
POLYNOMIAL ALGORITHMS FOR MULTIPLE PROCESSOR AGREEMENT

Danny Dolev

H. Raymond Strong

IBM Research Laboratory
San Jose, CA 95193

ABSTRACT

Reaching agreement in a distributed system while
handling malfunctioning behavior is a central
issue for reliable computer systems. All
previous algorithms for reaching the agreement
required an exponential number of messages to be
sent, with or without authentication. We give
polynomial algorithms for reaching (Byzantine)
agreement, both with and without the use of
authentication protocols. We also prove that no
matter what kind of information is exchanged,
there is no way to reach agreement with fewer
than t+l rounds of exchange, where t is the upper
bound on the number of faults.

I. INTRODUCTION

In this paper we describe algorithms for
achieving agreement among multiple processors.
The context for this agreement is a network of
unreliable processors that have a means for
conducting several synchronized phases of
information exchange, after which they must all
agree on some set of information. We will assume
for simplicity that this set of information
consists of a single value from some set of
values V.

The type of agreement we will study is called
Byzantine Agreement (LSP), Unanimity (Db), or
Interactive Consistency (PSi). It results when,
in the presence of undetected faulty processors,
all correctly operating processors are able to
agree either on a value or on the conclusion that
the originator of the value is faulty. More
explicitly, Byzantine Agreement is achieved when
(I) all correctly operating processors agree on
the same valued and
(If) if the sender operates correctly then all
correctly operating processors agree on its
value.

Permission to copy without fee all or part of this material is granted
provided that the bopies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-067-2/82/005/0401 $00.75

Our analysis of the problem is based on the worst
case assumption that faulty processors are not
predictable and possibly even malicious. An
algorithm should sustain any strange behavior of
faulty processors, even a collusion to prevent
the correctly operating processors from reaching
agreement. Even if the correctly operating
processors cannot identify the faulty processors,
they must still reach Byzantine Agreement. The
algorithm should not depend in any way on
anticipated behavior of faulty processors.

All previous algorithms for reaching Byzantine
Agreement are exponential in the number of

messages (O(nt+l), where n is the number of
processors and t is an upper bound on the number
of undetected faulty processors). The new
results presented here include algorithms
polynomial in the number of bits exchanged, with
or without authentication.

We also establish an exact lower bound for the
number of phases of information exchange
required. This lower bound (t+l) was known for
the case in which only unauthenticated messages
are exchanged (LF). We have generalized the
proof given by Lynch and Fischer to apply to any
kind of message.

These results resolve open problems raised by
(L) , (LSP), (Da) , (Db), (PSL) and (LF) , and can
be used t o s t r e n g t h e n t h e r e s u l t s o b t a i n e d in t h e
above p a p e r s .

The lower bound r e s u l t i s somewhat s u r p r i s i n g in
ou r c o n t e x t . I t i n d i c a t e s t h a t even t houg h we
a l l o w c o r r e c t l y o p e r a t i n g p r o c e s s o r s exchange o f
any k i n d of v e r i f i a b l e i n f o r m a t i o n , and even
though we r e s t r i c t t h e p o s s i b l e b e h a v i o r o f
f a u l t y p r o c e s s o r s t o s i m p l y f a i l i n g to r e l a y
m e s s a g e s , B y z a n t i n e Agreement c a n n o t be r e a c h e d
in t or fewer phases. Note that if we relax (I)
slightly as in Crusader Agreement (Da), then we
can obtain the agreement within two phases.

The algorithms discussed provide a method for a
single processor to send a single value to all
other processors. Generalizations to many
processors sending values to each other will be
obvious.

We assume some reliable means of communication by
which any correct processor can send a message to
any other correct processor. For example, this

401

reliability might be achieved by sending
duplicate messages along many paths in a network.
In any case, for this paper, we assume a
completely connected, totally reliable
communication network, and in counting the total
number of messages sent, we ignore any
duplication or repetition inherent in the
communication medium. Note that we only count
the messages sent by correctly operating
processors.

