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ABSTRACT 

Reaching agreement in a distributed system while 
handling malfunctioning behavior is a central 
issue for reliable computer systems. All 
previous algorithms for reaching the agreement 
required an exponential number of messages to be 
sent, with or without authentication. We give 
polynomial algorithms for reaching (Byzantine) 
agreement, both with and without the use of 
authentication protocols. We also prove that no 
matter what kind of information is exchanged, 
there is no way to reach agreement with fewer 
than t+l rounds of exchange, where t is the upper 
bound on the number of faults. 

I. INTRODUCTION 

In this paper we describe algorithms for 
achieving agreement among multiple processors. 
The context for this agreement is a network of 
unreliable processors that have a means for 
conducting several synchronized phases of 
information exchange, after which they must all 
agree on some set of information. We will assume 
for simplicity that this set of information 
consists of a single value from some set of 
values V. 

The type of agreement we will study is called 
Byzantine Agreement (LSP), Unanimity (Db), or 
Interactive Consistency (PSi). It results when, 
in the presence of undetected faulty processors, 
all correctly operating processors are able to 
agree either on a value or on the conclusion that 
the originator of the value is faulty. More 
explicitly, Byzantine Agreement is achieved when 
(I) all correctly operating processors agree on 
the same valued and 
(If) if the sender operates correctly then all 
correctly operating processors agree on its 
value. 
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Our analysis of the problem is based on the worst 
case assumption that faulty processors are not 
predictable and possibly even malicious. An 
algorithm should sustain any strange behavior of 
faulty processors, even a collusion to prevent 
the correctly operating processors from reaching 
agreement. Even if the correctly operating 
processors cannot identify the faulty processors, 
they must still reach Byzantine Agreement. The 
algorithm should not depend in any way on 
anticipated behavior of faulty processors. 

All previous algorithms for reaching Byzantine 
Agreement are exponential in the number of 

messages (O(nt+l), where n is the number of 
processors and t is an upper bound on the number 
of undetected faulty processors). The new 
results presented here include algorithms 
polynomial in the number of bits exchanged, with 
or without authentication. 

We also establish an exact lower bound for the 
number of phases of information exchange 
required. This lower bound (t+l) was known for 
the case in which only unauthenticated messages 
are exchanged (LF). We have generalized the 
proof given by Lynch and Fischer to apply to any 
kind of message. 

These results resolve open problems raised by 
(L) ,  (LSP),  (Da) ,  (Db),  (PSL) and (LF) ,  and can 
be used  t o  s t r e n g t h e n  t h e  r e s u l t s  o b t a i n e d  in  t h e  
above p a p e r s .  

The lower  bound r e s u l t  i s  somewhat s u r p r i s i n g  in  
ou r  c o n t e x t .  I t  i n d i c a t e s  t h a t  even t houg h  we 
a l l o w  c o r r e c t l y  o p e r a t i n g  p r o c e s s o r s  exchange  o f  
any k i n d  of  v e r i f i a b l e  i n f o r m a t i o n ,  and even 
though  we r e s t r i c t  t h e  p o s s i b l e  b e h a v i o r  o f  
f a u l t y  p r o c e s s o r s  t o  s i m p l y  f a i l i n g  to  r e l a y  
m e s s a g e s ,  B y z a n t i n e  Agreement  c a n n o t  be r e a c h e d  
in t or fewer phases. Note that if we relax (I) 
slightly as in Crusader Agreement (Da), then we 
can obtain the agreement within two phases. 

The algorithms discussed provide a method for a 
single processor to send a single value to all 
other processors. Generalizations to many 
processors sending values to each other will be 
obvious. 

We assume some reliable means of communication by 
which any correct processor can send a message to 
any other correct processor. For example, this 
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reliability might be achieved by sending 
duplicate messages along many paths in a network. 
In any case, for this paper, we assume a 
completely connected, totally reliable 
communication network, and in counting the total 
number of messages sent, we ignore any 
duplication or repetition inherent in the 
communication medium. Note that we only count 
the messages sent by correctly operating 
processors. 

All the results obtained in the paper can be 
extended to networks which are not complete using 
similar methods to those described by (Da), (Db), 
and (LPS). The number of phases and likewise the 
number of messages will increase, but the 
algorithms will remain polynomial. 

