appear in W is at most 

~ISjSk-I ~v~V2k_j,gv>cj(h) 

min {gvCl(h)...Cj_l(h)p(h), i}. 
Finally, a vertex v k in V k can appear in W only if 

X meets A and Y meets B. Since A and B are 
v k v k 
independent random variables, the probability of 

this event is (l-(l-p(h))~)(l-(l-p(h))~)~p(h) 2 
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S((~+n)p(h)/2) 2 (using the inequality between 
geometric and arithmetic means). This probability is 

again also at most i. Thus the expected number of 
vertices in V k that appear in W is at most 

ZVKVk min {((fv+gv)Cl(h)...ek_l(h)p(h)/2) 2, i}. 

Combining theseupper bounds for the expected number 

of vertices in W with the lower bound derived 
previously, we obtain 

~ISjSk-I ZvcVj,fv>cj(h ) 

min {fvCl(h)...Cj_l(h)p(h), i} 

+ .El<j<k_ I ZvZV2k.j,gv>cj(h) 
min {gvCl(h)...Cj_l(h)p(h), i} 

+ ~VCVk 
min {((fv+gv)Cl(h)...Ck_l(h)p(h)/2) 2, i} 

Z (np(h)-l)/2. 

We shall now multiply the preceding inequality by 

Ck(h ) and sum over hcH. After interchanging the 
order of summation and using p(h)=I/Cl(h)...Ck(h), 
we obtain the ~ey inequality 

El~jSk-i EvcVj EhcH,cj(h)<f v 

min {fv/cj(h)...Ck.l(h), Ck(h)} 

+ El~j<k_ I EvCV2k_j EheH,cj(h)<gv 

min {gv/cj(h)...Ck_l(h), Ck(h)} 

+ ZvzV k ~hcH 

min {((fv+gv)/2)2/Ck(h), Ck(h)} 

e Eh¢ H Ck(h)(np(h)-l)/2. 
Using Lemma 2.1 to estimate the sums in this 
inequality, we can show that 

W2k (n) e n~(k, (n/2))/144, 

which completes the proof of Theorem 2. o 

Let w (n) denote the minimum possible size of a 
synchronous weak n-superconcentrator. Clearly, 
w (n)Sd (n). 

Corollary 2.1: 

w (n) = ~(nB(n)). 
The proof is immediate from Theorem 2. 

Let wk(n ) denote the minimum possible size of a 
weak n-superconcentrator with depth at most k. 
Clearly, wk(n)<dk(n). 

Corollary 2.2: If k is a function of n such that 

wk(n) = O(n), 
then k=~(~(n)). 

The proof is immediate from Corolary 2.1 and the 

analogue for weak superconcentrators of Lemma 1.4. 

Let e(n) denote the minimum possible size of an 

n-generalizer and let ek(n ) denote the minimum 
possible size of an n-generalizer with depth at most 
k. 

Pippenger [19] showed that ek(n)=O(n ) for some 

k=O((log)2). The sharpest upper bound to size 
currently available, due to Bassalygo [I], is 

ek(n ) K 79.9n + O(n a) 

with k=O(n =) for some 0<s<l. For depth i, we again 

el(n)=n2 , trivially. For greater depths, we have 

prove the following bounds. 
Theorem 3: 

e2(n) = 0(n(log n)3). 
Theorem 4: For k~2, 

e2k(n) = O(n(~(k, n))2). 

Let e k (n) denote the minimum possible size of a 
synchronous n-generalizer with depth exactly k. 

TheoremS: For k~l, 
w 

e2k (n) = ~(n%(k, n)). 
The proofs of these three theorems are similar to 

those of the analogous results for 

superconcentrators and will be omitted in this 

preliminary version. 

3. A Simple Explicit Construction for Generalizers 

Extending work by Ofman [15] and Garmash and Shot 

[8], Thompson [26] showed by a simple explict 

construction that for dl~2 , ..., dk~2, 

e2k_l(dl...dk) ~ (dl+2d2+...+2dk)dl...dk • 
(We have not defined the notion of a "simple 

constructlon precisely. A somewhat explicit " " 
arbitrary hut technically useful definition is that 

a Turing machine running in space O(log n) can write 
out a description of an n-network.) Chung and Wong 
[4] showed by a quite different explicit 

construction that 
ek(2k'im ) S (2(k-l)+m)2k'Im. 

