
CORltECTING FAULTS 1N WI~ITE-ONCE MEMORY~
Danny Dolev ltebrew University

• David Maier Oregon Graduate Center
llarry Mairson$ INRIA

Jeffrey Ulhnan Stanford University

We consider codes for write-once memory in tile presence of stuck-agO and stuebat--1 faults. Such fault.-
tolerant codes generally require less redundancy than error-correcting codes, as faults detected during the
writing process can affect subsequent behavior of that process. We present pointer codes, which use part of
a codeword to point to faults in other parts of the codeword. A pointer code can encode n-bit messages in
the presence of f faults with only f(log 2 n + o(1)) redundancy. We derive a lower bound on the redundancy
of such a fault-tolerant code of slightly less than f log n. We also examine some models where all stuck-at
inforIlmtion is known in advance, and analyze the expected redundancy of pointer codes.

I. I N T R O D U C T I O N

Write-once memory (worn) is a storage medium of
two-state cells in which a 0 can be changed to a I, but
a 1 cannot be changed back to a 0. Standard examples
of such memory devices include paper tape and punch
cards, whcre holes can be punched, but not unpunched.
The emergence of high-density and cheap write-once
devices such as digital optical disks (where a 12-inch
disk can store over 10 H bits of data) has provoked a
more serious examination of how information should be
encoded in such memories.

We investigate here the problem of encoding data
in a write-once memory where cells in the memory may
be defective, and consider what kind of redundancy
must be included so that these faults can be corrected.
A defective cell may be stuck-at-l, i.e., already changed
to 1, or stuck-at-O, where attempts to change the cell
from 0 to 1 fail. These "stuck-at" faults correspond to
flaws in the fabrication of write-once mem0rics such as
optical disks, where the metal fihn used as the storage
medium may be of uneven thickness.

Standard error-correcting schemes such as tlam-
ming codes can indeed be used to correct faults in a
write-once memory, but under certain circumstances
we can do better. In particular, we examine the case
where the number of stuck hits is fixed or slowly in-
creasing with the size of the encoded message, rather
than assuming that bits will be stuck with some fixed
probability. Furthermore, standard error-correcting
schemes assume aa encoding and decoding model where
thc cncoder does not ever find out what bits are in er-
ror: it is forced to compute the rcdundancy before the

Work partial ly suppor ted by AFFOSIt g ran t 80-O212:
$ Work performed while at S tanford Univ.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-133-4/84/004/0225 $00.75

225

message is transmitted and subjected to noise. With
a write-once memory, it is entirely appropriate to let
the eneoder know what bits are stuck either bcfore or
during encoding, so that the encoding algorithm may
dynamically adapt to these faults.

In Section IlI we present pointer codes, which we
use to encode n-bit messages in the presence of f faults
with only f(log 2 n + o(1)) redundancy. A lower bound
proof in Section IV shows that this encoding scheme is
essentially the best possible. In Section V we show how
the upper bound can be improved if the eneoder knows
all the stuck-at information in advance, and in Section
VI we examine the expected redundancy of the pointer
code algorithm.

IL P R E L I M I N A R I E S A N D M O D E L OF C O M P :
U T A T I O N

We imagine an encoder that wants to send n bits of
information to a decoder. The medium of the mes-
sage (take that, Marshall McLuhan) is b(n) > n bits
of write-once memory. The decoder must bc able to
recover ttle original n-bit message by examining the
b(n)-bit transmission, but is not allowed to change any
of the bits, and has no side information about which
bits are stuck. The encoder is allowed to examine the
b(n) bits Before beginning the encoding algorithm to see
which bits are stuck-at-l; since a "brand new" memory
should have bits all set tozero, the stuck-at,-I bits are
immediately visible.

An encoding algorffhm consists of a set of decision
trees, one for each message and pattern of stuck-at--1
bits, as suggested by Fig. 1. To encode message m,
the encoding algorithm begins by attempting to write
a 1 in bit position bj, I < be < b(n). The memory
responds "stuck-at-0" or "OK," depending ca whether
or not the write was successful, and the encoding algo-
rithm branches accordingly. Note that the encoding
algorithm is characterized by where it writes I bits, as
"write 0" means nothing in a write-once memory; also
note that the encoding algorithm can be fully adaptive
to faults. The encoder knows stuck-at-1 information in
advance, so that it need not ever try to write a I in a

uck. oK 8tuck oK
• " ". .I" "2.
Fig. 1. An encoding algorithm.

bit already stuck-at-I, but only discovers that a bit is
stuck-at-0 when it tries to change it from a 0 to a 1.