All the results obtained in the paper can be
extended to networks which are not complete using
similar methods to those described by (Da), (Db),
and (LPS). The number of phases and likewise the
number of messages will increase, but the
algorithms will remain polynomial.

For algorithms using authentication, we assume a
protocol that will prevent any processor from
introducing a new value or message into the
information exchange and claiming to have
received it from another (DH), (RSA). In a
typical authentication protocol (PSL), the
transmitter appends a signature to the message to
be sent. This signature contains a duplicate of
part of the message encoded in such a way that any
receiver can verify that the message is authentic
and that it was sent by the sender, but no
processor can forge the signature of another.
Thus no processor can change the content of a
message undetectably.

Without authentication~ we have the case studied
by (LSP), (PSL), (Da), (Db), and (LF). In this
case, if d is the number of phases and m is the
total number of messages, then the following
requirements for Byzantine Agreement were
previously established:
(i) n > 3t (PSL), and
(2) d > t (LF).

Algorithms presented used d=t+l and m=O(nt).

Pease, et, al. (PSL), recognized that with
authentication (I) is no longer required. The
algorithm for this case presented in (LSP) uses
the above d and m. Moreover, the proof of (2)
given by Lynch and Fischer depends on (i) as well
as requiring the very simple kind of message,
disallowing any authentication protocol. Here we
establish (2) in a general context with
authentication. Also, we will present an
algorithm for Byzantine Agreement with d=t+l and

m=O(n2), and a modification with d=t+2 and
m=O(nt) .

For reaching Byzantine Agreement without using
authentication one needs a much more
sophisticated algorithm. Byzantine Agreement is
more difficult without authentication because
faulty processors can change intermediate values,
and because no processor can identify with
certainty those that relayed a given message. We

present an algorithm with d=4t+4 and m=O(n 5) to
obtain the Byzantine Agreement. All previous
algorithms used the lower bound for d (i.e., t+l)"
and an exponential number of messages.

2. HISTORIES

In order to give proofs of correctness and
especia]ly to establish lower bounds, we will
describe the message related behavior of the
collection of processors during the phases of
information exchange as a single object called a
history. We will formally define a history as a
sequence of directed graphs called phases. We
intend the notion of history to capture any
synchronous information exchange behavior,
including any number of authentication protocols
and the exchange of arbitrary message types. The
lower bound result of section 3 can be extended
to asynchronous algorithms with a suitable
generalization of the notion of phase.

A phase is a directed graph with nodes
corresponding to processors and with labels on
the edges. A label represents the information
sent from a given processor to another during the
given phase. We assume that when no message is
sent there is no edge. An n processor history is
a finite sequence of n node phases, with nodes
labelled by the names of the processors, together
with a special initial phase called £hase 0, such
that phase 0 contains only a single inedge to one
processor called the sender. (We assume that the
inedge at phase 0 carries the value that the
sender is to send.) Figures i and 2 represent
histories with labels and phase 0 omitted.

A subhistor ~ of a history H is a copy of H with
some edges removed. For each history H and
processor p there is a unique subhistory pH
called the subhistory according to p, consisting
of only the edges with target p. Thus, the
subhistory according to the sender includes the

value it is supposed to send even if it sends
nothing.

An _agreement algorithm on a class of histories C
consists of a correctness rule (a function which
given a subhistory according to p and an edge in a
phase to be added to the history as the next
phase, produces a possibly empty label for that
edge) and a decision function (a function from
subhistories according to processors of histories
in C to the union of V with a symbol 0
representing "sender fault"). With respect to a
given correctness rule, a processor p is said to
be correct at phase k if each edge from p in phase
k has the label produced by the correctness rule
operating on the subhistory according to p of the
previous k-i phases. A processor p is correct
for history H if it is correct at each phase of H.
Figure 1 could represent a history in which all
processors are correct, while figure 2 could
represent a history with the sender faulty. We
call a history t-faulty (with respect to a
correctness rule) if at most t of its processors
are incorrect.