We shall present a result that improves the 

construction of Thompson [26] and extends the 

construction of Chung and Wong [4]. 
Theorem 6: By a simple explicit construction, for 

dlZ2, ..., dk~2, 

ek(dl...d k) S (dl+...+dk)dl...d k. 
The heart of the proof will be a proposition 

concerning the coloring of balls distributed among 
boxes. Consider dm boxes 0, ..~, dm-l. Let them be 
cyclically assigned the d colors 0, ..., d-l, so 

that box i is assigned color i (modulo d). An (d, 
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m)-distributipn is an assignment of dm balls to 

these dm boxes (the balls are indistinguishable, so 

all that matters is the number of balls assigned to 

each box). A coloring of a (d, m)-distribution is an 

assignment one of the d colors O, ..., d-I to each of 

the dm balls (since the balls are indistinguishable, 

all that matters is the number of balls of each color 

in each box). A coloring is consistent if, among any 

d cyclically consecutive boxes i-d+l, ..., i (modulo 

dm) at most one contains a ball of color i (modulo 

d). A coloring is balanced if each of the d colors is 

assigned to m balls. 

P rroposition 6.1: For every (d, m)-distribution, 

there is a consistent and balanced coloring. 

For the proof, we shall need the notion of a 

partial coloring. 

For 0SkSd(m-l), a k-partial coloring of a (d, 

m)-distribution is an assignment of the colors to 

some of the balls such that only boxes 0, ..., k-i 

contain uncolored balls. (A 0-partial coloring is 

simply a coloring.) A partial coloring is consistent 

if, among any d cyclically ccnsecutive boxes i-d+l, 

• .., i (modulo ~m), if any contains an uncolored 

ball, then none contains a ball of color i (modulo d) 

and, in any case, at most one contains a ball of 

color i (modulo d). (A 0-partial coloring is 

consistent if and only if, regarded as a coloring, 

it is consistent. Thus our definitions of 

"consistent" are consistent.) 

Let a=(a0, ..., ad_l) be a sequence of d integers 

satisfying a0~0, ..., ad_l~ 0 and a0+...+ad_l=dm. For 
each 0~iSd-l, consider the smallest integer IShSd 

such that ai.h+l+...+aiShm (subscripts modulo d). 

Define A(a, i)to be hm-(ai_h+l+...+ai) (subscripts 

modulo d) and define R(a, i) to be the set {i-h+l, 

• .., i} (modulo d). 

Let X be a partial coloring of a (d, 

m)-distribution. For 0SiSd-l, let Ai(X ) denote the 

number of uncolored balls in boxes of color i and let 

Bi(x). denote the number of balls of color i. Let 

ai(X)=Ai(X)+Bi(X) and let bi(X)=Ai(X)+Bi.l(X ) 

(subscripts modulo d). Then ao(X)+...+ad_l(X)=dm and 

bo(X)+...+bd.l(X)=dm. We shall say that X is 

promising if, for all OSiSd-l, R(a, i) is contained 

in R(b, i). 

Lemma 6.1: For O~kSd(m-l), every consistent and 

promising k-partial coloring X of a (d, 

m)-distributlon can be extended to a consistent and 

balanced coloring. 

Sketch of Proof: By double induction on d and m. If 

d=l, the lemma is trivial. Suppose that d~2. 

If k=O, then X is a consistent coloring and it 

remains to show that it is balanced. For O~i~d-l, 

Ai(X)=O and we must show that for O~i~d-l, Bi(X)=m. 

If this is not the case, let i be such that B.(X)>m z 
but Bi_l(X)~m. Then IR(a(X), i)I~2 but IR(b(X), 

i) l=l, contradicting the assumption that X is 

promising. Suppose that k~l. 

Let i be the color of box k-l. If i belongs to 

R(a(X), i-l) or there are fewer than A(a(X), i-l) 

uncolored balls in box k-l, then color all uncolored 

balls in box k-i with color i-l. It can be shown that 

the resulting (k-l)-partial coloring is consistent 

and promising, and thus by inductive hypothesis can 

be extended to a consistent and balanced coloring, 

completing the proof in this case. 