For algorithms using authentication, we assume a 
protocol that will prevent any processor from 
introducing a new value or message into the 
information exchange and claiming to have 
received it from another (DH), (RSA). In a 
typical authentication protocol (PSL), the 
transmitter appends a signature to the message to 
be sent. This signature contains a duplicate of 
part of the message encoded in such a way that any 
receiver can verify that the message is authentic 
and that it was sent by the sender, but no 
processor can forge the signature of another. 
Thus no processor can change the content of a 
message undetectably. 

Without authentication~ we have the case studied 
by (LSP), (PSL), (Da), (Db), and (LF). In this 
case, if d is the number of phases and m is the 
total number of messages, then the following 
requirements for Byzantine Agreement were 
previously established: 
(i) n > 3t (PSL), and 
(2) d > t (LF). 

Algorithms presented used d=t+l and m=O(nt). 

Pease, et, al. (PSL), recognized that with 
authentication (I) is no longer required. The 
algorithm for this case presented in (LSP) uses 
the above d and m. Moreover, the proof of (2) 
given by Lynch and Fischer depends on (i) as well 
as requiring the very simple kind of message, 
disallowing any authentication protocol. Here we 
establish (2) in a general context with 
authentication. Also, we will present an 
algorithm for Byzantine Agreement with d=t+l and 

m=O(n2), and a modification with d=t+2 and 
m=O(nt) . 

For reaching Byzantine Agreement without using 
authentication one needs a much more 
sophisticated algorithm. Byzantine Agreement is 
more difficult without authentication because 
faulty processors can change intermediate values, 
and because no processor can identify with 
certainty those that relayed a given message. We 

present an algorithm with d=4t+4 and m=O(n 5) to 
obtain the Byzantine Agreement. All previous 
algorithms used the lower bound for d (i.e., t+l)" 
and an exponential number of messages. 

2. HISTORIES 

In order to give proofs of correctness and 
especia]ly to establish lower bounds, we will 
describe the message related behavior of the 
collection of processors during the phases of 
information exchange as a single object called a 
history. We will formally define a history as a 
sequence of directed graphs called phases. We 
intend the notion of history to capture any 
synchronous information exchange behavior, 
including any number of authentication protocols 
and the exchange of arbitrary message types. The 
lower bound result of section 3 can be extended 
to asynchronous algorithms with a suitable 
generalization of the notion of phase. 

A phase is a directed graph with nodes 
corresponding to processors and with labels on 
the edges. A label represents the information 
sent from a given processor to another during the 
given phase. We assume that when no message is 
sent there is no edge. An n processor history is 
a finite sequence of n node phases, with nodes 
labelled by the names of the processors, together 
with a special initial phase called £hase 0, such 
that phase 0 contains only a single inedge to one 
processor called the sender. (We assume that the 
inedge at phase 0 carries the value that the 
sender is to send.) Figures i and 2 represent 
histories with labels and phase 0 omitted. 

A subhistor ~ of a history H is a copy of H with 
some edges removed. For each history H and 
processor p there is a unique subhistory pH 
called the subhistory according to p, consisting 
of only the edges with target p. Thus, the 
subhistory according to the sender includes the 

value it is supposed to send even if it sends 
nothing. 

An _agreement algorithm on a class of histories C 
consists of a correctness rule (a function which 
given a subhistory according to p and an edge in a 
phase to be added to the history as the next 
phase, produces a possibly empty label for that 
edge) and a decision function (a function from 
subhistories according to processors of histories 
in C to the union of V with a symbol 0 
representing "sender fault"). With respect to a 
given correctness rule, a processor p is said to 
be correct at phase k if each edge from p in phase 
k has the label produced by the correctness rule 
operating on the subhistory according to p of the 
previous k-i phases. A processor p is correct 
for history H if it is correct at each phase of H. 
Figure 1 could represent a history in which all 
processors are correct, while figure 2 could 
represent a history with the sender faulty. We 
call a history t-faulty (with respect to a 
correctness rule) if at most t of its processors 
are incorrect. 

A correctness rule is actually a union of 
possibly distinct correctness rules, one for each 
processor. Likewise, the decision function is a 
union of individual decision functions. 

