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We consider codes for write-once memory in tile presence of stuck-agO and stuebat--1 faults. Such fault.- 
tolerant codes generally require less redundancy than error-correcting codes, as faults detected during the 
writing process can affect subsequent behavior of that process. We present pointer codes, which use part of 
a codeword to point to faults in other parts of the codeword. A pointer code can encode n-bit messages in 
the presence of f faults with only f(log 2 n + o(1)) redundancy. We derive a lower bound on the redundancy 
of such a fault-tolerant code of slightly less than f log n. We also examine some models where all stuck-at 
inforIlmtion is known in advance, and analyze the expected redundancy of pointer codes. 

I. I N T R O D U C T I O N  

Write-once memory (worn) is a storage medium of 
two-state cells in which a 0 can be changed to a I, but 
a 1 cannot be changed back to a 0. Standard examples 
of such memory devices include paper tape and punch 
cards, whcre holes can be punched, but not unpunched. 
The emergence of high-density and cheap write-once 
devices such as digital optical disks (where a 12-inch 
disk can store over 10 H bits of data) has provoked a 
more serious examination of how information should be 
encoded in such memories. 

We investigate here the problem of encoding data 
in a write-once memory where cells in the memory may 
be defective, and consider what kind of redundancy 
must be included so that these faults can be corrected. 
A defective cell may be stuck-at-l, i.e., already changed 
to 1, or stuck-at-O, where attempts to change the cell 
from 0 to 1 fail. These "stuck-at" faults correspond to 
flaws in the fabrication of write-once mem0rics such as 
optical disks, where the metal fihn used as the storage 
medium may be of uneven thickness. 

Standard error-correcting schemes such as tlam- 
ming codes can indeed be used to correct faults in a 
write-once memory, but under certain circumstances 
we can do better. In particular, we examine the case 
where the number of stuck hits is fixed or slowly in- 
creasing with the size of the encoded message, rather 
than assuming that bits will be stuck with some fixed 
probability. Furthermore, standard error-correcting 
schemes assume aa encoding and decoding model where 
thc cncoder does not ever find out what bits are in er- 
ror: it is forced to compute the rcdundancy before the 
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message is transmitted and subjected to noise. With 
a write-once memory, it is entirely appropriate to let 
the eneoder know what bits are stuck either bcfore or 
during encoding, so that the encoding algorithm may 
dynamically adapt to these faults. 

In Section IlI we present pointer codes, which we 
use to encode n-bit messages in the presence of f faults 
with only f(log 2 n + o(1)) redundancy. A lower bound 
proof in Section IV shows that this encoding scheme is 
essentially the best possible. In Section V we show how 
the upper bound can be improved if the eneoder knows 
all the stuck-at information in advance, and in Section 
VI we examine the expected redundancy of the pointer 
code algorithm. 

IL P R E L I M I N A R I E S  A N D  M O D E L  OF C O M P :  
U T A T I O N  

We imagine an encoder that wants to send n bits of 
information to a decoder. The medium of the mes- 
sage (take that, Marshall McLuhan) is b(n) > n bits 
of write-once memory. The decoder must bc able to 
recover ttle original n-bit message by examining the 
b(n)-bit transmission, but is not allowed to change any 
of the bits, and has no side information about which 
bits are stuck. The encoder is allowed to examine the 
b(n) bits Before beginning the encoding algorithm to see 
which bits are stuck-at-l; since a "brand new" memory 
should have bits all set tozero,  the stuck-at,-I bits are 
immediately visible. 

An encoding algorffhm consists of a set of decision 
trees, one for each message and pattern of stuck-at--1 
bits, as suggested by Fig. 1. To encode message m, 
the encoding algorithm begins by attempting to write 
a 1 in bit position bj, I < be < b(n). The memory 
responds "stuck-at-0" or "OK," depending ca whether 
or not the write was successful, and the encoding algo- 
rithm branches accordingly. Note that the encoding 
algorithm is characterized by where it writes I bits, as 
"write 0" means nothing in a write-once memory; also 
note that the encoding algorithm can be fully adaptive 
to faults. The encoder knows stuck-at-1 information in 
advance, so that it need not ever try to write a I in a 
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Fig.  1. An encoding algorithm. 

bit already stuck-at-I,  but only discovers that  a bit is 
stuck-at-0 when it tries to change it from a 0 to a 1. 