If i does not belong to R(a(X), i-l) and there are 

at least A(a(X), i-l) uncolored balls in box k-l, 

then color A(a(X), i-l) of these balls with color 

i-l. For 0Sj~d-l, move all balls with color j to the 

cyclically succeeding box with color j. Partition 

the boxes into two classes: those with colors in 

R(a(X), igl) and those with other colors. It can be 

shown that the boxes in the each class form a 

consistent and promising k'-partial coloring of a 

(d', m)~distribution for some ISd'Sd-I and 

0Sk'Sd'(m-l). By inductive hypothesis, these partial 

colorings can be extended to consistent and balanced 

colorings. Restoring all balls to their initial 

positions yields a consistent and balanced extension 

of X and completes the proof of the lemma. Q 

Proof o_ff proposition 6.1: By induction on d. If d=l, 

the proposition is trivial. Suppose that d~2. 

If there do not exist d cyclically consecutive 

empty boxes, let 0~i~d-i be a color such that there 

are £Sm balls in boxes of color i. Color these £ 

balls with color i. There must be at least m-£ empty 

boxes of color i. For each such empty box, at least 

one of the d-i cyclically preceding boxes must 

contain at least one ball. Color m-£ such balls with 

color i. At this point we have colored m balls with 

color i. Furthermore, removing all boxes and balls 

with color i yields a (d-l, m)-distribution which, 

by inductive hypothesis, has a consistent and 

balanced coloring. Restoring the boxes and balls 

with color i yields a consistent and balanced 
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coloring of the original (d, m)-distribution and 

completes the proof in this case. 

If there exist d cyclically consecutive empty 

boxes, cyclically shift the boxes and their contents 

so that boxes d(m-l), ..., dm-i are empty. This 

yields a consistent and promising (d(m-l))-partial 

coloring which, by Lemma 6.1, can be extended to a 

consistent and balanced coloring. Restoring the 
boxes and their contents to their initial positions 

yields a consistent and balanced coloring of the 

original (d, m)-distribution and completes the proof 

of Proposition 6.1. [] 

Proof of Theorem 6: By induction on k. If'k=l, the 

theorem is established by a dl-Crossbar. For k~2, 

let d=d i and m=d2...d k. Let F be the (dm)-network 

with depth i and size d2m having inputs {0, ..., 

dm-l}, outputs {0, ..., dm-l} and, for 0~i~dm-l, 

edges from input i to outputs i, ..., i+d-i (modulo 

dm). By inductive hypothesis, let G be a 

(d2...dk)-generalizer with depth k-i and size 

(d2+...+dk)d2...d k. Let H be the (dm)-network 

obtained by identifying, for each 0SjSd-I, the 

outputs of F that are congruent to j modulo d with 

the inputs of a copy of G. The network H has depth k 

and size d2m + d(d2+...+dk)d 2 .... d k = 

(dl+...~k)dl...d k and can be shown, using 

Proposition 6.1, to be a (dl...dk)-gene[alizer. [] 

7. Generalized Connectors of Limited Depth 

Let f(n) denote the minimum possible size of an 

n-connector, and let fk(n) denote the minimum 

possible size of an n-connector with depth at most 

k. 

Using a classical construction due to D. Slepian, 

A. M. Duguid and J. Le Corre, Pippenger [20] showed 

that 

f2k_l(n) S 2k(i/2) I/k n l+I/k + O(n) 

for each fixed k, and that 

fk(n) S 6n log 3 n + O(n(log n) I/2) 

for some k=21og 3 n + O(log log n). The second of 

these results is within a constant factor of the 

best possible; Pippenger [21] has shown that 

f(n) Z 6n log 6 n + 0(n). 

For the first result, the sharpest lower bound 

available is 

fk(n) ~ kn l+I/k, 

due to Pippenger and Yao [24]. Note that the 

exponent l+I/k applies to networks of depth 2k-i in 

the upper bound, but depth k in the lower bound. 

Pippenger and Yao [24] have shown that the lower 

bound lies closer to the truth, in that 
fk(n) = O(n l+I/k (log n) I/k) 

for each fixed k. 
Let g(n) denote the minimum possible size of a 

generalized n-connector, and let fk(n) denote the 

minimum possible size of a generalized n-connector 

with depth at most k. 

Clearly, 
g(n) ~ f(n) ~ 6n log 6 n + O(n). 

and 

gk ~ fk (n) ~ knl+i/k'" 

No lower bounds better than these are yet available. 