An example of a correctness rule is the rule that 
each processor simply sign and relay (according 
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to the authentication protocol) each incoming 
message of the previous phase to every other 
processor. 

We say Byzantine Agreement can be achieved for n 
processors with at most t faults within d phases 
if there is an agreement algorithm for the class 
C of n processor, t-faulty (with respect to the 
correctness rule of the algorithm), d phase 
histories so that the decision function F obeys 
the rules for Byzantine Agreement: 

(I) if p and q are correct for H in C then FpH = 
FqH, and 

(If) if the sender is correct at the first phase 
of H and p is correct for H in C then FpH = v 
where v is the sender's value. 

Note that we do not define Byzantine Agreement 
for n<3 or for t>n. In the context of an 
authentication protocol, the class C of histories 
is assumed limited to those consistent with the 
semantics of authentication. 

3. THE LOWER BOUND RESULT 

Theorem I. (LSP) Byzantine Agreement with 
authentication can be achieved for n processors 
with at most t faults within t+l phases, assumin_~ 
n>t+l. 

The following lower bound result is the principal 
result of this section. It shows that the result 
of Theorem i is tight. 

Theorem 2. B~zantine Agreement cannot be 
achieved for n processors with at most t faults 
within t or fewer ~hasez~!_i0rovided n>t+l. 

The proof of Theorem 2 is inspired by, but a 
nontrivial generalization of, the proof given by 
Lynch and Fischer for the restricted case without 
authentication (LF). Lynch and Fischer used the 
n>3t result of (PSL) to show that any algorithm 
for Byzantine Agreement mnst be uniform. 
Assuming uniformity, they established an 
equivalence relation on their version of t-faulty 
histories and obtained a contradiction by showing 
that too many histories were contained in a 
single equivalence class. Their proof of this 
equivalence relied on the ability to preserve 
equivalence while changing one message at a time. 
Their proof of this ability, without using the 
uniformity assumption, is essentially the proof 
of the base case in the induction that follows. 

Outline of Proof of Theorem 2: 

Assume that Byzantine Agreement can be achieved 
for some n>t+l within t phases. Let R be the 
correctness rule and let F be the decision 
function on subhistories such that <R,F> achieves 
Byzantine Agreement on n processor, depth t, 
t-faulty histories. 

Let C be the class of n processor, depth t, 
t-faulty histories that have a critical sequence 
such that all incorrect processors appear on the 
sequence and any incorrect node appears at or 

below the level corresponding to the order its 
label appears on the sequence. Define an 
equivalence relation on histories in C by saying 
H is equivalent to H' if, whenever p is correct 
for H and q is correct for H', then FqH' = FpH. 

Note that C includes histories in which all 
processors behave correctly. Since we assume V 
has more than one value, this means that there 
must be histories in C that are not equivalent. 
But, as we will show, C is a single equivalence 
class. Under an appropriate definition of <R,F>, 
both Figure 1 and Figure 2 could describe 
histories from the set C. However, in Figure 2 
the result of the algorithm must be independent 
of any information from the sender since the 
sender sends nothing. This fact is the key idea 
behind the contradiction we obtain. 

We say that a processor is hidden at phase k if it 
has no outedges at k or any later phase. We will 
also refer to the node at phase k as hidden if the 
processor is. In particular it is easy to show by 
induction on the phase k that, if r is a node 
representing a processor at phase k of a history 
H in C, then 
(a) there is a history H' in C, equivalent to H, 
identical to H through phase k except for 
outedges of r, with r correct and all processors 
correct after phase k, and 
(b) if all other nodes at phase k are correct, 
then there is a history H' in C, equivalent to H, 
identical to H through phase k except for 
outedges of r, with r hidden and all other 
processors correct after phase k. 
Note that if a processor labels a hidden node, 
then changing the information on its inedge 
cannot affect the subhistory according to any 
other processor. In Figure 2 the sender is 
hidden at phase i. 

The induction proceeds one edge at a time making 
changes not witnessed by some correct processor 
(here we use the fact that n > t+l to guarantee 
the existence of such a correct processor). It 
shows that we can correct a node at any phase or 
hide a node if all other nodes at its phase are 
correct, and that the resulting history will be 
in C and equivalent to the one from which we 
started, while all changes will be to the 
outedges of the particular node and to edges at 
later phases. Thus every history in O is 
equivalent to any history in which the root is 
hidden and all other processors are correct. 