While the encoding algorithms we describe will not 
be stated explicitly in terms of decision trees, it will be 
clear that they can be so translated. The decision tree 
model is used in deriving the lower bounds of Section 
IV. 

Codes to tolerate stuck-at faults have been studied 
for rewritable memory [liE, KT]. Lower bounds on 
those codes are lower bounds on fault-tolerant codes 
for write-once memory. Other work on codes for write- 
once memory has concentrated in its use as memory 
with a limited number of rewrites [M, RS]. 

HI. P O I N T E R  C O D E S  

We begin with the basic idea, and then make some 
refinements. To encode an n-blt message in 5(n) bits, 
divide the b bits of write-once memory into f + 1 blocks 
0, 1 , . . . ,  f .  Block 0, the initial block, consists of n bits 
and is used to hold the binary representation of mes- 
sages. Blocks 1, 2 . . . .  , f ai'e correction blocks that  hold 
pointers to indicate faults. Bit positions are numbered 
left to right starting at 1. A pointer of all 0's means 
no correction is indicated. While our model allows bit- 
at-a-time writes, the pointer code algorithm writes an 
entire block at once. 

Let bin(i) be the binary representation of integer 
i. The writing procedure [or a pointer code attempts 
to write a codeword for message m by first writing 
bin(m) in the initial block; if there arc faults in the 
initial block, correction blocks are written to point to 
the faults. 

E x a m p l e  1: Let n = 15 and f = 3. Let the correction 
blocks have 4 bits each. Suppose bit 5 is stuck-at-1 and 
bit 12 is stuck-at-0, and we wish to write 0 and 1 there, 
respectively. Then we can use two correction blocks to 
point to the faults: 

11110 11100 01000 0101 1100 xxxx 

[] 
There are two problems with the basic idea. There 

may be faults in the correction blocks. We solve this 
• problem by letting correction block i point to a fault in 
any of the blocks 0 , . . . ,  i -  1. The other problem is that 
unused correction blocks may contain stuck-aV1 faults 
that  cause them to point to positions where no faults 

exist. There may not be enough correction blocks to 
indicate these faults. In the last example, ff the last 
block contains 0100, it will incorrectly point to a fault, 
and there are no correction blocks to fix this error. We 
therefore let a correction block of all l ' s  also mean no 
correction, and indicate that all blocks to t!m right are 
to be ignored. 

To decode an encoded word e, we let k denote the 
smallest nonnegative integer such that block k is all 
l ' s ;  if there is no such block, let k ~- f + 1. Then for 
i -~ k - 1, k - 2 , . . . ,  1, we complement the bit position 
in c to which block i points. (If block i is all O's or all 
l 's, no correction is made.) Block'0 is then returned as 
the message. 

E x a m p l e  2: Suppose b-~- 35, n -~- 20, and f = 3. 
Correction blocks have 5 bits. To decode 

01000 00000 00001 01100 00010 11001 11111 

we first disregard correction block 3 (if there were 
blocks to the right of block 3, they would also be ig- 
nored.) Block 2 points to position 25, so we complement 
the bit there to get 

00100 00000 00001 01100 00011 11001 11111 

Block 1 now points to position 3, .~ we complement 
that bit, giving 

00000 00000 00001 01100 00011 11001 11111 

The decoded message can now be read from block 0 as 
44. D 

We omit here a more detailed description of the 
encoding algorithm and a formal proof of its correct- 
hess, and just give an informal correctness proof. 

T h e o r e m  1: Pointer codes with f correction blocks 
exist which can always correct up to  f faults. 

P r o o f :  Use induction of f .  The basis f = 0 is obvious. 
For f > 0, if there is one fault in the final block f ,  we 
can set it to all O's or all l ' s  (depending on the parity 
of the stuck-at fault), and apply induction, ff block 
f has j faults, j _> 2, we ignore block f ,  and note 
by induction that f - 1 correction blocks can correct 
f -  j faults, while also providing a block of all l ' s  to 
ensure block f is ignored, ff block f. is fault-free, by 
induction f - 1 faults can be corrected in the first f -  1 
correction blocks, and block f can be used t o  fix the 
final remaining fault. [] 

E n c o d i n g  

We now sketch the encoding algorithm. First the en- 
coder writes bin(m) in block 0. Let P denote the bit 
positious of faults in block 0 which must be corrected. 
(Note not all faults must be corrected: a bit could 
be stuck in the "right" direction.) Next, the encoder 
removes the smallest p in P from P,  writes p in the 
leftmost unwritten correction block, and adds to P the 
bit positions in that block where faults occurred. This 
removal, writing, and addition of faults continues until 
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P is empty.  It  is clear tha t  when P is empty,  no more 
than f correction blocks have been writ ten.  