If the outputs of an n-generalizer are identified 

with the inputs of an n-connector, the resulting 

network is a generalized n-connector. Thus, 

g(n) ~ e(n) + f(n) 

and 

gk+£(n) ~ e k + f£(n). 
Using these inequalities to combine our bounds for 

generalizers in the preceding section with the 

bounds for connectors cited above (together with an 

ad hoc trick for reducing depth and size), we obtain 

the following result. 

Corollary6.~: By a simple explicit construction, 

g3k_2(n) ~ 3k(4/9) I/k n l+I/k + O(n) 

for each fixed k, and 

g3k_2(n) ~ 9n log 3 n + O(n(log n) I/2) 

for some k=log 3 n + O(log log n). 

For completeness, two other explicit 

constructions for generalized connectors, not 

involving generalizers, should be mentioned. 

Firstly, Masson and Jordan [12] have given a 

construction that can be used to show that 
g3(n) = O(n5/3). 

Secondly, Nassimi and Sahni [14] have given a quite 

different construction that can be used to show that 
gk(n) = O(knl+I/°(k)), 

where c(k) is defined by d(1)=l and the recurrence 

~(k) = i + maxl<j<k_ 1 (i - l/j) d(k-j). 
Both constructions give generalized n-connectors 

with depth 3 and size 0(n5/3); no other explicit 

constructions for generalized connectors with depth 

3 are known. For kZ4, c(k)<L(k+2)/3 j, so the 

construction of Nassimi and Sahni is inferior to 

Corollary 6.1 above. In fact, o(k)=o(kl/2), so that 

even for large k, their construction gives only 

gk(n) = O(n(log n) 2) 
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for some k=0((log n)2). 

Our final result extends the upper bound of 

Pippenger and Yao [24] from connectors to 

generalized connectors. 

Theorem 7: For each fixed k, 

gk(n) = 0((n log n)l+I/k). 

Sketch of Proof: An ([, s,)-restricted generalized 

n-connector is an n-network in which, for any 

one-to-many correspondence between certain inputs 

and disjoint sets of outputs in which each input i 

corresponds to d(i)Er outputs, there exist 

vertex-disjoint paths joining each input i with 

d(i)~s+l to d(i)-s corresponding outputs. Let gk(n, 

r, s) denote the minimum possible size of an (r, 

s)-restricted generalized n-connector with depth at 

most k. The inequalities gk(n) ~ gk(n, n, 0), gk(n, 

r, t) ~ gk(n., r, s) + gk(n, s, t) and g2(n, r, 0) 
2nLn/r ] are immediate. 

An (a, b)-partial (r, s)-restricted generalized 

n-connector is an n-network in which, for any 

b+iNm~a and any one-to-many correspondence between 

certain inputs and disjoint sets of outputs in which 

each input i corresponds to d(i)~r outpute and m 

inputs i correspond to d(i)~s+l outputs, there exist 

vertex-disjoint trees joining m-b inputs i to d(i)-s 

corresponding outputs. Let gk(n, r, s, a, b) denote 

the minimum possible size of an (a, b)-partial (r, 

s)-restricted generalized n-connector with depth at 

most k. The inequalities gk(n; r, s) ~ gk(n, r, s, 

Ln/rj, 0), gk(n, r, s, a, c) S gk(n, r, s, a, b) 

+ gk(n, r, s, b, e) and g2(n, r, s, a, 
0) ~ 2na are immediate. 

The basic building blocks for our construction of 

partial restricted generalized connectors will be 

strong couplers, which we shall adapt from Pippenger 
and Yao [24]. 

A set P={X1, ..., X r} is an x-packing of a set A 

if XI, ..., X are mutually disjoint x-element r 
subsets of A. An x-packing P of A is tight if 
IPI~[A[/16. 

If G is a network and X a set of inputs, let G(X) 

denote the set of outputs reachable through paths in 
G from inputs in X. 

An g-network G is an (g, x, y)-coupler if, for 

every tight x-packing P={X1, ..., X r} of the inputs 

of G, there exists a tight y-packing Q=(Y1 .... ' Ys }' 

of the outputs of G such that, for every l~jEs, there 

exists l~i~r such that Y'3 is contained in G(Xi). 

A synchronous m-network G is a strong (m, x, 

y)-eoupler if, for every m/2SgSm, each g-network 

obtained from G by deleting m-g vertices from each 

rank (together with all edges incident with these 

vertices) is an (g, x, y)-coupler. Let hk(m , x, y) 

denote the minimum possible size of a strong (m, x, 

y)-coupler with depth at most k. 