While the encoding algorithms we describe will not
be stated explicitly in terms of decision trees, it will be
clear that they can be so translated. The decision tree
model is used in deriving the lower bounds of Section
IV.

Codes to tolerate stuck-at faults have been studied
for rewritable memory [liE, KT]. Lower bounds on
those codes are lower bounds on fault-tolerant codes
for write-once memory. Other work on codes for write-
once memory has concentrated in its use as memory
with a limited number of rewrites [M, RS].

HI. P O I N T E R C O D E S

We begin with the basic idea, and then make some
refinements. To encode an n-blt message in 5(n) bits,
divide the b bits of write-once memory into f + 1 blocks
0, 1 , . . . , f . Block 0, the initial block, consists of n bits
and is used to hold the binary representation of mes-
sages. Blocks 1, 2 , f ai'e correction blocks that hold
pointers to indicate faults. Bit positions are numbered
left to right starting at 1. A pointer of all 0's means
no correction is indicated. While our model allows bit-
at-a-time writes, the pointer code algorithm writes an
entire block at once.

Let bin(i) be the binary representation of integer
i. The writing procedure [or a pointer code attempts
to write a codeword for message m by first writing
bin(m) in the initial block; if there arc faults in the
initial block, correction blocks are written to point to
the faults.

E x a m p l e 1: Let n = 15 and f = 3. Let the correction
blocks have 4 bits each. Suppose bit 5 is stuck-at-1 and
bit 12 is stuck-at-0, and we wish to write 0 and 1 there,
respectively. Then we can use two correction blocks to
point to the faults:

11110 11100 01000 0101 1100 xxxx

[]
There are two problems with the basic idea. There

may be faults in the correction blocks. We solve this
• problem by letting correction block i point to a fault in
any of the blocks 0 , . . . , i - 1. The other problem is that
unused correction blocks may contain stuck-aV1 faults
that cause them to point to positions where no faults

exist. There may not be enough correction blocks to
indicate these faults. In the last example, ff the last
block contains 0100, it will incorrectly point to a fault,
and there are no correction blocks to fix this error. We
therefore let a correction block of all l ' s also mean no
correction, and indicate that all blocks to t!m right are
to be ignored.

To decode an encoded word e, we let k denote the
smallest nonnegative integer such that block k is all
l ' s ; if there is no such block, let k ~- f + 1. Then for
i -~ k - 1, k - 2 , . . . , 1, we complement the bit position
in c to which block i points. (If block i is all O's or all
l 's, no correction is made.) Block'0 is then returned as
the message.

E x a m p l e 2: Suppose b-~- 35, n -~- 20, and f = 3.
Correction blocks have 5 bits. To decode

01000 00000 00001 01100 00010 11001 11111

we first disregard correction block 3 (if there were
blocks to the right of block 3, they would also be ig-
nored.) Block 2 points to position 25, so we complement
the bit there to get

00100 00000 00001 01100 00011 11001 11111

Block 1 now points to position 3, .~ we complement
that bit, giving

00000 00000 00001 01100 00011 11001 11111

The decoded message can now be read from block 0 as
44. D

We omit here a more detailed description of the
encoding algorithm and a formal proof of its correct-
hess, and just give an informal correctness proof.

T h e o r e m 1: Pointer codes with f correction blocks
exist which can always correct up to f faults.

P r o o f : Use induction of f . The basis f = 0 is obvious.
For f > 0, if there is one fault in the final block f , we
can set it to all O's or all l ' s (depending on the parity
of the stuck-at fault), and apply induction, ff block
f has j faults, j _> 2, we ignore block f , and note
by induction that f - 1 correction blocks can correct
f - j faults, while also providing a block of all l ' s to
ensure block f is ignored, ff block f. is fault-free, by
induction f - 1 faults can be corrected in the first f - 1
correction blocks, and block f can be used t o fix the
final remaining fault. []

E n c o d i n g

We now sketch the encoding algorithm. First the en-
coder writes bin(m) in block 0. Let P denote the bit
positious of faults in block 0 which must be corrected.
(Note not all faults must be corrected: a bit could
be stuck in the "right" direction.) Next, the encoder
removes the smallest p in P from P, writes p in the
leftmost unwritten correction block, and adds to P the
bit positions in that block where faults occurred. This
removal, writing, and addition of faults continues until

226

P is empty. It is clear tha t when P is empty, no more
than f correction blocks have been writ ten.