Suppose j correction blocks were written. If j = 
/ the encoder is done, otherwise blocks j + 1 , . . . , f  
must  be nullified so they do not  point to nonexistent 
faults, and mess up the decoding. Here things get  a 
little tricky, as the nullification m u s t b e  done with some 
delicacy. The encoder searches blocks j + 1, j + 2 , . . . ,  f 
until it finds a block i tha t  has a s t u c b a t - 1  fault, and 
tries to write all l ' s  in this block. If successful, the 
encoding is finished, since this block will indicate tha t  
blocks to the right are ignored. If unsuccessful, the 
encoder tries to correct block i with correction blocks 
i + 1, i + 2 , . . . ,  f just  as block 0 was corrected earlier. 

However, correcting block i, unlike block 0, will 
not  succeed if there are more titan f -  i faults to be cor- 
rected in blocks i, i + 1 , . . . ,  f (one of them, the stuck- 
at-I  fault in block i, doesn ' t  need to be corrected). But 
if this is the case, one of the blocks j + 1 , . . . , i  - 1 
must  be fault-free: the encoder then tries to write all 
l ' s  in blocks i - 1, i - 2 , . . .  , j  + 1 until it succeeds, and 
is guaranteed to do so. Of course, correcting block i 
may succeed, in wlfich case unused blocks to the right 
are nullified again. A careful inductive argument  shows 
tiffs encoding scheme is correct. 

The length b(n) of tim encoding clearly satisfies the 
inequality bin ) <_ n + log 2 b(n). If can be shown when 
f = o(n/log n) that  logz b(n) < / + log z n, so tha t  the 
redundancy is f(Iog 2 n + oil)). 

A variant  encoding scheme works when there are 
asymptotically more faults. Let each correction block 
have a cancel bit, which is set to  1 when the correction 
writ ten in the block has a fault. A correction block 
with 1 fault, or one where the cancel bit is s tuek-a~ 
l, can then cancel itself, as the cancel bit says "I 'm 
lying." Furthermore,  correction blocks need only poin't 
to positions in block 0, or cancel bits of other  blocks, 
so tha t  a correction block is no more then 1 + log2(n + 
f )  bits long; when f : o(n) the  to ta l  length of the 
encoding is than n + f( log 2 n + 1 + o(l)). This scheme 
is smaller than the one above when f > n/(Iqg 2 n -  2). 
The decoding algorithm for this scheine, which we omit 
here, is not  hard. 

IV .  A L O W E R  B O U N D  

We now derive a lower bound on the redundancy neces- 
sary to correct up to f faults. Following our intuition 
that  stuck-at-0 faults are harder to correct than stuck- 
at-1 faults, we prove a lower bound on the redundancy 
needed to correct exactly f s tuck-at-0 faults. 

Assume we are given an encoding algorithm as 
described in Section II, i.e., £ set of decision trees, one 
for each message. Given enough time wc could try 
encoding all possible n-bit  messages under all possible 
error patterns,  and we could fill in the table suggested 
b y  Fig. 2. 

227 

Messages 

0 

1 

2 '~ - 1 

Error Pat terns  

. . .  

Fig .  2. Table of error patterns.  

The entry in row m, column j gives the algorithm's 
encoding of message m in the presence of  fault pat te rn  
By. A fault pat tern E is a set { P t , P z , . - . , P I } ,  1 < 
Pi <_ b(n), of bit positions tha t  are stuck-at-0. There 
are clearly (~) such patterns.  

Any such table must  satisfy the following criteria: 
1. (Physical consistency) Any codeword in column 

g = { P l , . . . , P l }  must have O's in at  least t h e  

positions PL , . . . ,  P/ .  
2. (Unique decoding) Codewords i n  different rows 

must  be distinct. 
3. (Lack of clairvoyancy) Let m be a message, and 

let wi and wy be the codewords in columns El and 
Ey of row m. Then in producing wi and wj, the 
writing procedure must  follow the same path down 
the decision tree for m, until a write i.s a t tempted 
at a position p in Ei - Ey or E j  - Ei .  
We count the number  of distinct entries needed 

for the table to satisfy (1)-(3) above. The logarithm 
of this nmnber is a lower bound on bin ). The next 
lemma shows that  for almost all messages, the writing 
procedure must  a t t empt  to write a large number of l ' s  
for any fault pattern.  

