
BOUNDS ON INFORMATION EXCHANGE FOR BYZANTINE AGREEMENT

Danny Dolev
Ruediger Reischuk

IBM Research Laboratory
San Jose, CA 95155

A b s t r a c t

Byzantine Agreement has become increasingly im-

portant in establishing distributed properties

when there may exist errors in the systems.

Recent polynomial algorithms for reaching

Byzantine Agreement provide us with feasible sol-

utions for obtaining coordination and synchroni-

zation in distributed systems. In this paper we

study the amount of information exchange neces-

sary to ensure Byzantine Agreement. This is meas-

ured by the number of messages and the number of

signatures appended to messages (in case of

authenticated algorithms) the participating

processors need to send, in the worse case, in

order to reach Byzantine Agreement. The lower

bound for the number of signatures in the

authenticated case is ~(nt), where n is the num-

ber of participating processors and t is the up-

per bound on the number of faults. If n is large

compared to t, it matches the upper bounds from

previously known algorithms. The lower bound for

the number of messages is ~(n+t2). We present an

algorithm that achieves this bound and for which

the number of phases does not exceed the minimum

t+l by more than a constant factor.

1. INTRODUCTION

Reaching agreement in distributed system is es-

sential for maintaining coordination and synchro-

nization among the participating processors. For

establishing the agreement, information has to be

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-081-8/82/008/0132 $00.75

exchanged. In this paper we present lower bounds

on the amount of information exchange to ensure

that agreement is reached.

The type of agreement we study is called

Byzantine Agreement (LSP) and it is achieved

when:

(I) all correctly operating processes agree

on the same value, and

(II) if the transmitter operates correctly,

then all correctly operating processes

agree on its value.

Several algorithms for obtaining Byzantine Agree-

ment have been published (PSL), (LSP), (L), (Da),

(Db), (DSa), (DSb), (FFL), (DFFLS). Without using

authentication the best algorithm is the one pre-

sented in (DFFLS), in which the agreement is

achieved within 2t+3 phases while exchanging,

in the worst case, O(nt + t31og t) bits of

information. The best solution using

authentication is presented in (DSb), it requires

t+l phases and O(nt+t 2) messages, where each mes-

sage may contain several signatures. The maximum

number of signatures required is O(nt2+t 3) for

t+l phases and O(nt+t 3) for t+2 phases. Previ-

ous papers give lower bounds either on the ratio

between correct and faulty processors (La) or on

the number of phases (LF), (DSb), (DLM), and

(DSc).

In this paper we concentrate on algorithms using

authentication, and analyze how many messages

132

have to be exchanged to reach Byzantine Agree-

ment. We will prove that in the worst case any al-

gorithm must exchange ~(n+t 2) messages and ~(nt)

signatures. The lower bound for the number of

messages in the authenticated case differs from

the known upper bound. To close this gap we pre-

sent an algorithm which within 0(t) phases sends

only 0(n+t 2) messages. For n much larger than t

there is an even simpler and better solution with

t+2+t/~ phases and 0(a n) messages for IS~t. The

solution presents a tradeoff between the number

of messages and phases.

Concentrating on algorithms that use

authentication does not mean sacrificing practi-

cality, since in a real distributed system one

can assume that no processor sends wrong informa-

tion on purpose, and in these cases a simple er-

ror correction code instead of signatures can be

used and the results are applicable.

The lower bound on the number of signatures im-

plies a lower bound on the number of messages in

the unauthenticated case. This lower bound shows

that when nZt 2 the algorithm in (DFFLS) is best

possible to within a constant factor in this re-

spect.

2. HISTORIES

We first review some notions from (DSa).

A phase is a directed graph with nodes corre-

sponding to processors and with labels on the

edges. A label represents the information sent

from a given processor to another during the giv-

en phase. We assume that when no message is sent

there is no edge. An n processor histor[y_ is a fi-

nite sequence of n node phases, with nodes la-

belled by the names of the processors, together

with a special initial phase called p__hase 2, such

that phase 0 contains only a single inedge to one

processor called the sender. (The assumption is

that the inedge at phase 0 carries the value that

the sender is to send.)

