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Section 1. Introduction 

In designing distributed algorithms it is often impos- 

sible to combine different algoritlulls for the same prob- 

lem; while the hope is that the strengths reinforce, the 
reality is that the weaknesses conspire. In this paper 
we present three Byzantine agreement algorithms, of re- 
silience 9, 9, and (n/,) 3 ‘i2 respectively, for which it 

is possible to shift, mid-execution, from one to mother, 
where n denotes the total number of processors in the 

system. Thus, one may begin an execution using an in- 
efficient but highly resilient algorithm, and, after a pre- 
determined nmnber of rounds of communication, shift 
to n more efficient algorithm of lower resilience, even 

though the actual nnmber of faulty processors remains 
high. Shifting between algorithms of different resiliences 
is possible in both directions, even if the overall toler- 

ance to faults nest remain high. To our knowledge the 

ability to shift, particularly between algorithms of differ- 
ent resiliences, has not previously been demonstrated. 

We have identified three key properties shared by all 

our’ algorithms that in combination captnre our intu- 

ition of why it is possible to shift between the nlgo- 
rithms. These properties are called “persistence,” “fault 

detection,” and “fault masking.” At au times during ex- 

ecution of our algoritlims each correct processor lms a 

“preferred” candidate decision value. “Persistence” says 

that if safficiently many correct processors “prefer” 21, 
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then this situation persists, and the eventual decision 

value will be u. A faulty processor is dct~cicd if nil cor- 

rect processors have discovered it to be faulty. (We dis- 

tinguish between di~co~cry, which describes the action 

of A single processor, and dcteclion, in which nl.l correct 
processors have discovered the same faulty processor. 
These discoveries need not take place simultaneously.) 

Messages frolu processors known to be fnulty are ig- 

nored. Thus the actions of detected processors are es- 
sentially “inasked”. The fault detection and fault mnsk- 
ing properties allow 11s to shift from an algorithm of higli 

resilience down to one of lower resilience if many faults 
have occurred early in the execution, while the persis- 
tence property allows ns to shift down if there were few 

faults early on, despite the fact that more faults may 

occur later. 

Our two olgoritlums of linear resilience are actually 
families of algoritlinis interesting in their own right, 

AS tkey achieve the message rounds versus number of 

message bits tradeoff exhibited by Conn’s families [Cl], 
but avoid the exponential local colnputntion of llis nlgo- 

rithms. In addition, these algorithms and their proofs of 

correctness are dramatically simpler than those of Conn. 

The information transfer, local computation, and 

rounds of comilulnicntion reqnired for our three nlgo- 

rithms are stated in Theorenls 1-3. 

Theorem 1: For 2 < b 5 t, Byzantine agreement 

can be achieved in the presence of t < n/3 faults in 

2+[& ‘-* b rounds of communication, using messages of 

O(n”) bits. Moreover, the amount of local computation 

at each processor is O(n’+‘( g)). 

Theorem “1: For 1 < b 5 t, Byzantine agreement 

cm !)e acilieved ill the presence of t < n/4 faults in 
:! + [ ‘31 b ro~!.ds of con2n2u~~iccrtion, using I2rssages of 
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0(9x’) bits. Moreover, the amount of local cornputntiolr 
at each processor is O(n*+‘( E)). 

Theorem 3(iDRS)): If 71. > 22’ - 3t + 2 then t-resifent 

Byzantim agreement cm be achieved h t + 1 rounds 

using messages of O(n) bits. Moreover, the amount of 

local computa.tio1l at each processor is at most O(71z.L). 

Main Theorem: It is possible to combirle the nlgo- 

riths used to prove Tl~eorems 1-3 to obtsilz hybrid aE 

goriths. 1~1 particular, for 2 < b < 1, there is a hybrid 
of all three algorithms with resilience t = 9 requiring 

rounds of commu~~I’cation, where x = 1/I!. The bounds 

011 hformatioJl transfer and local computation are as in 

Theorem 1. 

The remainder of this ext,ended abstract is organized 

8s follows. Iu Section 2 we briefly define the Byzantine 
agreement problem and specify our model of conlpntn- 
tion. In Section 3 we provide an exponentinl (ill 1) infor- 
mation gathering nlgorith very siinilnr to the originnl 
nlgorith for Byzantine agreement [PSL]. We briefly 

outline IL new proof that this nlgorithnz nchieves Byzan- 
tine agreement ill t + 1 rounds in the presence of t < P 
faults. In addition t.o providing certain lemmas for the 
correctness proofs of 02~ new slgorithms, the new proof 

provides intuitio1l that was criticnl in onr discovery of 
the llew algorithm. We will show how to modify the ex- 

ponential nlgorl~h by introducing f&t discovery nnd 

fnrrult masking SG rhat the resulting nlgorith exhibits 

persistence nnd fadt detection. In Section 4 we intro- 
duce s&fling and apply it to our modified infornmtion 

gathering algorithm to produce our three fnmilies of nl- 
gorithm nltd the hybrid algorithm of onr Main Theo- 
rem. Concluding Remarks appenr in Section 5. 