A correctness rule is actually a union of
possibly distinct correctness rules, one for each
processor. Likewise, the decision function is a
union of individual decision functions.

An example of a correctness rule is the rule that
each processor simply sign and relay (according

402

to the authentication protocol) each incoming
message of the previous phase to every other
processor.

We say Byzantine Agreement can be achieved for n
processors with at most t faults within d phases
if there is an agreement algorithm for the class
C of n processor, t-faulty (with respect to the
correctness rule of the algorithm), d phase
histories so that the decision function F obeys
the rules for Byzantine Agreement:

(I) if p and q are correct for H in C then FpH =
FqH, and

(If) if the sender is correct at the first phase
of H and p is correct for H in C then FpH = v
where v is the sender's value.

Note that we do not define Byzantine Agreement
for n<3 or for t>n. In the context of an
authentication protocol, the class C of histories
is assumed limited to those consistent with the
semantics of authentication.

3. THE LOWER BOUND RESULT

Theorem I. (LSP) Byzantine Agreement with
authentication can be achieved for n processors
with at most t faults within t+l phases, assumin_~
n>t+l.

The following lower bound result is the principal
result of this section. It shows that the result
of Theorem i is tight.

Theorem 2. B~zantine Agreement cannot be
achieved for n processors with at most t faults
within t or fewer ~hasez~!_i0rovided n>t+l.

The proof of Theorem 2 is inspired by, but a
nontrivial generalization of, the proof given by
Lynch and Fischer for the restricted case without
authentication (LF). Lynch and Fischer used the
n>3t result of (PSL) to show that any algorithm
for Byzantine Agreement mnst be uniform.
Assuming uniformity, they established an
equivalence relation on their version of t-faulty
histories and obtained a contradiction by showing
that too many histories were contained in a
single equivalence class. Their proof of this
equivalence relied on the ability to preserve
equivalence while changing one message at a time.
Their proof of this ability, without using the
uniformity assumption, is essentially the proof
of the base case in the induction that follows.

Outline of Proof of Theorem 2:

Assume that Byzantine Agreement can be achieved
for some n>t+l within t phases. Let R be the
correctness rule and let F be the decision
function on subhistories such that <R,F> achieves
Byzantine Agreement on n processor, depth t,
t-faulty histories.

Let C be the class of n processor, depth t,
t-faulty histories that have a critical sequence
such that all incorrect processors appear on the
sequence and any incorrect node appears at or

below the level corresponding to the order its
label appears on the sequence. Define an
equivalence relation on histories in C by saying
H is equivalent to H' if, whenever p is correct
for H and q is correct for H', then FqH' = FpH.

Note that C includes histories in which all
processors behave correctly. Since we assume V
has more than one value, this means that there
must be histories in C that are not equivalent.
But, as we will show, C is a single equivalence
class. Under an appropriate definition of <R,F>,
both Figure 1 and Figure 2 could describe
histories from the set C. However, in Figure 2
the result of the algorithm must be independent
of any information from the sender since the
sender sends nothing. This fact is the key idea
behind the contradiction we obtain.

We say that a processor is hidden at phase k if it
has no outedges at k or any later phase. We will
also refer to the node at phase k as hidden if the
processor is. In particular it is easy to show by
induction on the phase k that, if r is a node
representing a processor at phase k of a history
H in C, then
(a) there is a history H' in C, equivalent to H,
identical to H through phase k except for
outedges of r, with r correct and all processors
correct after phase k, and
(b) if all other nodes at phase k are correct,
then there is a history H' in C, equivalent to H,
identical to H through phase k except for
outedges of r, with r hidden and all other
processors correct after phase k.
Note that if a processor labels a hidden node,
then changing the information on its inedge
cannot affect the subhistory according to any
other processor. In Figure 2 the sender is
hidden at phase i.