A subhistory of a history H is a copy of H with

some edges removed. For each history H and

processor p there is a unique subhistory pH

called the s ubhistory of H according to B, con-

sisting of only the edges with target p. Thus,

the subhistory according to the sender inc]udes

the value it is supposed to send even if it sends

nothing. Note that the subhistory pH is all that

processor p has to work with, it cannot have any

other information about the states of other

processors.

An agreement algorithm on a class of histories C

consists of a correctness rule R (a function

which given a subhistory according to p and an

edge in a phase to be added to the history as the

next phase, produces a possibly empty label for

that edge) and a decision function F (a function

from subhistories according to processors of his-

tories in C to the union of V with a special sym-

bol representing "sender fault"). With respect to

a given correctness rule, a processor p is said

to be correct at phase k if each edge from p in

phase k has the label produced by the correctness

rule operating on the previous k-i phases of the

subhistory according to p. A processor p is cor-

rect for history H if it is correct at each phase

of H. We call a history t-faulty (with respect to

a correctness rule) if at most t of its process-

ors are incorrect.

A correctness rule is actually a union of possi-

bly distinct correctness rules, one for each

processor. Likewise, the decision function is a

union of individual decision functions.

We say Byzantine Agreement can be achieved for n

processors with at mo___sst t faults within d phases

if there is an agreement algorithm for the set C

of n processor, t-faulty, d phase histories so

that the decision function F obeys the rules for

Byzantine Agreement:

(I) if processors p and q are correct for H in C

then FpH = FqH, and

(II) if the sender is correct at the first phase

of H and processor p is correct for H in C

then FpH = v where v is the sender's value.

133

Note that the class C of histories is assumed

limited to those consistent with the semantics of

authentication.

3. A LOWER BOUND ON THE NUMBER OF SIG-

NATURES IN THE AUTHENTICATED CASE

We consider the worst case behavior in which a

faulty processor can invent any unauthenticated

information. But we assume that the processors

share a signature scheme that enables each one to

sign its messages so that every receiver will re-

cognize them as being signed by it and no one can

alter the content of the message or the signature

undetectably. Such a scheme is the one suggested

in (DH) and (RSA), and the use of it for Byzantine

algorithms is described in (DSa), (DSb), (LPS),

and (PLS).

We allow faulty processors to collude for cheat-

ing, therefore we can assume that every message

that contains only signatures of faulty process-

ors can be produced by these processors. This is

a worst case assumption, and it will be assume in

the lower bound proofs. The assumption will be

extended to assume that every subhistory in which

only faulty processors are involved, can be

produced by every faulty processor at any time.

There exists an algorithm to reach Byzantine

Agreement without using signatures; therefore,

the lower bound is meaningless unless we count

somehow the messages that do not contain signa-

tures. We make the technical assumption that ev-

ery message in the authenticated algorithm

carries at least the signature of its sender.

Alternatively, the lower bound can count the num-

ber of signatures together with the number of

messages without signatures.

Theorem I: l_ff Byzantine Agreement is achieved

b_~ an agreemen t algorithm that handles u_~ to t

(t<n-l) faults, b j[using authentication, then

there exists a history H in which the total num-

ber of signatures being sent b_~ correct process-

ors is at least n(t+l)~.

Proof: Let H be the history in which all

processors are correct and the transmitter sends

the value 0, and G the one in which all are cor-

rect and the transmitter is sending i. If the sum

of the number of signatures each correct process-

or receives and the number of processors receiv-

ing its signature in both histories together is

at least t+l, then the theorem holds.

Denote by A(p) the set of all processors that ei-

ther receive the signature of p or p receives

their signatures in at least one of the two his-

tories. Assume that there exists a processor p

for which the cardinality of A(p) is at most t.