2. Model Description and Problem Statement 

We nssnnie a coinpletely synchronous system of n pro- 
cessors connected by a fully relinble complete network. 
Each processor has a unique identification number over 
which it has no control. At my point in the execution 
of the protocol processors may fail. There is no restric- 
tion on the behavior of faulty processors, nnd we do 
not ilsmnle the existence of nutlienticntion nieclinnisnis. 

However, a correct processor can nlways correctly iden- 
tify the source of any message it receives. This is the 

standard “~~~nuthenticnted Byznntine” fault model. 

Processing is completely synchronous. Not only do 
the processors commmicnte in synchronous rounds of 

comll~Llnicntion, but they all begin processing in the 

same round. Without loss of generality we refer to this 

round as Round 1. 

In the Byznntine agreement problem one distin- 
guished processor, called the JOUITP, begins with a siugle 

input value v drawn from a finite set I/ (without loss of 

generality we assiiine 0 E V). We view IV1 ns c0llstnllt. 

(If IV( is very large we may apply techniques of Clonn 
((C2j) to reduce the set to two elements, at the cost of 

two rounds.) The gonl is for the source to brondcsst u 

md for all other processors to agree on the value broad- 
cnst. That is, at some point in the computation each 

correct processor must irreversibly decide on a value. 

The reqnirements nre thnt no two correct processors de- 

cide differently, nnd thnt if the smrce is correct then the 

decision value is the v&e broadcast by the source. 

An nlgoritlm for Byzantine agreement lms resilience t 

if correct processors following the algorithm are gunmn- 

teed to rend1 Byzantine agreement provided the number 

of fnulty processors does not exceed t. No noncrypto- 

grnphic protocol for Byzmtine agreement can tolerate 

n/3 faults [PSL]. Tl IIIS, since our results are trivial for 

t = 0, we will nssuine from now 011 that the resilience to 
be nchieved is nt least 1 and the nnnber of processors 

is nt least 4. 

3. The Exponential Algorithm 

LL this section we describe an algorithm similar to 

the original Byzahne Agreement algorithm of Pease, 
Shostnk, nltd Lamport [PSL]. A descriptive, but CIUII- 

bersonle name for our algorithm is “Exponential In- 

formation Gathering with Recursive Majority Voting.” 

Henceforth we refer to this algorithm as “the exponen- 

tial nlgoritlini.” 

In the exponential nlgorithni en& processor maintains 

a large tree of height i! (encli path from root to leaf 
contains t + 1 vertices). The vertices are lnbelled with 

processor names as follows. The root is labelled J, for 

source. Let v be nn internal node in the tree. For 
every processor name p not labelhg an ancestor of U, 
2) has exnctly one child labelled p. With this definition 
no label appears twice in any pnth from root to leaf in 
the tree. Thus, we say this tree is without mpctitions. 

(In Algorithm C, described in Section 4, we will extend 
the tree to include repetitions. In that case all internnl 
nodes have n children.) Note that we may refer to a 
vertex in the tree by specifying the sequence of labels 

encountered by traversing the path from the root to the 
vertex. Let a be such n sequence. The length of 01 is the 

length of the sequence. The processor corresponding to 
mrtez a is the processor whose name lnbels vertex a, 
i.e., the last processor name in the sequence cr. 

In the first round of the information gathering nlgo- 

ritlm he source sends its initial value to aU n - I 2 3t 
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other processors. When a correct processor p receives its 
message from the source it stores the received value at 

the root of its tree (a default value of 0 E V is stored if 
the source fails to send a legitimate value in V). III en& 

snbsequent ronnd each processor broadcasts the level 

of its tree most recently filled in. With the messages 

received each processor adds a new level to the tree, 

stoiing at vertex 3.. . bq the value that q claims to have 
stored in vertex s . . . b in its own tree (again, a default 
is used if an inappropriate message is received). Thus, 

intuitively, p stores in vertex 3.. . bq the value that “q 

says b snys -. . the source said” (see Figure I). We refer 
to this value as t7eep(s.. _ bq), eliminating the subscript 

p when no confusion will arise. 

The value stored in tteep(s) (i.e., at the root) is called 

the preferred valne of p. Information is gathered for t + 1 
ronnds, until the entire tree has been filled in. At that 

point each processor p applies to the tree a recursive 

data reduction function, called resolve, to obtain a new 
preferred value which we denote tesoZuep(a) (we drop 
the subscript p when 1110 confusion arises). 