This completes the outline of proof of Theorem 2, 
a complete proof can be found in (DS).D 

Remark. Whenever it is defined, Byzantine 
A~regment can be achieved for n processors within 
n-I phases. 

Thus the provision n>t+l is necessary for the 
lower bound of Theorem 2. 
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4. POLYNOMIAL ALGORITHMS USING AUTHENTICATION 

As mentioned in the introduction, we assume the 
existence of some authentication technique that 
prevents the faulty processors from undetectably 
changing the content of messages. 

For purposes of counting messages we supply the 
following specific syntax for the labels on the 
edges of directed graphs called phases. 

(i) The set of values V is contained in the set of 
atomic messages 

(2) A label Js either 
an atomic message I 

an authentication 1 
a sequence of labels; 

(3) An authentication is a label of the form 
(labela)p, 

where p is the name of a processor and labela is a 
label; and 

(4) a sequence of labels is a label of the form 
labela,labelb 

where labela and labelb are labels. 

Note that (a,b,c)p is not the same label as 
(a )p , (b)p , (c )p .  

Label a is part of label b if either: 
(i) a=b, or 
(ii) there is a label c and a processor p such 
that a is part of c and b=(e)p, or 
(iii) there are labels c and d such that b = c,d 
and a is part of c or d. 

A message is a label with no commas. 

Thus, at any phase any processor can send any 
message to any other processor, except that no 
processor can alter an authenticated message 
received at a previous phase and forward it as an 
authenticated message at the next phase, nor can 
any processor pretend to have received an 

authenticated message it did not receive and 
forward that as an authenticated message. For 
this section, attention will be restricted to 
histories consistent with the semantics of 
authentication. In particular, if (a)q is part 
of a label at phase k from processor p then either 
p = q or (a)q appears as part of a label on an 
inedge to p in a previous phase. 

Theorem 3. Byzantine Agreement can be achieved 
for n processors with at most t faults within t+l 

phases usin_g - at most O(n 2) mess a_ges. 

Outline of proof of Theorem 3: 

Our correctness rule will insure that no 
processor relays more than two messages to any 
other, regardless of the number of messages 
received or the number of distirlct paths incoming 
messages may have t~aw~]]ed. A value is s,gid to 
9f_ri<[e._£ofri~7:t!y at a processor if it arrives 
during the kth phase authenticated by k distinct 

processors. A processor relays a value only if 
it arrives correctly and is either the first or 
the second correctly arriving value seen by the 
processor. The decision function produces v if, 
and only if, v is the only value arriving 
correctly at the processor; otherwise, a default 
value corresponding to sender fault is produced. 
We need only run the algorithm for t+l phases 
because any value that correctly arrives during 
phase t+l has been seen at an earlier phase by a 
correct processor.O 

Theorem 4. Byzantine A~yeement can be achieved 
for n processors with at most t faults within t+2 
phases using at most O(nt) mess@ges t 

Outline of proof of Theorem 4: 

We restrict the correctness rule of the proof of 
Theorem 3 by arbitrarily choosing t+l processors 
to be relay processors and requiring any 
non-relay processor to send messages only to 
relay processors (the sender is not a relay 
processor). All arguments remain the same except 
that it takes two phases for a cor[ect processor 
to communicate relevant information to all other 
correct processors, so we require t+2 phases.O 

5. POLYNOMIAL ALGORITHMS WITHOUT USING 
AUTHENTICATION 

The polynomial algorithm presented in this 
section makes use of the intuition gained in the 
previous section to attack the general problem. 
Since we cannot use authentication, we attempt to 
provide a substitute. Analysis of the previous 
algorithms reveals that authentication performs 
two essential tasks: 

(i) preventing faulty processors from introducing 
new values thus insuring that all values 
considered were actually sent by the sender, and 

(2) providing a proof of progress, showing that a 
value arriving at a given phase has been relayed 
by other processors in previous phases. 

The two thresholds, LOW and HIGH, and the notion 
of proof of progress defined below provide these 
properties without using authentication. 