Suppose j correction blocks were written. If j =
/ the encoder is done, otherwise blocks j + 1 , . . . , f
must be nullified so they do not point to nonexistent
faults, and mess up the decoding. Here things get a
little tricky, as the nullification m u s t b e done with some
delicacy. The encoder searches blocks j + 1, j + 2 , . . . , f
until it finds a block i tha t has a s t u c b a t - 1 fault, and
tries to write all l ' s in this block. If successful, the
encoding is finished, since this block will indicate tha t
blocks to the right are ignored. If unsuccessful, the
encoder tries to correct block i with correction blocks
i + 1, i + 2 , . . . , f just as block 0 was corrected earlier.

However, correcting block i, unlike block 0, will
not succeed if there are more titan f - i faults to be cor-
rected in blocks i, i + 1 , . . . , f (one of them, the stuck-
at-I fault in block i, doesn ' t need to be corrected). But
if this is the case, one of the blocks j + 1 , . . . , i - 1
must be fault-free: the encoder then tries to write all
l ' s in blocks i - 1, i - 2 , . . . , j + 1 until it succeeds, and
is guaranteed to do so. Of course, correcting block i
may succeed, in wlfich case unused blocks to the right
are nullified again. A careful inductive argument shows
tiffs encoding scheme is correct.

The length b(n) of tim encoding clearly satisfies the
inequality bin) <_ n + log 2 b(n). If can be shown when
f = o(n/log n) that logz b(n) < / + log z n, so tha t the
redundancy is f(Iog 2 n + oil)).

A variant encoding scheme works when there are
asymptotically more faults. Let each correction block
have a cancel bit, which is set to 1 when the correction
writ ten in the block has a fault. A correction block
with 1 fault, or one where the cancel bit is s tuek-a~
l, can then cancel itself, as the cancel bit says "I 'm
lying." Furthermore, correction blocks need only poin't
to positions in block 0, or cancel bits of other blocks,
so tha t a correction block is no more then 1 + log2(n +
f) bits long; when f : o(n) the to ta l length of the
encoding is than n + f(log 2 n + 1 + o(l)). This scheme
is smaller than the one above when f > n/(Iqg 2 n - 2).
The decoding algorithm for this scheine, which we omit
here, is not hard.

IV . A L O W E R B O U N D

We now derive a lower bound on the redundancy neces-
sary to correct up to f faults. Following our intuition
that stuck-at-0 faults are harder to correct than stuck-
at-1 faults, we prove a lower bound on the redundancy
needed to correct exactly f s tuck-at-0 faults.

Assume we are given an encoding algorithm as
described in Section II, i.e., £ set of decision trees, one
for each message. Given enough time wc could try
encoding all possible n-bit messages under all possible
error patterns, and we could fill in the table suggested
b y Fig. 2.

227

Messages

0

1

2 '~ - 1

Error Pat terns

. . .

Fig . 2. Table of error patterns.

The entry in row m, column j gives the algorithm's
encoding of message m in the presence of fault pat te rn
By. A fault pat tern E is a set { P t , P z , . - . , P I } , 1 <
Pi <_ b(n), of bit positions tha t are stuck-at-0. There
are clearly (~) such patterns.

Any such table must satisfy the following criteria:
1. (Physical consistency) Any codeword in column

g = { P l , . . . , P l } must have O's in at least t h e

positions PL , . . . , P/ .
2. (Unique decoding) Codewords i n different rows

must be distinct.
3. (Lack of clairvoyancy) Let m be a message, and

let wi and wy be the codewords in columns El and
Ey of row m. Then in producing wi and wj, the
writing procedure must follow the same path down
the decision tree for m, until a write i.s a t tempted
at a position p in Ei - Ey or E j - Ei .
We count the number of distinct entries needed

for the table to satisfy (1)-(3) above. The logarithm
of this nmnber is a lower bound on bin). The next
lemma shows that for almost all messages, the writing
procedure must a t t empt to write a large number of l ' s
for any fault pattern.