The value obtained by applying a rednction function 

to the subtree rooted at a vertex a is called the reduced 

value for CY. The specific data rednction function used 

in the exponential algoritlini resolve, is essentially a re- 

cursive majority vote, and is defined as follows: 

tesoZve(a) = 

tree(a), if 01 is a leaf; 

the majority value obtained by applying Tesolve to 
the children of LY, if a majority exists; 

0, if a is not a leaf and no majority exists. 

The entire exponential algorithm is: gather informa- 

tion for t + 1 rounds; compute the reduced value for 

s using the data reduction function resolve; decide on 

this reduced value. 

We now sketch a proof of correctness for this algo- 

ri t hni. 

During the data rednction stage of the algorithm a 
vertex LY is co99191~on if each correct processor computes 

the same reduced value for Q. Thus the algorithm is 
correct if and only if 

1. in every execution s is common, and 

2. if the source is correct, every correct processor re- 
duces s to the value received from s in round 1 

(tTee(s)). 

If the source is correct these conditions are guaranteed 
by the following lenuna in the special case Q = s. 

Correctness Lemma: Any node 01 i9a the in.~o~mation 

gathering tree that corsesponds to a correct processor is 
common. and satisfies 7esolvey(a) = treeI, for every 

comect JITOCESSOT p. 0 

The proof of the Correctness. Lemma, omitted here, 
relies on the fact that a strict majority of the children 

of every non-leaf in an information gathering tree cor- 

respond to correct processors. This is true because by 
construction every internal vertex has at least 2t + 1 
children, of which at most t are faulty. 

There are at most t faulty processors, and every path 
in the information gathering tree is of length t + 1, so 
every path from root to leaf contains a correct proces- 
sor. It therefore follows by the Correctness Lemma that 

every path contains a conul~on vertex, independent of 
whether or not the source is correct. When every root- 

leaf p:,.th contains a coizinion vertex we say the collection 
of information gathering trees of correct processors has 

a con7 :non frontier. 

4a we hnve seen. the Correctness Lemma says the 
algo~‘!l~m works if the source is correct.. We have also 
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observed that in every execution in which at lnost t pro- 

cessors fail there is a colnmon frontier, independent of 
whether the source is correct. It remains to show that 
even if the soiuce is faulty the existence of a coininon 
frontier guarantees agreement. This is imlnediate froln 

the the following lemma. 

Frontier Lemma: if there is a ~077~77207~ frontier, then 

s is common. 0 

To prove the Frontier Lenuna we actually prove the 
more general claim: 

Claim: Let a be a vertex. If there is a common frontier 
in the subtree TOOted at cy, then cx is common (i.e., (Y 
itself constitutes a common fiontiet of the subtree). 

The claim is proved by induction on the height of a 
(backwards induction on the length of CY). 

h Light, of the above discussion we have t.he following 

proposition. 

Proposition: The Information Gathering Algorithm 

Teaches By:antine agreement in t -I- 1 Tounds tolerating 

t < 7113 faults. Cl 

We have shown that this simple variant of the original 

(PS L] algoritlun reaches Byzantine agreeruent in the op- 

tilnnl nuluber of rounds [FL,DS]. Ii1 spite of the simplic- 
ity of the nlgoritluu, the message size artd the amount 

of local computation required grow exponentially with 

t (see Figure 2). Later, to bound this growth, we will 

npply a shift operator to reduce nlessage size when it 

threatens to exceed our bound. However, before we can 

apply shifting, we must lnodify the algorithm for fault 

detection and prove that the luodified n1gorit.h exhibits 

the three inlportant properties, persistence, fault detec- 
tion, and fault masking, mentioned in the Introduction. 

We begin with the pet&fence property. Generally 

speaking, the persistence property says that if “enollgh” 

correct processors share the same preferred value before 

data reduction, then after reduction s is co~un~on. The 
choice of how ninny processors constitute “enoilgh” may 
depeltd on the particular algorithm involved and the in- 

tended application of the persistence property. h ollr 

case the reqllirenlent is spelled out in the Persistence 

Lenulla below. The illtended application is ill construc- 
tion of our hybrid algorithm, discussed in Section 4. 

Persistence Lemma: If befote reduction some set of 
correct processors, sharing ihe same preferred value v, 
constitute a strict majority of all p-ocessovs, then s is 

common and has Teduced value V. o 

The Persistonce Lelnnla follows easily from the Cor- 

rectness Lelnlna and the choice of reduction function. 

The value 2r described in the Persistence Lenuna is called 

R persisfenf value. 