Let H' be the history in which the processors in

A(p) behave towards p as in H and towards all

the rest of the processors as in G. The process-

ors in A(p), as faulty processors, are able to do

so, because all the messages to correct process-

ors, other than p, do not contain p's signature

and all the messages to p contain only signatures

of processors in A(p). Therefore, in H' process-

or p sees the same subhistory as in H, which

implies that FpH'=FpH=0, while all other correct

processors q see the subhistory they saw in G

and hence FqH'=FqG=I. Notice that there are other

correct processors since we assumed t<n-l. This

violates condition (I) of Byzantine Agreement.

Therefore, there cannot be any processor which

"exchanges" in H and G altogether at most t sig-

natures with other processors. D

If authentication is not available this lower

bound applies directly to the number of messages

that have to be sent.

134

Corollary]: If Byzantine A Kreement is achieved

b~ an a~reement algorithm that handles u~ to t

(t<n-l) faults, without usin~ authentication,

then there exists a history H in which the total

number of messagesl being sent b~ correct process-

ors is at least n(t+l)/4.

Theorem 2: If Byzantine Agreement is achieved

b~ an agreemen t algorithm that handles u~ to t

(t<n-l) faults then there exists a histor[H in

which the correct processors send at least

ma_xx{(n-_!l)/2,(l+t/2) 2} messages.

Proof: The basic assumption for algorithms that

reach Byzantine Agreement without using

authentication is that a processor can identify

only the immediate source of every message it re-

ceives. Any processor p can claim to have re-

ceived a certain message from another processor

q, and there is no way for a processor z differ-

ent from p and q to decide whether this is true or

not (except in the special case where z has al-

ready detected t faulty processors and p is not

among them). This is equivalent to the assumption

that every message carries exactly one signature,

the signature of the sender of that message.

Therefore, we can conclude from Theorem 1 that at

least n(t+l)/4 messages are necessary in any al-

gorithm that does not use authentication. []

4. A LOWER BOUND ON THE NUMBER OF MES-

SAGES IN THE AUTHENTICATED CASE

Sometimes the overhead for sending a message

costs more than the message itself; and there-

fore, it makes sense to find algorithms which

minimize the number of messages. Since a message

that has several different signatures appended

can contain a lot more verifiable information

than the same message without these signatures,

we do not necessarily need the same number of

messages as in the unauthenticated case.

As we have proved in the previous section, if we

use fewer than ~(nt) messages, some must carry

several signatures. In this section we show that

in certain histories at least ~(n+t 2) messages

have to be sent to ensure that agreement has been

reached.

Proof: As in the previous proof let H be the

history in which all processors are correct and

the transmitter sends the value 0, and G the one

in which all are correct and the transmitter

sends I. One of the values 0 and i, let us say 0,

must have the property that there exists a set Q

of at least (n-l)/2 processors p different from

the transmitter such that each p does not agree

on 0 if it receives no messages at all. This im-

plies that in H correct processors must have sent

a least (n-l)/2 messages.

Now assume that the maximum is achieved by the

second term. Let B be a subset of Q of size l+t/2

and let A be the remaining processors. We cannot

prove that every processor has to send or receive

a certain number of messages increasing with t

since efficient authenticated algorithms tend not

to be homogeneous. But by playing with histories

we will show that there exists a history H ~ in

which each processor in B is faulty and can force

the correct processors in A to send at least

l+t/2 messages to it.

Let H' be the following history:

Every processor in A is correct, the transmit-

ter sends the value 0 . Each processor q in B

never sends a message to other processors in B.

Towards processors in A processor q behaves

like a correct processor with one exception, it

ignores the first t/2 messages received from

processors in A, all of them if it gets fewer

than t/2. This defines a valid history with

l+t/2 faults in which the correct processors in

A have to agree on value 0 , because the trans-

mitter is correct and has sent this value.

Assume that there is a faulty processor p in B

that gets at most t/2 messages from processors

in A . Let A(p) be the set of processors of A

135

that have sent messages to p in H. To obtain the

contradiction we change H' into history H" :

make p correct, and all the processors in A(p)

incorrect. They behave like correct processors

except for not sending any message to p. Process-

ors in B different from p ignore any message

they get from p .