Theorem 5. Byzantine Agreement can be achieved 
for n processors with at most t faults within 

4t__+4 phases using at most O(n 5) messages without 
authentication, provided that n>3t. 

Outline of proof of Theorem 5: 

In order to describe the correctness rule and 
decision function for our algorithm, we must 
first describe the specific messages we will use. 
We do this ill the context of describing units of 
information to be recorded by a correctly 
operating processor, some of which will be 
transmitted as messages. These units will be 
called assertions. There are three types of 
assertions: 
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type a - of the form a(v), for v in V, interpreted 
as "sender s sent value v at phase i;" 

tyvpe b - of the form b(v,y,k), for v in V, y a 
processor, k a phase number, 
interpreted as "y sent a(v) at phase 
k;" and 

t~pe c - of the form c(v,x,y,k), for v in V, x and 
y processors, k a phase number, 
interpreted as "x sent b(v,y,k)." 

The original messages sent by the sender will be 
considered to be a special case of type a. All 
other messages specified by our algorithm will be 
either type a or type b assertions. 

We will need two threshold numbers, LOW and HIGH 
with the following properties: 

LOW > t, 
HIGH > LOW + t - i, and 

n > HIGH + t - i. 
Thus the number of correctly operating processors 
will be greater than or equal to HIGH, while the 
number of faulty processors will be less than 
LOW. Note that these requirements imply that 
n > 3t. One example of numbers satisfying the 
requirements is LOW = t+l and HIGH = 2t+l. 

Information kept by a processor will be recorded 
in two categories: known~ and committed. If an 
assertion is recorded as committed it will also 
be recorded as known. Type c assertions will not 
be messages and will only be recorded as known. 

In our proofs we will let AC stand for the set of 
correctly operating processors. When we refer to 
a type b or c assertion without mentioning the 
phase number but simply asserting one exists, we 
will write * for the phase number, as in 
b(v,q,*). Also we will freely replace a 
processor by a set of processors to refer to the 
appropriate set of assertions, as in c(v,AC,q,*). 

We say <z(2),... ,z(j)> is a nonrep~atin_g_partia! 
sequence if z is a partial function from the 
integers between 2 and j inclusive to the set of 
processors such that when z(i) and z(j) are both 
defined and z(i) = z(j) then i = j. We say such a 
nonrepeating partial sequence <z(2),...,z(j)> is 
a proof o f~.ogress witl_! support ~l if at least 
half of its positions are defined, it does not 
contain the sender, and, for each i with z(i) 
defined, c(v,M,z(i),i) is known. 

We now give the correctness rule for our 
algorithm by specifying the following rules for 
correct operatlon for each processor: 

i. At phase ] the sender s broadcasts the value v 
to all processors and records a(v), 
b(v,s,2),and c(v,s,s,2) as known. Each 
processor p that receives exactly one value v 
from the sender records a(v), b(v,p,2), and 
c(v,p,p,2) as known. At subsequent phases, 
the sender will not be distinguished from 
other processors. 

2. At any phase k > I, each processor broadcasts 
each assertion of type a or b that became 
known at the previous phase. On receipt of a 

type a (type b) message, the appropriate 
assertion of type b (type c) is recorded as 
known. When processor p records b(v,y,i) as 
known, it should also record c(v,p,y,i) as 
known. 

3. If the number of processors x such that 
c(v,x,y,i) is known is at least LOW, then 
record b(v,y,i) as known. 

4. For processor p to record b(v,y,i) as 
committed at phase i+l, we require a set of 
processors M of cardinality HIGH such that 
there exists a nonrepeating partial sequence 
<z(2),... ,z(i)=y> that is a proof of progress 
with support H. 

5. If the number of processors y, such that 
b(v,y,i) is committed for some i, is  at least 
LOW (HIGII) then record a (v) as known 
(committed). 

The algorithm is to be rm~ for 2(LOW+t-i)+4 
phases after which the decision function produces 
v exactly when a(v) is the only assertion of type 
a recorded as committed. 

We count only the messages sent in accordance 
with the correctness rules. This number is 

easily seen to be bounded by o(nS), since the 
number of values with which correct processors 
must deal is at most n-l, and the number of 
distinct messages is dominated by the number of 
distinct type b messages, each of which is sent 
at most once from each processor to each other 
processor, while for each value there are fewer 
than n(2(LOW+t-i)+4) distinct assertions of type 
b. 