For any h < i -I- 1, if information gathering is ru 
for only X: rounds, then the Correctness, Frontier, and 

Persist,ence Lenullas hold, even t~hough the paths in 
the information gathehg trees contain only k vertices. 
Moreover, these lenlnlas hold if the preferred value of 

en& processor is a private initial value rather than 

the contents of a luessage fro111 the source. Thus, we 
could rull the hforuation gathering algorithm for k 

rolulds, reduce the resulting tree to produce a single 
value Tesolve( s), and treat this value as if it had been re- 

ceived directly frown the source, storing it in tree(s) and 

continuing with the inforniation gathering algoritlun as 

if it had just finished round 1. It is not difficult to 
argue that any algorith constrncted along these lines 
Will work correctly if the soiirce is not faulty. However, 
because k < t + 1 we are not g~~aranteed a comnlon 

frOn&r if the SOWCC iS fau1t.y. hi t&S CASC fAdiS 0th 

than the source may be able to collude to prevent the 
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emergence of 8 persistent value. Iu order to bound the 
number of times this cm occur we introduce here fault 

discovery and frrult mnsking rules to be followed by en& 

processor. The intuition we wish to capture is that if n 

faulty processor is effective at preventing the emergence 
of R persistent vnlue, then thnt processor is detected nnd 
subsequently ignored. 

We nrodify the exponentinl Rlgorithm by giving en& 

processor p m extre dntn structure, L,, (the subscript 

is omitted when no confusion will arise). LPI initinlly 

empty, contnins the nrmles of processors thnt p 1~s dis- 

covered to be faulty by npplying tile Fault Discovery 

Rule stated below. 

We will need the following definition. For nil internal 
vertices /3, n vnlue stored nt R strict majority of the 

children of fi is called the major& ua/uc fog ,8. 

Fault Discovery Rule: Let p be II correct processor. 

During infornmtion gnthering, R processor b not already 

in L, is ndded to LP if for some internnl vertex crb in 

ttee, 

1. there is no majority v&e for ab, or 

2. (L nmjority vnlue for cub exists but other values me 

stored nt more thsn t - 1 L, 1 children of ab not cor- 
responding to processors already in LP. 

If at most t processors fnil nud LP contains only faulty 

processors, then any processor ndded to L, under the 
Fault Discovery Rule is necessarily faulty. 

The Fault Discovery Rule hns ml extremely useful 
corollary, the Hidden Fault Lenlnm It is helpful to think 

of the fmllty processors BS being controlled by m ndver- 

sary. The Persistence Lenzmn implies that in order to 
prevent the occurrence of n persisteut value the ndver- 

sary must arrange to split the correct processors into 

at lenst two sets, neither of which has size +, where 

processors in different sets prefer differeut v&es. The 
Hidden Fault Lemon will be used to show thnt, if the 

ndversnry is successful in preventing n persistent v&e, 
then some faulty processor is discovered by all correct 

processors, i.e., it is detected. Once R faulty processor is 
detected, nil correct processors view it as sending only 

the default v&e, so it can never ngnin be used to split 
the correct processors. 

Hidden Fault Lemma: Let p be a correct processor 

and lei ab be any internal vertex inp’s information gath- 
ering tree. Let k be the length of ab and let m be the 
number of children ofab. If all the processors in cub are 
faulty, but b $ L, after round k + 1 (i.e., afrcr p stores 
values at the children of ab), then the set of processors 

corresponding to the children of ab at which the malor- 

ity value is stoTed con.tains at least m - t + ]LPj nodes 

corresponding fo CorrcCt processors. 0 

Let p be n correct processor nnd q R faulty processor. 

Any correct agreement protocol must be nble to tolerate 
my behavior of Q, provided tke resilience of the protocol 
is not exceeded. Iu pnrticulnr, if q were nlwnys to send 
zeros to p, regnrdl :ss of whnt q should be sending, the 
protocol should still work. This cm be proved formnlly, 

providiug (I justificntiou for the following Fault hiInsking 
Rule. 

FauIt Masking Rule: If b is ndded to L in romtd +, 

then my ulessnges from b in round ? nnd my subsequent 
round nre replaced by messages in which en& vnlue is 

the default 0. In other words, once R processor discovers 

thnt b is faulty, it “acts RS if” b sends only zeros. 

Under the Fault hZnsking Rule, once a processor has 

been discovered faulty by nil correct processors, it is 

essentinlly forced to send the sanle vnlnes (zeros) to nil 
correct processors. As we will see, ia the uew nlgoritlinis 
frrult nmsking will limit the ability of n faulty processor 
to prevent tile correct processors from obtnining n per- 

sistent value. 

We msulne for the rest of this paper t,lmt the fault 

discovery nnd fault mnsking rules me applied ip each 

round of information gntllering. However, we stress tltat 
Fault Masking is never used to fill iu the root, ttee(s). 