By definition, the faulty processors in B-{p}

and A(p) behave towards the correct processors

in A in history H" in exactly the same way as

they do in H'. Since p in H' simulates the be-

havior of a correct processor that has not got

the first t/2 messages it was supposed to get

there is also no difference between the behavior

of p towards processors in A in H' and H".

Therefore, each correct processor other than p

sees the same subhistory in both cases and at the

end he must agree on value 0 . But the correct

processor p receives in H" no messages at all,

therefore by definition he doesn't agree on 0 .

This leads to a contradiction, which proves that

in H' every processor in B must receive at least

l+t/2 messages from correct processors. []

5. D E C R E A S I N G T H E N U M B E R OF MESSAGES IN

THE AUTHENTICATED CASE

None of the known authenticated algorithms makes

use of authentication to substantially reduce the

number of messages required to be sent in the

case where n is much larger than t. In this case

the best known algorithms, with and without

authentication, require 8(nt) messages

(DSb,DFFLS) in the worst case. However for large

n Theorem 2 only gives a linear lower bound, and

the ~(nt) lower bound in Theorem i only holds

for the total number of signatures that have to

accompany messages. Since we can append a lot of

signatures to a message there may exist an

authenticated algorithm that after reaching the

agreement among some set of active processors,

sends only a linear number of messages to inform

the rest about the agreement.

In this section we present such an algorithm. The

number of phases this algorithm needs does not

exceed the minimal number t+l by more than a

small constant factor. Of course in the worst

case many messages have to carry ~(t)

signatures.

We may assume that n is at least 2t+l , other-

wise the algorithm in (DSb) sends a number of

messages that is of the same order as the lower

bound in Theorem 2. First we consider the case

n=2t+l and desclibe two algorithms. The first,

working in t+2 phases, sends fewer messages

than the previously known algorithms. The second

uses more phases, but has the nice feature that

at the end not only does every correct processor

agree on the same value, but it also has a

one-message proof for the outside world of what

this value is. In practice this means that it

possesses a string which says what the common

value is and this statement is signed by at least

t other processors.

In the following algorithms we assume that the

processors have to decide whether the transmitter

has sent value 0 or 1 . If the transmitter can

send more than two values one has to modify the

algorithms slightly. We also assume that whenever

a processor sends a message to someone else, it

appends its signature to it before sending.

Throughout this section we assume that all

processors are completely synchronized.

For the first algorithm let q be the transmitter

and partition the 2t remaining processors into

two sets A and B , each of size t. Let G be

that graph which is formed by the complete

bipartite graph with the set of nodes A,B. In ad-

dition connect node q to each node in A or B.

We call a message a processor p receives at phase

k, for k=l,...,t+2 correct if it consists of a

value with signatures appended to it and the se-

quence of processors that signed that message to-

gether with p form a simple path of length k

from q to p in G.

136

Algorithm i:

Phase I:

The transmitter sends its value to ev-

ery other processor.

Phases 2 to t+2:

Whenever a processor in A (B) gets a

correct message containing for the

first time the value I it sends this

message to everybody in B (A).

Decision function:

A processor in A or B decides that

the value is i if by phase t+2 it

has got a correct message with value

i, otherwise it agrees on value 0 .

Theorem 3: For n=2t+l Algorithm 1 is a t+2

-phase authenticated algorithm to reach Byzantine

Agreement among n processors with at most t

faults that does not require sending more than
/

2t2+2t messages, o

The second algorithm is an extension of the first

one. It has 2t+l additional phases. Let the

processors be pl,...,P2t+ I, We call a message

which is received by some processor pj after

phase t+2 increasing if it consists of the value

to which pj has committed in phase t+2

together with signatures of processors with la-

bels less than j in increasing order.

Algorithm 2:

Phase 1 to t+2:

Run algorithm 1 and decide on the

common value.