L e m m a  2: Assume f -~ o(n/Iogn) and let c be an 
• arbitrarily small positive constant.  Then there are a t  

least 2 n ( 1 -  o(1)) messages where the writing procedure 
a t tempts  to write at  least b/(2 + e) 1 bits for every fault 
pat tern,  and the o(1) depends on n. 

P r o o r z  Call a codeword requiring fewer than ~+c a b  
tempts  to write a 1 a bad codeword. The  number of 
bad codewords is given by 

0_< 0 ~ t <  ~+~lL'a ~ 

< 2(,~+/log~ . ) n l r ~  ) 

where n ( a )  = - a  log2 ~ - (1 - a ) l o g ~ 0  - a)  is the 
entropy function. The first inequality is true since we 
assume b < n + f log 2 n (otherwise a lower bound of 
b(n) > n + f l o g 2 n  is immediate). The  secoml in- 
equality is a well-known bound from information theory 
(see, for example, [G]). If a bad codeword occurs on row 
m, we call m a bad message, otherwise m is called a 



good message. The number of good messages is min- 
hnized when each bad encoding occurs in a ditferent 
row, so that the nmnber of good messages is at least 

2 n _ 2(-+/iog,'-)n(r~:-D 

This quantity is 2"(1 - o(1)) when f = o(n/ log n). [ ]  

L e m m a  3: If m is a good message, then at least ( ~ ; )  
different eodewords appear in row m of the table. 

P roo f s  Let m be a good message and consider its 
encoding in the presence of some error pattern. We 
know the encoding algorithm must at tempt to write a 
1 at least ~ times. Any f of these attempts could 
conceivably fail, and the encoding algorithm must be 
able to recover from the failure. 

Analogous to the fault pattern, we define a glitch 
pattern to beasequenee  1 < Ot < gs < "'" < Ol --< 
2+--~-~ which denotes stuck-at-0 failures during attempts 
g t ,g2 , . . . , f f l  to write a 1 bit, i.e., the first failure oc- 
curs at the at tempt to write the gt-th 1, etc. Let g -~ 
(g t , . . . ,Ol )  and g '  = (g~, . . . ,g~)  be two glitch pat,- 
terns, g ~ gl. Then in encoding a good message m 
with glitch pattern g and then with glitch pattern g~, 
the encoding algorithm must generate two different en- 
codings for m, and each glitch pattern corresponds to 
a different error pattern. 

Let gi be the lowest integer appearing in g but 
not in g~. By the principle of lack of clairvoyance, 
the encoding algorithm behaves identically for g and gl 
when encoding m until the oi-th attempt to write a 1; at 
this point the respective encodings are guaranteed to be 
dissimilar, and the fault patterns are clearly different. 
Since there are at least ~ ( I ) glitch patterns, there are 
that many codewords in the row for a good message. 
[] 

Multiplying the number of good messages by the 
number of different eodewords per good message gives 
a lower bound of 

,,(7) 2"{1 - o ( 1  2 • 

codewords in the table. The logarithm of this expres- 
sion gives a bound on b{n). 

T h e o r e m  4: If f = o(n/log n), then 

b(n) > n + f log s n  
- - f  1og2(2 + ~) - log s f[  + o(1) 

[] 

We note that this lower bound resembles the lower 
bound problem studied in [K*] of conducting a binary 
search in the presence of errors .  However, a direct 
conversion from their problem to ours or vice versa does 
not appear easy. 
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V. W H E N  F A U L T S  A R E  K N O W N  I N  AD-  
V A N C E  

The lower bound shows that with one stuck-at-0 error, 
about n + log s n bits of write-once memory are needed 
to encode an n-bit message. What  if it were a stuck-at. 
1 error instead? In this ease, n +  1 bits sumee to encode 
the message. This encoding shows that the lower bound 
depends eriticallir on what fault information is known 
to the eneoder in advance. 