Section 4. Shifting 

All of our new nlgorithms me bnsed on applicntions 
of shifting to the exponentinl nlgorithm with fault dis- 

covery nnd fault nmsking. We introduce ml operator 

Shift: tlint uses some conversion process to chnnge the 

dntn structures npproprinte to the end of round k il:to 
those nppropriate to the end of round j. This OperatCJr 

cm be applied repeatedly to prevent the dntn structures 
from growing pnst the size of those nssocinted with the 

end of round k (see Figures 3 and 4). Iu order to spec- 

ify (in nlgoritluu that uses sllifting, we need only specify 
the origins1 nlgoritbm, the poiilts nt which shifting is to 

tnke place, md the collversioll process. Whell we ccm- 

vert from larger to smnller dntn strnctures, we refer to 
the process RS compression. We cm even specify shift- 
ing from one nlgoritlull to mother, if we cali specify an 
npproprinte compression process. However, there is no 
guarnntee thnt indiscriminate shifting will result in al- 

gorithms thnt n&eve the desired objective of Byznntine 

ngreement . 

In this pnper we focus on three nlgorithms, two of 
which tnke (L parnmeter thrrt yields EI family of algo- 
ritlums when varied, nnd show tlmt it is possible to shift 

nmong these nlgoritlinis. 

Let tA = [+j, tB = !+j, aud tc - [(n/z)‘/‘J. 
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Algorithm A has resilieace tA. When rlln with pa- 
rameter d, 1 2 d 5 t - 2, Algorithm A requires 
[‘*I (d + 2) rounds of communication md employs 

messnges of length strictly less thnn ?tn+‘. The to- 

tal local processing time expeltded by each processor is 
qn”f” [?I). (One call do slightly better in the special 

cases d = t. - 1 md d = t .) 

Algorithm B has resilience tn. When rm with pn- 
rnmeter d, 1 5 d 5 t - 1, Algorithm B requires 

[ y](d -+- 1) rounds of commuuicntion and employs 

messages of length strictly less tlinil ?td. The total 

local processing time expeltded by each processor is 

O(n J+’ [?I). (One can do slightly better in t.he special 

cnse d = t .) 

A1gorit.h~ C has resilience tc, nltd is closely related 

to the early stopping algorithm of Dolev, Reisclmk, altd 

Stroag [DRS] of the same resilience. This nlgorith 

requires tc + 1 rounds of communication md employs 

messages of length at most n - 1. Local processiiig time 

is O(tn”). 

We describe algorithm B first because it is sim- 
plest. Algorithm B is simply the repeated trpplicatioll 
of Shift: to the exponeatial information gcltltering algo- 

rithm. Figure 4 shows the pattem of hformntioll gath- 

e&g with d = 4. Data compression is accomplished by 
applying the re3olve function of the previous section to 
obtnin a reduced value for J. 

If the number of faults is bounded by tn then the 
Hiddell Fault Lemma has a11 important corollary. 

Corollary 1: Let n. be fixed and let the number ojfaults 

be bounded by tB. Let crb be an intern.al vertex in the 
information gathering tree, and let all processors in crb 

be faulty. If under thr reduction. function resolve cub is 
not common, then all correct processors discover th.at b 
is faulty. 

Proof: For the sake of contradiction let 11s assume cor- 

rect processors p nltd q compute different reduced values 
for ab and that q does not discover b to be faulty. By 
the Hiddell Fanlt Lemma the majority value for cub in 

tree9 is stored in at least 

n-2tn+lLyl >n-2tn > y 

children of ab correspondhg to correct processors, toll- 

tradicthg the assmuptioll that ab is not commo11. (We 
are using here the fact that n > 4t~.) 0 

Proposition: Algorithm B solves Byzantine agreement 
and achieves the bounds on resiliency, message length, 

and number of rounds of communication stated in The- 
OTE77l 2. 

Proof Sketch: 



If the source is correct then by definition there is a 

persistent v&e, to wit, the value that the source brond- 

cast in round 1. However n persistent vnlne is obtained, 
the Persistence Lemma implies that at the next appli- 

cation of reduction s will be conuuon. 

We now consider the case in which the source is faulty 
and there is no persistent value. Consider tile tree just 

before reduction. By the Frontier Lenlnlh, if tllere is 

a conlnlon frontier, then s is con~nioii. We therefore 
need only consider the cue in which there is n path 

p from root to leaf containing no conunon node. By 
the Correctness Lemmn all processors corresponding to 
vertices in p are faulty. By Corollary 1 these faults are 

nil detected. 