The outline of proof of Theorem 5 will be 
completed by the following five Iemmas: 

Lemma I. If the sender correctl:y_ sends v to all 
processors at ph!~se I,__ tl__/er!_ e!~cli_ qc).~-b/!tl ~ 
9p_9_rating_io~ocessor w i l l  commit a(v)  5!t phase  3. 

The proof of Lemma l is straightforward. 

Lemma 2. ~ in AC commits b(v ~_,i), then there 
is ~ ~'lonrepeat in g_ partial se~inence 
<z(2),._..,z(i)=q~_ that is a proof of progress 
with support AC. 

Outline of Proof of Lemma 2: 

Processor p in AC can only commit b(v,q,i) at 
phase i+l, at which time there is a nonrepeating 
partial sequence z with z(i)=q that is a proof of 
progress with support M where IMI=HIGH. Since M 
has HIGH elements, it has LOW correctly operating 
elements, so we can replace the above support by 
a subset D of AC with IDI=LOW. Note that support 
by correct processors is simultaneously known to 
all processors since correct processors always 
broadcast their messages. Thus the proof of 
progress for p is also a proof of progress for any 
processor in AC and at phase i+l each processor 
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in AC knows b(v,z(j),j) for each j for which z(j) 
is defined. Consequently, by phase i+2 each 
processor in AC has z as a proof of progress with 
support AC.o 

Lemma 3. If p in AC sends a(v) at 2hase i, then 
at phase i+l, every processor in AC will commit 
b(v,p~i). 

Outline of Proof of Lemma 3: 

Suppose p in AC sends a(v) at phase i. In case 
i = 2 the proof is straightforward and follows 
that of Lemma i. Assume i > 2 so that there is 
some q for which p commits b(v,q,i-2) at phase 
i-l. By Lemma 2, there is a proof of progress z 
with support AC such that z(i-2) = q and it is a 
proof of progress for any correct processor at 
phase j. At phase i+l each processor in AC knows 
c(v,AC,p,i) and thus can add p to the proof of 
progress z, allowing it to commit b(v,p,i).D 

Lemma 4. If a correctly operating processo~ 
commits a(v) at phase k~ then all correctl~f 
_qp_9_ratin~_p_r_qcessors will have committed a(v) b~f 
phase k+2. 

Outline of Proof of Lemma 4: 

Suppose p in AC commits a(v) at phase k. By phase 
k, p has committed b(v,M,*) with IMI=HIGH. Thus 
there is a subset D of AC such that each processor 
in AC has committed b(v,D,*) by phase k and 
IDI=LOW. Consequently each processor of AC knows 
a(v) by phase k and sends a(v) by phase k+l. Thus 
by Lemma 3, each processor of AC commits 
b(v,AC,*) by phase k+2 and is able to also commit 
a(v) . o  

Lemma 5. If any correctly operating processor 
has committed a(v) by p_hase 2(LOW+t-i)+4, th~n 
all have. 

Outline of Proof of Lemma 5: 

Let k = 2(LOW+t-I). If p in AC commits a(v) by 
phase k+2, then all AC commit a(v) by phase k+4 
according to Lemma 4. Suppose p in AC commits 
a(v) after phase k+2. Then p commits some 
b(v,q,i) with i > k+l. Let z = <z(2),.,.,z(i)=q> 
be the relevant proof of progress with HIGH 
support. Note that each defined z(j) actually 
sent a(v) at phase j. Half the z(j) are defined 
and none are the sender. Also note that if the 
sender were in AC, then all would have committed 
a(v) at phase 3. Thus at least LOW correctly 
operating processors sent a(v) by phase k+l. Let 
this subset of AC be D. By Lemma 4, each 
processor in AC commits b(v,D,*) by phase k+2. 
Thus each processor in AC knows a(v) by phase 
k+2, sends a(v) by phase k+3, and commits 
b(v,AC,*) and a(v) by phase k+4.o 

This completes the outline of proof of 
Theorem 5.o 

6. CONCLUSION 

The main contribution of this paper is that for 
the first time Byzantine Agreement is feasible. 
We believe that better algorithms can be 
developed, and that the ideas behind Byzantine 
Agreement can be applied to other issues of 
reliability for systems of processors. 