The induction proceeds one edge at a time making
changes not witnessed by some correct processor
(here we use the fact that n > t+l to guarantee
the existence of such a correct processor). It
shows that we can correct a node at any phase or
hide a node if all other nodes at its phase are
correct, and that the resulting history will be
in C and equivalent to the one from which we
started, while all changes will be to the
outedges of the particular node and to edges at
later phases. Thus every history in O is
equivalent to any history in which the root is
hidden and all other processors are correct.

This completes the outline of proof of Theorem 2,
a complete proof can be found in (DS).D

Remark. Whenever it is defined, Byzantine
A~regment can be achieved for n processors within
n-I phases.

Thus the provision n>t+l is necessary for the
lower bound of Theorem 2.

403

4. POLYNOMIAL ALGORITHMS USING AUTHENTICATION

As mentioned in the introduction, we assume the
existence of some authentication technique that
prevents the faulty processors from undetectably
changing the content of messages.

For purposes of counting messages we supply the
following specific syntax for the labels on the
edges of directed graphs called phases.

(i) The set of values V is contained in the set of
atomic messages

(2) A label Js either
an atomic message I

an authentication 1
a sequence of labels;

(3) An authentication is a label of the form
(labela)p,

where p is the name of a processor and labela is a
label; and

(4) a sequence of labels is a label of the form
labela,labelb

where labela and labelb are labels.

Note that (a,b,c)p is not the same label as
(a)p , (b)p , (c)p .

Label a is part of label b if either:
(i) a=b, or
(ii) there is a label c and a processor p such
that a is part of c and b=(e)p, or
(iii) there are labels c and d such that b = c,d
and a is part of c or d.

A message is a label with no commas.

Thus, at any phase any processor can send any
message to any other processor, except that no
processor can alter an authenticated message
received at a previous phase and forward it as an
authenticated message at the next phase, nor can
any processor pretend to have received an

authenticated message it did not receive and
forward that as an authenticated message. For
this section, attention will be restricted to
histories consistent with the semantics of
authentication. In particular, if (a)q is part
of a label at phase k from processor p then either
p = q or (a)q appears as part of a label on an
inedge to p in a previous phase.

Theorem 3. Byzantine Agreement can be achieved
for n processors with at most t faults within t+l

phases usin_g - at most O(n 2) mess a_ges.

Outline of proof of Theorem 3:

Our correctness rule will insure that no
processor relays more than two messages to any
other, regardless of the number of messages
received or the number of distirlct paths incoming
messages may have t~aw~]]ed. A value is s,gid to
9f_ri<[e._£ofri~7:t!y at a processor if it arrives
during the kth phase authenticated by k distinct

processors. A processor relays a value only if
it arrives correctly and is either the first or
the second correctly arriving value seen by the
processor. The decision function produces v if,
and only if, v is the only value arriving
correctly at the processor; otherwise, a default
value corresponding to sender fault is produced.
We need only run the algorithm for t+l phases
because any value that correctly arrives during
phase t+l has been seen at an earlier phase by a
correct processor.O

Theorem 4. Byzantine A~yeement can be achieved
for n processors with at most t faults within t+2
phases using at most O(nt) mess@ges t

Outline of proof of Theorem 4:

We restrict the correctness rule of the proof of
Theorem 3 by arbitrarily choosing t+l processors
to be relay processors and requiring any
non-relay processor to send messages only to
relay processors (the sender is not a relay
processor). All arguments remain the same except
that it takes two phases for a cor[ect processor
to communicate relevant information to all other
correct processors, so we require t+2 phases.O

5. POLYNOMIAL ALGORITHMS WITHOUT USING
AUTHENTICATION

The polynomial algorithm presented in this
section makes use of the intuition gained in the
previous section to attack the general problem.
Since we cannot use authentication, we attempt to
provide a substitute. Analysis of the previous
algorithms reveals that authentication performs
two essential tasks:

(i) preventing faulty processors from introducing
new values thus insuring that all values
considered were actually sent by the sender, and

(2) providing a proof of progress, showing that a
value arriving at a given phase has been relayed
by other processors in previous phases.

The two thresholds, LOW and HIGH, and the notion
of proof of progress defined below provide these
properties without using authentication.