With the exception of the source, which is repent- 
edly detected, once a processor is detected, nodes corre- 

sponding to it are COIIIMOI~. This is because faults other 

than the source are masked according to the Fault Mnsk- 

ing Rule. Thus ea& block of d - 1 rounds that produces 

trees without n conunon frontier resnlts in the detection 
of nt least d - 2 new faults in addition to the source. Let 
us write tn - 1 = (d - 2)~ + y, where y < d - 2. Then 
the number of rouds required by Algorithm B to reneb 

Byzantine ngreement is (d - 1)~ + y + 2. o 

In order to improve upon the resilience of Algorithm 
B we modify the data reduction function of the exponen- 
tial informntion gathering nlgoritlun and apply Shif tt 

to the resnlting nlgorithm. 

The new reduction function, TesoIve’, is defined ns 
follows: 

Tesolve’(cu) = 

tree(a), if Ly is a IerrS; 

the Uiliq~le vdile QccUrriilg at least tA + 1 tiiues 

among the v&es obt&ned by applying resolve’ to 

the cllildren of c~, if one exists; 
, 

I, if a is not a leaf and no such unique value exists. 

Note that we have introduced a new v&e, 1. Al- 

though used daring the reduction process, I is never 

used in the information gathering tree itself. If, at the 
end of solne reduction, resolvel, (8) = 1 for sonle correct 
processor p, then p uses the default value (0) as its new 

preferred value. 

Note that the Persistence Lenlnln as stated in Sec- 

tion 3 no longer holds when the rednction fluction used 
is Tesolve’ and up to 9 processors may fail. Bowever, 

a weaker version of this lemma does hold. 

Weak Persistence Lemma: If bejoTe reduction all 
corrcci processors prefer the same value v, then aftFP 

Tcduclion s is common and has reduced value v. C 

The exposrntinl information gathering nlgoritluu 

solves Byzantine ngreement n&g either of resolve or 

reso2ve’. Moreover, this holds for any set Ti of legiti- 

mate input values. For tecbnicnl reasons Algorithm A, 

obtained by applying Shift;’ to the exponential infor- 
nlntion gntbering nlgoritbm lnodified to use resolve’ in 

the reduction process, cnn only llnndle set.s V of cnrdi- 
nnlity 2. In order lo tallow it to handle arbitrary sets 1; 

we increase the power of the Fnnlt Discovery Rule by 

applying it during the reduction process. 

Fault Discovery Rule During Reduction: During 
reduction n processor b not already in L is added to L 
if for sonle internal vertex ab corresponding to b 

I. there is no lnnjority v&e nmong the reduced v&es 

for the children of ub, or 

2. such a majority value v exists, bnt for nlore tllan 

tA - IL1 processors y $ L, Tesolue’(aby) # u. 

G/aim: The proofs of the Correctness, &ontiet, and Hid- 
den Fault Lemmas hold wh.cn the reduction function 

resolvd is tcscd in place of resolve. 

The Hidden Fault Lemma bns two new corollaries, 
one front the new choice of reduction function, nnd one 

front the additional f&t discovery mle. 

Corollary 1 said that if an internal vertex is not 
conunon then its correspouding processor is discovered. 
However, the proof of Corohry 1 relied ou the nssmnp- 
tiou that the number of faults does not exceed to. Some- 
thing slightly weaker than Corollary 1 holds even if the 
number of faults reaches 1~. Moreover, this weaker re- 

sult cnn be used to show that Corollary 1 does indeed 
hold for all vertices of height at least 2 in the presence 

Of up tQ tA fanlts. 

Corollary 2: Let cub be an intemal verter in the in- 

formation gathering tree, and let all ~TOCESSOTS in crb be 

faulty. If under the reduction junction resolve’ two COT- 
rect processors p and q obtain difierent reduced values 
for ab, neither of which is I, then both p and q discoveT 

b to be faulty during reduction of crb. 

Corollary 3: Let cub be an internal vertex in the infor- 
mation gathering tree that is not the parent of a leaf. If 

all processors in cub are faulty, and if some correct pro- 
cessor q does not discover b either by the Fault Discou- 

ety Rule or the Fault Discovery Rule During Reduction, 

then ab is common. 

Wt 3an now prove the following proposition. 

Proposition: Algorithm A solves Byzantine agreement 

and achieves the bounds on resiliency, message length, 
and number of rounds of communicalion stated in. The- 

ofem 1. 
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the source said 
the source said the source said 

I I I 
’ the source said the source said a said z said ’ z said 

the source said z said L said the source said z said 

the souwx said the source said the scarce said the source said the source said 

Reordering of the leaves and repetitions for algorithm C. 

Figure 5: 

Proof Sketch: 

If the source is correct then after round 1 all correct 
processors prefer the same value, so by the Weak Per- 
sistence Lemma s will be cou~non with reduced value v 
after reduction. 