The lower bound of t+l phases with authentication 
means that we must look elsewhere to achieve 
Byzantine Agreement quickly. In fact we must 
relax some requirement because the lower bound of 
Theorem 2 applies no matter what kind of message 
we send, Although the proof is given in the 
context of synchronous phases, any purported 
asynchronous algorithm for Byzantine Agreement 
would certainly be imbeddable within the 
synchronous phase context by simply imposing the 
phases on its behavior. 

One possibility would be to look at algorithms 
that probably X achieve Byzantine Agreement. In a 
probabilistic context, if we had a realistic 
upper bound t on the number of possible faults, 
then we would likely also have information on the 
probability of exactly t faults, exactly t-i 
faults, etc. 

While they do not reduce the minimum number of 
phases required, our algorithms do reduce the 
total number of messages required for Byzantine 
Agreement from exponential to polynomial in the 
number of processors. We have assumed complete 
and reliable communication among the processors. 
Note that this may be achieved in an unreliable 
and incompletely connected network (Da) and that 
if we are given an algorithm for reliable 
communication of a message using a number of 
messages polynomial in the number of processors, 
then we can convert that algorithm to one which 
achieves Byzantine Agreement in a polynomial 
number of messages. 

Our algorithmic results suggest the following 
open problem: What is the tradeoff between 
phases and messages required for Byzantine 
Agreement? The algorithm without authentication 
requires four times as many phases as the lower 
bound. However the lower bound is tight, since 
there exist algorithms that use only t+l phases, 
but require an exponential number of messages. 

Acknowledgements: 

The authors thank Nancy Lynch for helpful 
suggestions about this manuscript, After 
completing this work, the authors received a 
somewhat similar proof of Theorem 2 from M. 
Merritt (DLM). 

406 



7. REFERENCES 

(DH) W. Diffie and M. Hellman, "New direction in 
cryptography," IEEE Trans. on Inform. 
IT-22,6(1976), 644-654. 

(Da) D. Dolev, "The Byzantine Generals Strike 
Again," Journal of Algorithms, vol. 3, no. 
i, 1982. 

(Db) D. Dolev, "Unanimity in an Unknown and 
Unreliable Environment," 22nd Annual 
Symposium on Foundations of Computer 
Science, pp. 159-168, 1981. 

(DS) D. Dolev and H. R. Strong, "Authenticated 
Algorithms for Byzantine Agreement," 
submitted for publication; see also 

"Po]ynomial a]gorithms for multiple 
processor agreement," IBH Research Report 
RJ3342 [1981). 

(DLM) R. A. DeMil lo ,  N. A. Lynch,  and 7i. M e r r i t t ,  
" o ' Cryptooraph~c Protocols, " in these 
proceedings. 

(L) 

(LSP) 

(LF) 

(PSL) 

( R S A )  

L. Lamport, "Ush~g Time Instead of Timeout 
for Fault-Tolerant Distributed Systems," 
T e c h n i c a l  R e p o r t ,  Computer  Science 
Laboratory, SRI Internationa], 198]. 

L. Lampor t ,  R. S h o s t a k ,  and 7I. Pease ,  "The 
B y z a n t i n e  G e n e r a l s  P r o b l e m , "  ACM T r a n s .  on 
Programing Languages and Systems, to 
a p p e a r .  

N. Lynch, and H. F i s c h e r ,  "A Lower Bound 
for the Time to Assure Interactive 
Consistency," submitued for publication. 

bl. Pease, R. Shostak, :n~d L. Lampor t, 
"Reaching Agree,rant in the Prese£ce of 
FaulLs," JAC71, vo]. 27, no. 2. pp. 228-234, 
1980. 

R. L. Rivest, A. ShamJr, and L. Adleman, "A 
method for obtaining digital signatures and 
public-key eryptosystems," Comm. ACM 21 
(1978) ,  120-126. 

<<s< L 
\ r o v / 

phase 1 

@ 
@" 

Figure i. A six processor four 
phase history with edge labels 
and phase 0 omitted. 

Figure 2. The result of hiding 
sender s at phase i. 
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