Theorem 5. Byzantine Agreement can be achieved
for n processors with at most t faults within

4t__+4 phases using at most O(n 5) messages without
authentication, provided that n>3t.

Outline of proof of Theorem 5:

In order to describe the correctness rule and
decision function for our algorithm, we must
first describe the specific messages we will use.
We do this ill the context of describing units of
information to be recorded by a correctly
operating processor, some of which will be
transmitted as messages. These units will be
called assertions. There are three types of
assertions:

404

type a - of the form a(v), for v in V, interpreted
as "sender s sent value v at phase i;"

tyvpe b - of the form b(v,y,k), for v in V, y a
processor, k a phase number,
interpreted as "y sent a(v) at phase
k;" and

t~pe c - of the form c(v,x,y,k), for v in V, x and
y processors, k a phase number,
interpreted as "x sent b(v,y,k)."

The original messages sent by the sender will be
considered to be a special case of type a. All
other messages specified by our algorithm will be
either type a or type b assertions.

We will need two threshold numbers, LOW and HIGH
with the following properties:

LOW > t,
HIGH > LOW + t - i, and

n > HIGH + t - i.
Thus the number of correctly operating processors
will be greater than or equal to HIGH, while the
number of faulty processors will be less than
LOW. Note that these requirements imply that
n > 3t. One example of numbers satisfying the
requirements is LOW = t+l and HIGH = 2t+l.

Information kept by a processor will be recorded
in two categories: known~ and committed. If an
assertion is recorded as committed it will also
be recorded as known. Type c assertions will not
be messages and will only be recorded as known.

In our proofs we will let AC stand for the set of
correctly operating processors. When we refer to
a type b or c assertion without mentioning the
phase number but simply asserting one exists, we
will write * for the phase number, as in
b(v,q,*). Also we will freely replace a
processor by a set of processors to refer to the
appropriate set of assertions, as in c(v,AC,q,*).

We say <z(2),... ,z(j)> is a nonrep~atin_g_partia!
sequence if z is a partial function from the
integers between 2 and j inclusive to the set of
processors such that when z(i) and z(j) are both
defined and z(i) = z(j) then i = j. We say such a
nonrepeating partial sequence <z(2),...,z(j)> is
a proof o f~.ogress witl_! support ~l if at least
half of its positions are defined, it does not
contain the sender, and, for each i with z(i)
defined, c(v,M,z(i),i) is known.

We now give the correctness rule for our
algorithm by specifying the following rules for
correct operatlon for each processor:

i. At phase] the sender s broadcasts the value v
to all processors and records a(v),
b(v,s,2),and c(v,s,s,2) as known. Each
processor p that receives exactly one value v
from the sender records a(v), b(v,p,2), and
c(v,p,p,2) as known. At subsequent phases,
the sender will not be distinguished from
other processors.

2. At any phase k > I, each processor broadcasts
each assertion of type a or b that became
known at the previous phase. On receipt of a

type a (type b) message, the appropriate
assertion of type b (type c) is recorded as
known. When processor p records b(v,y,i) as
known, it should also record c(v,p,y,i) as
known.

3. If the number of processors x such that
c(v,x,y,i) is known is at least LOW, then
record b(v,y,i) as known.

4. For processor p to record b(v,y,i) as
committed at phase i+l, we require a set of
processors M of cardinality HIGH such that
there exists a nonrepeating partial sequence
<z(2),... ,z(i)=y> that is a proof of progress
with support H.

5. If the number of processors y, such that
b(v,y,i) is committed for some i, is at least
LOW (HIGII) then record a (v) as known
(committed).

The algorithm is to be rm~ for 2(LOW+t-i)+4
phases after which the decision function produces
v exactly when a(v) is the only assertion of type
a recorded as committed.