To correct one stuck-at-1 fault in n + 1 bits, we 
divide the write-once memory into a 1-bit flag and an n- 
bit message region. The eneoder contemplates writing 
the message m as is in the message region. There are 
three cases: 

Case  1. The stuck bit is in the message region, but 
does not conflict with the message, i.e., we want to 
write a 1 in the position that is stuck-at-1. The encoder 
simply writes the message and leaves the flag bit set to 
0. 
Case  2. The stuck bit is in the message region, but 
conflicts with the message. The encoder then writes the 
complement of the message (which does not conflict), 
and sets the flag bit to 1. 
Case  3. The stuck bit is the flag bit. Then the eneoder 
writes the complement of the message. 

To decode is easy: if the flag bit is 0, the message 
region holds the message, and if tile flag bit is 1, the 
message region holds the complement of the message. 
Note the decoder doesn't know where the stuck big is. 

When f > 1 and the location of all stuck bits is 
known in advance, the above scheme can be applied to 
pointer codes. By adding a flag bit for the initial block 
and each correction block, and allowing complementing 
of the blocks, we can reduce the redundancy of pointer 
codes from f log 2 n(1 + o(1)) t O 2t-f log 2 n(t  + O(1)). 

VL A N  A V E R A G E  C A S E  A N A L Y S I S  " 

Another variation of the problem is to consider the ex- 
pected behavior of the pointer code algorithm. Assume 
stuck-at-0 and stuck-at-1 errors are equally likely. 
Then for any constant e > 0, the pointer code algo- 
rithm can correct (2 - e)f errors in n + f ' log 2 n bits 
with probability 1 - o(1), where the o(1) depends of 
f .  This result can be derived using the strong law of 
large numbers or the entropy formula used in our lower 
bound proof. 

Our pointer code algorithm is oblivious about 
stuck-at faults until they are detected, and does not 
use the fact that  a bit is stuck-at-I to any advantage. 
When the algorithm tries to write in a stuck bit, the 
write-once memory either agrees or disagrees with the 
bit intended to be written, If we want to write 1 and 
the bit is stuck-at-l ,  the fault doesn't have to be cor- 
rected. Every disagreement, though, requires a pointer 
block to correct it. 



If b is a stuck bit, and R E F E R E N C E S  

1 
Pr{b  is stuck-at-O} -~ Pr{b is stuck-at-l} = 

then 

Pr{wri te  ends in agreement} 
1 -~- Pr{wri te  ends in disagreement} -~ 

If there are (2 - e)f stuck-at bits, the expected number 
of disagreements is (1 - c/2)f. 

Now consider the behavior of the algorithm, trying 
to encode n bits of information in n + f  log 2 n hits, with 
(2 - ¢)f stuck-at faults. Three things can happen: 
1. There are < f disagreements. 
2. There are > f disagreements, but a lot of them 

are in pointer blocks that are unused, or 
3. There are :> f disagreements, all requiring correc- 

tion. 
The probability of cases (2) or (3) happening is very 
small (Irate we err on the side of safety here, as case (2) 
is successful). That  is: 

Pr{case (2) or (3) happens} 

_ 1 d / )  
2(2_E) ! -d 

where d is the number of disagreements. But 
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E ((2 "de)'f) < 2 ( q - d i n ( K )  
d>!  

Since e 0 we know x-~  H(~-=~) -~ e I < 1, and 

Pr{case (2) or (3) happens} 

< 2 (2-')/(d-') = O(Q - / )  = o(1) 

for some constant ¢x 2> 1. Since the algorithm succeeds 
in case (1) and fails ill cases (2)and (3), the probability 
that the pointer code algorithm encodes n bits in n + 
f log 2 n bits with (2 - e)f stuck-at bits is 1 - o(1). Note 
f must increase slowly with n for this result to be true. 

This average-case analysis is interesting when we 
compare it to the variant algorithm sketched in Section 
V that uses bit complementing when it knows all stuck- 
at information in advance. The variant algorithm 
guarantees an encoding of n bits of information in 
about n + f log 2 n bits when there are 2f  stuck-at bits. 
IIowever, the original algorithm can encode just as well 
with ( 2 -  e)f stuck-at hits, with probability 1 -  o(1). 
The comparison of these two algorithms shows that the 
answer to "how much better can we do if all stuck- 
at errors are known in advance?" is answered (with 

respect  to our two algorithms): knowing all stuck-at 
errors gives you about half as much redundancy in the 
worst case, but roughly the same redundancy on the 
average. 
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