As in the proof of the previous proposition, if there 
is a conimon frontier then J is cou~uon. We therefore 
discnss only the case in which the source is faulty and 
the information gathering tree after d rounds contains 
a path p containing no con~nou nodes. Once again the 
Correctness Lemma implies that all processors corre- 
sponding to vertices on p are faulty. Let sub be the label 
of a node on p that is neither a leaf uor the parent of 
a leaf. Let us r?:mine there exists a correct processor q 
that has not disc;. -ered b to be faulty. By Corollary 3 cub 
is conunon. This iiq&es that each block of d - 1 romtds 
that produces trees without a conm~on frontier results 
in the detection of at least d - 3 new faults in addition 
to the source. Let us write TV - 1 = (d - 3)~ + y, where 

y < d - 3. Then the nuulber of rounds required by algo- 
rithm A to reach By!zantine ngreemeut is (d - 1)~ + y + 2. 
cl 

We uow describe Algorithm C. Consider first the fol- 
lowing 3 round algorithm. 

l Run information gathering for three rounds build- 
ing a tree with repelilions and performing fault dis- 
covery aud fault mnsking at each round. 

l Reorder the leaves‘of the resulting tree of height z 
so that tTee(spq) t- t+ee(aqp) for all processors p 
and q (see Figure 5). 

After the reordering, the leaves in the subtree rooted 
at sq are the values received from q in rouud 3. Al- 
gorithm C is the repeated application of Shift: to this 

pG$q px-g 
0 reduce 0 
0 . . 0 

is 
0 

m 
\ structures / 

Processor p Processor p 

Application of Shift; at processor p 

Figure 6: 

3 routd algorithm. The compression needed for the shift 
is achieved by computing reduced values for all parents 
of leaves according to the function resolve. The result- 
ing two level tree is taken as the data structure produced 
after virtual round 2, resolve(s) being the uew preferred 
value. Thus, beginning with the third actual round of 
the 3 rouud algorithm a reduction is performed after 
each round. Fault Discovery is applied each round to 
the original tree (leaves ordered as in Figure 1) before 
reduction. 

Proposition: Algorithm C solves Byzantine agreement 
and achieves the bounds on Tesilirncy, m.essagc len,gth, 
and number of rounds of communication stated in The- 
oTe7n 3. 

Proof Sketch (based on [DRS]): 

It is easy to show that the Persistence Lemma holds 
for Algorithm C, so, if the source is correct, t.hen all 
correct processors will agree 011 its m-he. 

It remains to show that after the first round of Xl- 
gorithm C if there is a round in which no uew fault is 
detected during informatiou gathering, then after reduc- 
tion a persistent value is obtained. Moreover, we also 
show that at the cud of the earliest round in which aU 
tc faults have beeu discovered a persistent value is ob- 
tained. The second claim is used to show that tc + 1 
rounds suffice eveu if only one fault is discovered in err& 
of rouuds 2 through tc + 1. 

Iu round 2, if the source is not detected, then some 
processor a does not discover the somce to be frrulty. By 
the Hidden Fault Lemma, there is a value 21 stored at at 
least n - tc children of s in tree,,. Thus at least n - 2tc 
correct processors had 1’ as preferred value after round 1. 
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Recall that we have assumed throughout that 71 > 3. 
Thus tz - 2tc is a majority of the n processors, and so v 
is a persistent value. Iu particular, if a correct processor 
b were to compute Tesolveb(s) after round 2, then it 
would obtain ‘v as the reduced value. Consider the tree 
of a correct processor p after reordering, in round 3. 
The children of sb in p’s reordered tree are the values 
received by p from b. Because b is correct and b would 
have reduced s to v at the cud of round 2, we have that 
romlvel,(sb) = v at the end of round 3. 

By the above discussion, we need only consider the 
case in which the source is detected in round 2. If 
the source is the only faulty proceSsor, then, after fault 
masking, the round 2 trees of all correct processors are 
identical, so again a persistent value is imlnediately ob- 
tained. Thus we may assume tc > 1. Consider the first 
round in which no new fault is detected. If Q is any cor- 
rect processor then before reordering all processors agree 
on tree(sza), for all processors Z. Also, since the source 
has beeu detected, all processors have tree(srs) = 0 for 
all T. Moreover, if a, b, and c are all correct, then all 
processors have ttee(sbc) = tree(sba), before reorderiug 
(because b tells the same thing to a as it tells to c, aud 
a and c report these vahles correctly). Thus, if a and c 
are correct then, after reordering, the values stored at 
children of sa corresponding to correct processors nest 
agree with the values stored at the children of JC corre- 
sponding to correct processors. It follows that if any of 
the at inost tc - 1 undetected faults had distinguished 
more than tc - 1 such subtrees from the others (all with 
roots corresponding to correct processors), it would have 
been discovered by all processors applying Fault Discov- 
ery before reordering. Thus at least n-tc -(tc - 1)” cor- 
rect processors a correspond to nodes labelled sa with 
identical children (after reordering) for all processors. 
By choice of fc this number is a majority of n, so all 
correct processors agree ou TesoZve( s). 