We count only the messages sent in accordance
with the correctness rules. This number is

easily seen to be bounded by o(nS), since the
number of values with which correct processors
must deal is at most n-l, and the number of
distinct messages is dominated by the number of
distinct type b messages, each of which is sent
at most once from each processor to each other
processor, while for each value there are fewer
than n(2(LOW+t-i)+4) distinct assertions of type
b.

The outline of proof of Theorem 5 will be
completed by the following five Iemmas:

Lemma I. If the sender correctl:y_ sends v to all
processors at ph!~se I,__ tl__/er!_ e!~cli_ qc).~-b/!tl ~
9p_9_rating_io~ocessor w i l l commit a(v) 5!t phase 3.

The proof of Lemma l is straightforward.

Lemma 2. ~ in AC commits b(v ~_,i), then there
is ~ ~'lonrepeat in g_ partial se~inence
<z(2),._..,z(i)=q~_ that is a proof of progress
with support AC.

Outline of Proof of Lemma 2:

Processor p in AC can only commit b(v,q,i) at
phase i+l, at which time there is a nonrepeating
partial sequence z with z(i)=q that is a proof of
progress with support M where IMI=HIGH. Since M
has HIGH elements, it has LOW correctly operating
elements, so we can replace the above support by
a subset D of AC with IDI=LOW. Note that support
by correct processors is simultaneously known to
all processors since correct processors always
broadcast their messages. Thus the proof of
progress for p is also a proof of progress for any
processor in AC and at phase i+l each processor

405

in AC knows b(v,z(j),j) for each j for which z(j)
is defined. Consequently, by phase i+2 each
processor in AC has z as a proof of progress with
support AC.o

Lemma 3. If p in AC sends a(v) at 2hase i, then
at phase i+l, every processor in AC will commit
b(v,p~i).

Outline of Proof of Lemma 3:

Suppose p in AC sends a(v) at phase i. In case
i = 2 the proof is straightforward and follows
that of Lemma i. Assume i > 2 so that there is
some q for which p commits b(v,q,i-2) at phase
i-l. By Lemma 2, there is a proof of progress z
with support AC such that z(i-2) = q and it is a
proof of progress for any correct processor at
phase j. At phase i+l each processor in AC knows
c(v,AC,p,i) and thus can add p to the proof of
progress z, allowing it to commit b(v,p,i).D

Lemma 4. If a correctly operating processo~
commits a(v) at phase k~ then all correctl~f
_qp_9_ratin~_p_r_qcessors will have committed a(v) b~f
phase k+2.

Outline of Proof of Lemma 4:

Suppose p in AC commits a(v) at phase k. By phase
k, p has committed b(v,M,*) with IMI=HIGH. Thus
there is a subset D of AC such that each processor
in AC has committed b(v,D,*) by phase k and
IDI=LOW. Consequently each processor of AC knows
a(v) by phase k and sends a(v) by phase k+l. Thus
by Lemma 3, each processor of AC commits
b(v,AC,*) by phase k+2 and is able to also commit
a(v) . o

Lemma 5. If any correctly operating processor
has committed a(v) by p_hase 2(LOW+t-i)+4, th~n
all have.

Outline of Proof of Lemma 5:

Let k = 2(LOW+t-I). If p in AC commits a(v) by
phase k+2, then all AC commit a(v) by phase k+4
according to Lemma 4. Suppose p in AC commits
a(v) after phase k+2. Then p commits some
b(v,q,i) with i > k+l. Let z = <z(2),.,.,z(i)=q>
be the relevant proof of progress with HIGH
support. Note that each defined z(j) actually
sent a(v) at phase j. Half the z(j) are defined
and none are the sender. Also note that if the
sender were in AC, then all would have committed
a(v) at phase 3. Thus at least LOW correctly
operating processors sent a(v) by phase k+l. Let
this subset of AC be D. By Lemma 4, each
processor in AC commits b(v,D,*) by phase k+2.
Thus each processor in AC knows a(v) by phase
k+2, sends a(v) by phase k+3, and commits
b(v,AC,*) and a(v) by phase k+4.o

This completes the outline of proof of
Theorem 5.o

6. CONCLUSION

The main contribution of this paper is that for
the first time Byzantine Agreement is feasible.
We believe that better algorithms can be
developed, and that the ideas behind Byzantine
Agreement can be applied to other issues of
reliability for systems of processors.