Lemma 7.1: If 512x in m ~ y ~ m/16, then 

hl(m , x, y) N 32my/x. 

The proof is almost identical to the proof of 

Proposition 3.1 in [24]. 

Using the inequality 

hk+£(m, x, z) N hk(m , x, y) + h~(m, y, z), 
we have the following lemmas. 

Lemma Z.~: If 512 In m ~ x and x k-I ~ m/16, then 

hk_2(m , x, x k-l) S 32(k-2)mx. 

Lemma 7.3: If 512 in m S x and xy k-3 S m/16, then 

hk_3(m , x, xy k-3) N 32(k-3)my. 

These lemmas allow us to prove the following 
propositions. 

Proposition 7.1: For every k~2, there is a function 

~(r, n)=O((r log n) k-l) such that 

gk(n, r, Lr/2j, a, La/2j) = O(n(ar log n) I/k) 

for all n, r, and a such that arNn and a~(r, n). 

Proof: Choose x=F((7/2)ar In n) I/kl. The conditions 

x~(7/2)r loge/2 n, x~(15/2) loge/2 n, xZ512 in ar 

and xk-INar/16 can be ensured by the hypothesis 

a~(r, n) for som&.function ~(r, n)=O((r log n)k-l). 

By Lemma 7.2, there exists a strong (ar, x, 

xk-l)-eoupler G with depth k-2 and size at most 

32(k-2)arx. Let the n-network H be obtained by 

adjoining an edge from each input of H to each input 

of G independently with probability p=8x/ar and an 

edge from each output of G to each output of H 

independently with probability p. The depth of H is 

k. It can be shown (along the lines of the proof of 

Proposition 4.1 in [24]) that with probability at 

least 1/2, the size of H is at most 32(k-2)arx + 

4narp = O(n(ar log n) I/k) and H is an (a, 

La/2j)-partial (r, tr/2j)-restricted generalized 
n-connector. D 

Proposition l'~: For every k~3, there is a function 

~(n)=O((log n) k-2) such that 

gk(n, r, Lr/2j, a, La/2j) = O(n(a log n) I/(k-l)) 

for all n, r and a such that arSn and a~(n). 

Proof: Choose x=Fr((15/2)a in n) I/(k-l)1 and 

y=r((15/2)a in n) I/(k-l)q The conditions x~(7/2)r 
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loge/2 n, y~(15/2) loge/2 n, y~512 In ar and 

xyk-3sar/16 can be ensured by the hypothesis a~(n) 

for some function ~(n)=O((Iog n)k-2). 

Choose m=Ln/r J . By Lemma i.I, there exists an (n, 

2m, m)-concentrator F with depth i and size at most 

9n log 2 n. By Lemma 7.3, there exists a strong 

(ar, x, xyk-3)-coupler G with depth k-3 and size at 

most 32(k-3)ary. Let H be the n-network obtained by 

~dentifying the inputs of F with the inputs of H, 

adjoining an edge from each output of F to each input 

of G independently with probability p=8x/ar and 

adjoining an edge from each output of G to each 

output of H independently with probability q=Sy/ar. 

The depth of H is k. It can be shown that with 

probability at least 1/2, the size of H is at most 9n 

log 2 n + 32(k-3)ary + 2marp + 2narq = O(n(a log 

n) I/(k-l))- and H is an (a, La/2j)-partial (r, 

Lr/2j)-restricted generalized n-connector. D 

We can now complete the proof of Theorem 7. If 

k=2, we use Proposition 7.1 for r and a equal to 

integral powers of 2 meeting its conditions. The 

total size of these networks is O((n log n)3/2). The 

bounds g2(n, r, O)S2nLn/2 j and g2(n, r, s, a, 0)S2na 

dispose of the remaining cases. 

If k~3, we again use Proposition 7.1 for r and a 

equal to integral powers of 2 meeting its 

conditions. The total size of these networks is O((n 

log n)l+I/k). We then use Proposition 7.2 for those 

remaining cases meeting its conditions. The total 

size of these networks is o(nl+i/k(log 

n)i/k+I/(k-l)). The bound g2(n, r, s, a, O)~2na 

disposes of the further remaining ~ cases. This 

completes the proof of Theorem 7. [] 
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