L e m m a 2: Assume f -~ o(n/Iogn) and let c be an
• arbitrarily small positive constant. Then there are a t

least 2 n (1 - o(1)) messages where the writing procedure
a t tempts to write at least b/(2 + e) 1 bits for every fault
pat tern, and the o(1) depends on n.

P r o o r z Call a codeword requiring fewer than ~+c a b
tempts to write a 1 a bad codeword. The number of
bad codewords is given by

0_< 0 ~ t < ~+~lL'a ~

< 2(,~+/log~ .) n l r ~)

where n (a) = - a log2 ~ - (1 - a) l o g ~ 0 - a) is the
entropy function. The first inequality is true since we
assume b < n + f log 2 n (otherwise a lower bound of
b(n) > n + f l o g 2 n is immediate). The secoml in-
equality is a well-known bound from information theory
(see, for example, [G]). If a bad codeword occurs on row
m, we call m a bad message, otherwise m is called a

good message. The number of good messages is min-
hnized when each bad encoding occurs in a ditferent
row, so that the nmnber of good messages is at least

2 n _ 2(-+/iog,'-)n(r~:-D

This quantity is 2"(1 - o(1)) when f = o(n/ log n). []

L e m m a 3: If m is a good message, then at least (~ ;)
different eodewords appear in row m of the table.

P roo f s Let m be a good message and consider its
encoding in the presence of some error pattern. We
know the encoding algorithm must at tempt to write a
1 at least ~ times. Any f of these attempts could
conceivably fail, and the encoding algorithm must be
able to recover from the failure.

Analogous to the fault pattern, we define a glitch
pattern to beasequenee 1 < Ot < gs < "'" < Ol --<
2+--~-~ which denotes stuck-at-0 failures during attempts
g t ,g2 , . . . , f f l to write a 1 bit, i.e., the first failure oc-
curs at the at tempt to write the gt-th 1, etc. Let g -~
(g t , . . . ,Ol) and g ' = (g~, . . . ,g~) be two glitch pat,-
terns, g ~ gl. Then in encoding a good message m
with glitch pattern g and then with glitch pattern g~,
the encoding algorithm must generate two different en-
codings for m, and each glitch pattern corresponds to
a different error pattern.

Let gi be the lowest integer appearing in g but
not in g~. By the principle of lack of clairvoyance,
the encoding algorithm behaves identically for g and gl
when encoding m until the oi-th attempt to write a 1; at
this point the respective encodings are guaranteed to be
dissimilar, and the fault patterns are clearly different.
Since there are at least ~ (I) glitch patterns, there are
that many codewords in the row for a good message.
[]

Multiplying the number of good messages by the
number of different eodewords per good message gives
a lower bound of

,,(7) 2"{1 - o (1 2 •

codewords in the table. The logarithm of this expres-
sion gives a bound on b{n).

T h e o r e m 4: If f = o(n/log n), then

b(n) > n + f log s n
- - f 1og2(2 + ~) - log s f[+ o(1)

[]

We note that this lower bound resembles the lower
bound problem studied in [K*] of conducting a binary
search in the presence of errors . However, a direct
conversion from their problem to ours or vice versa does
not appear easy.

228

V. W H E N F A U L T S A R E K N O W N I N AD-
V A N C E

The lower bound shows that with one stuck-at-0 error,
about n + log s n bits of write-once memory are needed
to encode an n-bit message. What if it were a stuck-at.
1 error instead? In this ease, n + 1 bits sumee to encode
the message. This encoding shows that the lower bound
depends eriticallir on what fault information is known
to the eneoder in advance.

To correct one stuck-at-1 fault in n + 1 bits, we
divide the write-once memory into a 1-bit flag and an n-
bit message region. The eneoder contemplates writing
the message m as is in the message region. There are
three cases:

Case 1. The stuck bit is in the message region, but
does not conflict with the message, i.e., we want to
write a 1 in the position that is stuck-at-1. The encoder
simply writes the message and leaves the flag bit set to
0.
Case 2. The stuck bit is in the message region, but
conflicts with the message. The encoder then writes the
complement of the message (which does not conflict),
and sets the flag bit to 1.
Case 3. The stuck bit is the flag bit. Then the eneoder
writes the complement of the message.

To decode is easy: if the flag bit is 0, the message
region holds the message, and if tile flag bit is 1, the
message region holds the complement of the message.
Note the decoder doesn't know where the stuck big is.