The lower bound of t+l phases with authentication
means that we must look elsewhere to achieve
Byzantine Agreement quickly. In fact we must
relax some requirement because the lower bound of
Theorem 2 applies no matter what kind of message
we send, Although the proof is given in the
context of synchronous phases, any purported
asynchronous algorithm for Byzantine Agreement
would certainly be imbeddable within the
synchronous phase context by simply imposing the
phases on its behavior.

One possibility would be to look at algorithms
that probably X achieve Byzantine Agreement. In a
probabilistic context, if we had a realistic
upper bound t on the number of possible faults,
then we would likely also have information on the
probability of exactly t faults, exactly t-i
faults, etc.

While they do not reduce the minimum number of
phases required, our algorithms do reduce the
total number of messages required for Byzantine
Agreement from exponential to polynomial in the
number of processors. We have assumed complete
and reliable communication among the processors.
Note that this may be achieved in an unreliable
and incompletely connected network (Da) and that
if we are given an algorithm for reliable
communication of a message using a number of
messages polynomial in the number of processors,
then we can convert that algorithm to one which
achieves Byzantine Agreement in a polynomial
number of messages.

Our algorithmic results suggest the following
open problem: What is the tradeoff between
phases and messages required for Byzantine
Agreement? The algorithm without authentication
requires four times as many phases as the lower
bound. However the lower bound is tight, since
there exist algorithms that use only t+l phases,
but require an exponential number of messages.

Acknowledgements:

The authors thank Nancy Lynch for helpful
suggestions about this manuscript, After
completing this work, the authors received a
somewhat similar proof of Theorem 2 from M.
Merritt (DLM).

406

7. REFERENCES

(DH) W. Diffie and M. Hellman, "New direction in
cryptography," IEEE Trans. on Inform.
IT-22,6(1976), 644-654.

(Da) D. Dolev, "The Byzantine Generals Strike
Again," Journal of Algorithms, vol. 3, no.
i, 1982.

(Db) D. Dolev, "Unanimity in an Unknown and
Unreliable Environment," 22nd Annual
Symposium on Foundations of Computer
Science, pp. 159-168, 1981.

(DS) D. Dolev and H. R. Strong, "Authenticated
Algorithms for Byzantine Agreement,"
submitted for publication; see also

"Po]ynomial a]gorithms for multiple
processor agreement," IBH Research Report
RJ3342 [1981).

(DLM) R. A. DeMil lo , N. A. Lynch, and 7i. M e r r i t t ,
" o ' Cryptooraph~c Protocols, " in these
proceedings.

(L)

(LSP)

(LF)

(PSL)

(R S A)

L. Lamport, "Ush~g Time Instead of Timeout
for Fault-Tolerant Distributed Systems,"
T e c h n i c a l R e p o r t , Computer Science
Laboratory, SRI Internationa], 198].

L. Lampor t , R. S h o s t a k , and 7I. Pease , "The
B y z a n t i n e G e n e r a l s P r o b l e m , " ACM T r a n s . on
Programing Languages and Systems, to
a p p e a r .

N. Lynch, and H. F i s c h e r , "A Lower Bound
for the Time to Assure Interactive
Consistency," submitued for publication.

bl. Pease, R. Shostak, :n~d L. Lampor t,
"Reaching Agree,rant in the Prese£ce of
FaulLs," JAC71, vo]. 27, no. 2. pp. 228-234,
1980.

R. L. Rivest, A. ShamJr, and L. Adleman, "A
method for obtaining digital signatures and
public-key eryptosystems," Comm. ACM 21
(1978) , 120-126.

<<s< L
\ r o v /

phase 1

@
@"

Figure i. A six processor four
phase history with edge labels
and phase 0 omitted.

Figure 2. The result of hiding
sender s at phase i.

407