For INjN2t+I phase t+2+j :

Let m. be one of the increasing messages p=
J J

has received so far with a maximum number of

signatures appended to it. If it has not re-

ceived any message, then m . is only its
3

value. If m. carries at least t
J

signatures Pi sends this message to every

other processor, else only to processors

with a label between j+l and j+t+l.

Theorem 4: For n=2t+l Algorithm 2 is an

authenticated algorith m that reaches Byzantine

Agreement among n processors with at most t

faults such that after 3t+3 phases each correct

processor has received the common value together

with at least t signatures of other processors

appended to it. The algorithm requires sendin~ art

most 5t2+St message. []

We will now consider the general case n>2t+l .

Arbitrarily choose a set A of 2t+l processors

that includes the transmitter to be the set of

active processors and let B be the m:=n-(2t-l)

remaining processors, called passive. The algo-

rithm we will describe consists of two parts: in

the first the active processors agree on a value,

using one of the previous algorithms, and then in

the second they use the following algorithm to

share the agreement with the passive processors.

Divide the passive processors into r disjoint

subsets with s processors each - except possibly

the last one - where r=rm/sT. The algorithm is

parameterized by the size s of each subset. Fix s

to be 2k-iNt for some natural number k; thus, the

size of each subset is bounded by the upper bound

on the number of faults. Arrange all the process-

ors in each subset of B into a binary tree of

depth k. We assume that this construction is

known to each of the n processors.

We will now describe how the processors in B can

be informed about a value v on which the active

processors in A have agreed upon using the pre-

vious algorithm. A message is called valid if it

consists of a possible value the transmitter

might have sent with at least t+l signatures of

active processors appended to it. Thus, no

processor can ever send a valid message contain-

ing a value different from the value agreed upon.

To make the analysis easier the actions of the

algorithm will be grouped together in certain

blocks. Each action can take place only at a cer-

tain phase in a certain block of phases. This ri-

gidity which means that the algorithm cannot

terminate earlier is not essential. It can be re-

137

laxed such that in most cases only a few addi-

tional phases are necessary.

Phase 2~(x): q sends m(~(x)) to every processor

in A .

Algorithm 3:

For each pgA define B(p,k)=B and C(p,k) as the

set consisting of the r binary trees defined

above.

For x=k,...,0 do

(start of the phases in block x)

~(x) := 2x-i denotes the number of

processors in a binary tree of depth x.

Phase I: Each pEA sends a valid message to

the root of each binary tree C of

depth x in C(p,x).

If a processor q c B that is a root

of a binary tree C of depth x has

just received a valid message from

at least t+l processors in A it

defines this message to be message

m(1) and becomes active for the

next 2~(x)-i phases. Let

ql,...,q~(x)_l be an arbitrary or-

dering of the processors in the sub-

tree, excluding the root q itself.

For each active root q and for every iEy~-~(x)-l:

Phase 2y: q sends m(y) to qy.

Phase 2y+l: If at phase 2y a processor qy~C has

just received a valid message from

q, where q is its unique ancestor at

height x, with some or no signatures

of processors in C appended to it,

it signs this message and returns it

to q .

If q receives m(y) back from qy

with the signature of qy appended

to it, it defines this message to be

m(y+l), else m(y+l):=m(y) .

Each processor pEA defines the set

B(p,x-l) to be the set of all the

processors in B(p,x) whose signa-

ture did not appear in any valid

message p got back from roots of

subtrees of depth x. The set

B(p,x-l) does not include those

roots themselves.

C(p,x-l) consists of all binary

subtrees with roots in B(p,x-l).

end (end of block x)

end of Algorithm 3

Correctness: Any valid message must contain the

value the processors in A have agreed upon using

Algorithm 2. To prove the correctness of Algo-

rithm 3 all we have to do is to make sure that

each processor in B gets a valid message at

least once. This follows easily from the follow-

ing:

Claim i: If a processor q in B has not got a

valid message by the end of block x (x=k,...,l),

then for all correct processors p g A processor

q is still in B(p,x-l).