When f > 1 and the location of all stuck bits is
known in advance, the above scheme can be applied to
pointer codes. By adding a flag bit for the initial block
and each correction block, and allowing complementing
of the blocks, we can reduce the redundancy of pointer
codes from f log 2 n(1 + o(1)) t O 2t-f log 2 n(t + O(1)).

VL A N A V E R A G E C A S E A N A L Y S I S "

Another variation of the problem is to consider the ex-
pected behavior of the pointer code algorithm. Assume
stuck-at-0 and stuck-at-1 errors are equally likely.
Then for any constant e > 0, the pointer code algo-
rithm can correct (2 - e)f errors in n + f ' log 2 n bits
with probability 1 - o(1), where the o(1) depends of
f . This result can be derived using the strong law of
large numbers or the entropy formula used in our lower
bound proof.

Our pointer code algorithm is oblivious about
stuck-at faults until they are detected, and does not
use the fact that a bit is stuck-at-I to any advantage.
When the algorithm tries to write in a stuck bit, the
write-once memory either agrees or disagrees with the
bit intended to be written, If we want to write 1 and
the bit is stuck-at-l , the fault doesn't have to be cor-
rected. Every disagreement, though, requires a pointer
block to correct it.

If b is a stuck bit, and R E F E R E N C E S

1
Pr{b is stuck-at-O} -~ Pr{b is stuck-at-l} =

then

Pr{wri te ends in agreement}
1 -~- Pr{wri te ends in disagreement} -~

If there are (2 - e)f stuck-at bits, the expected number
of disagreements is (1 - c/2)f.

Now consider the behavior of the algorithm, trying
to encode n bits of information in n + f log 2 n hits, with
(2 - ¢)f stuck-at faults. Three things can happen:
1. There are < f disagreements.
2. There are > f disagreements, but a lot of them

are in pointer blocks that are unused, or
3. There are :> f disagreements, all requiring correc-

tion.
The probability of cases (2) or (3) happening is very
small (Irate we err on the side of safety here, as case (2)
is successful). That is:

Pr{case (2) or (3) happens}

_ 1 d /)
2(2_E) ! -d

where d is the number of disagreements. But

[G]

[tIE]

[K*]

IKWl

[M]

[RS]

Gallager, R. G., lhfformation Theory and
Reliable Communication, Wiley, 1968.

Heegard, C. and A. El Gamal, On f.he capacity
of computer memory with de/.ects~ submitted
to IEEE Trans./nL Theory, 1982.

Kleitman, D. J., A. R. Meyer, R. L. Rivest ,
J. Spencer, and K. Winkelmann, Coping with
errors in binary search procedures, lOth ACM
Symposium on Theory of Computing, 1978,
pp. 227-232.

Kusnetsov, A. V. and B. S. Tsybakov, Coding
in a memory with defective ceils. Problemy
Peredachi Informatsii 10:2, 1974, pp. 52-60.

Maier, D. Using write-once memory l'or da-
tabase storage, 1982 ACM Symposium on
Principles ot" Database Systems, March 1982,
pp. 239-2411.

Rivest, R. L. and A. Shamir, llow to reuse a
"write-once" memory, 14th ACM Symposium
on Theory o1" Computing, 1982, pp. 105-113.

E ((2 "de)'f) < 2 (q - d i n (K)
d>!

Since e 0 we know x-~ H(~-=~) -~ e I < 1, and

Pr{case (2) or (3) happens}

< 2 (2-')/(d-') = O(Q - /) = o(1)

for some constant ¢x 2> 1. Since the algorithm succeeds
in case (1) and fails ill cases (2)and (3), the probability
that the pointer code algorithm encodes n bits in n +
f log 2 n bits with (2 - e)f stuck-at bits is 1 - o(1). Note
f must increase slowly with n for this result to be true.

This average-case analysis is interesting when we
compare it to the variant algorithm sketched in Section
V that uses bit complementing when it knows all stuck-
at information in advance. The variant algorithm
guarantees an encoding of n bits of information in
about n + f log 2 n bits when there are 2f stuck-at bits.
IIowever, the original algorithm can encode just as well
with (2 - e)f stuck-at hits, with probability 1 - o(1).
The comparison of these two algorithms shows that the
answer to "how much better can we do if all stuck-
at errors are known in advance?" is answered (with

respect to our two algorithms): knowing all stuck-at
errors gives you about half as much redundancy in the
worst case, but roughly the same redundancy on the
average.

229