Finally, consider the earliest round in which the last 
fault is detected. After fault masking, but before reduc- 
tion, all the children of s are con~non, and therefore, s 
is conmion. 0 

We are now ready to discuss shifting from one algo- 
rithm to aaother. Shifting from one algorithm to an al- 
gorithm of equal or greater resilience is not difficult. It is 
shifting down in resilience, even when the total number 
of faults is unchanged, that requires care. Clearly, shift- 
ing can safely occur only after some number of rounds 
have been executed, as otherwise it would be possible 
to reach agreement with, say, an y-resilient algorithm 
in the presence of %$ faults. The specific number of 
rounds after which it is safe to shift between algorithms 
depends on the particular pair of algorithms involved. 
Since we are interested in producing a hybrid algorithm 

for the Main Theorem, we will first describe conditions 
under which we can shift from Algorithm A to Algo- 
rithm B, aud then describe shifting from the hybrid to 
Algorithm C. 

Proof Sketch for the Main Theorem: 

Assume at most 1~ faults. Our idea is to run Al- 
gorithm A until either we have a persistcut value or k 
faults have been detected, for some k < tA - TV yet to 
be determined. Note that a value is persistent in Al- 
gorithm A only if it preferred by all correct processors 
(because only the Weak Persistence Lenuna holds if the 
reduction function is resolve’). Thus, if a value is per- 
sistent in Algorithm A it will persist after the shift to 
Algorithm B, in which the requirement for persistence is 
weaker. The iutuition is that if after k rounds of Algo- 
rithm A a persistent value has not been obtained, then 
there are fewer than TV uudetected faults, so we should 
be able to shift into the end of round I of AIgorithm B 
rather than into the end of round 1 of Algorithm A. On 
the other hand, if a persistent value has been obtained 
then by the Persistence Lenmm we should again be able 
to shift into the end of round 1 of Algorithm B and the 
value obtained during the first resolution in Algorithm B 
will be the persistent value. 

It remains to determine X: so that, if no persis- 
tent vnlue has been obtained during execution of Al- 
gorithm A, application of the Hidden Fault Lemma 
once we shift into Algorithm B works as in Algo- 
rithm B, even though tA > tn processors may nctu- 
ally be faulty. Specifically, after the shift we want that 
if cub is any internal vertex and some correct processor 
does not discover b, theu cub is cominon. That is, we 
want Corollary 1 to hold. This is achieved provided 
n - 2ta +X: > [FJ. 
Let us write [*j 

Thus we must take k > [+ J. 
= z(d - 3) f y, where y < d - 3. 

Then we can run Algorithm A with parameter d for 
3 + r(d - 1) + y rouuds and then shift to Algorithm B. 
We write [‘pl = ur(d - 2) + Z, where z < d - 2. Then 
after the shift Algorithm B can be run with parameter d 
for l+w(d- l)+ z rounds to produce a hybrid algorithm 
with resilience tA that reaches ByzauGne agreelllent in 
4 + (z + u*)(d - 1) + y + ,I rounds. 

It only remains to shift from this aIgorithm into Algo- 
rithm C after either a persistent value has been reached 
or a sufficieutly large nunlber m of faults has been de- 
tected. lilterestingly, we can shift to the end of round 2 
of Algcrithnl C (until now we have always been shifting 
to the end of round 1). Iu consequence, the nunlber of 
rounds remaining will be exactly the maxinmm number 
of undetected faults remaining. By reasoning similar to 
the explanation of our choice of k, we find that m must 
satisfy TJ - tA - (tA -m)’ > $. Solving for m, we obtain 
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m>tA- J ‘q. Let m be the smallest snch integer. 

Let us write 7n - [+I = p(d - 2) + q, where q < d - 2. 

Then the final hybrid of A, B, nnd C cnu be ruu in 1 
4 -t (3: + p)(d - 1) + y + q + i?A - m rounds. Conversioll 
to the bounds of tbe Mnin Theorem is strnightforwmd. 
0 

5. Concluding Remarks 

We hnve constructed R set of nlgorithms for which it 

is possible to shift between my two. However, we do 

not bnve explicit necessnry or sufficient conditions for 

an nlgorithm to be ndded to this set. We leave ns nn 
open question the clinmcterizntion in geiiernl of when 

it is safe to shift from oile nlgoritlim to nnother with a 
given overnll resilience. 

We believe further study of hybrid nlgoritbms mny 

shed uew light on the open questiou of n lower bound 

OIL the uumber of rouuds required to rencb Byznutiue 

ngreemeut with comliiunicntioii polynominl in the re- 
silience. 
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