Observe that Claim I holds regardless how many

processors in B are faulty: it may be more than

t . In this ease as we will see only the number

of messages will increase.

In the last block each subtree is the processor

itself; therefore, all processors in B that

have not seen a valid message yet will get it di-

rectly from the correct processors in A at that

phase.

Number of phases: Since block x consists of

2(2x-i) phases for x>0 and I for x=O the

total number of phases of Algorithm 3 equals

4s-l-21og(s+l).

138

Number of messages:

Claim 2: Let C be one of the binary trees (of

size s and depth k). If C contains b(C) faulty

processors, then the sum of the sizes of all the

subtrees of C with a faulty processor as root is

bounded by slog(b(C)+l).

Observe that during the algorithm a correct

processor in C receives at most one value from a

correct root. Therefore, the total number of mes-

sages sent by correct processors within C is

bounded by 2(slog(b(C)+l) + s).

directly informs each processor q in B whose

signature appended to the correct value p has

not been received from the corresponding root for

q . The number of messages of this type is bounded

by (2t+l)t(s-l) = o(n) , since there are at most

t cycles each missing at most s-i signatures.

Now the processors in B use the following deci-

sion function:

If in the last phase a processor q receives a

value v from at least t+l processors in A ,

it agrees on v , otherwise it agrees on the

first value it has received from its root.

Claim 3: The number of subtrees in C the roots of

which receive a valid value from at least one

processor in A is bounded by 2b(C)+l.

Therefore, the total number of messages involving

correct processors of a given binary tree is

bounded by

(2t+l)(2b(C)+l) + 2(slog(b(C)+l) + s).

To estimate the total number of messages we have

to sum over the r=Fm/s] binary trees. Recall that

the total number of faulty processors is bounded

by t, which implies that the summation of

log(b(C)+l) over all the binary trees is also

bounded by t. Hence the total number of messages

sent by correct processors in Algorithm 3 is

bounded by

2t(2t+l) +(2t+l)r + 2st + 2sr

6t 2 + (2t+l)m/s + 2m + 0(t).

It can easily be seen that each correct processor

in B agrees on the same value as the correct

processors in A . Algorithms 1 and 3 give a

total of t+2s+3 phases and 2n+(2t+l)n/s+o(n)

messages. Thus we have

Theorem 5: Fo__gr a~ lNsSt<n there is an

authenticated algorithm to reach Byzantine Agree-

ment among n processors with at most t faults

in at most (3t+4s) phases sending no more than

2n+(2t+l)n/s+llt2+o(n) messages.

If t3=o(n) the number of phases can be reduced

to t+2s+3. D

The above theorem presents a tradeoff between

phases and messages, by fixing s to be t one mini-

mizes the number of messages, which then becomes

4n+llt~+o(n).

Combining Algorithms 2 and 3 we get a k-phase

Byzantine Algorithm, where k~3t+4s, that sends at

most 2n + (2t+l)m/s + llt 2 + 0(t) messages.

If t3=o(n) Algorithm i instead of 2 can be

used and Algorithm 3 can be simplified. In this

modified version a processor considers a message

valid even if it carries fewer than t+l signa-

tures. A root of a tree of size s forwards a value

if it receives it from at least t+l processors

in A. Other processors only sign the first valid

message they get from their root. All we have to

do is to run the phases of block k and one addi-

tional phase, in which each processor p in A

6. REFERENCES

[DH] W. Diffie and M. Hellman, "New direction

in cryptography", IEEE Trans. on Inform.

IT-22,6(1976), 644-654.

[DLM] R. A. DeMillo, N. A. Lynch, and M.

Merritt, "Cryptographic Protocols",

proceedings, the 14th ACM SIGACT Sympo-

sium on Theory of Computing, May, 1982.

139

[Dal

[Db]

[DFFLS]

[DSa]

[DSb]

[DSc]

[DSd]

D. Dolev, "The Byzantine Generals Strike

Again", Journal of Algorithms, vol. 3,

no. i, 1982.

D. Dolev, "Unanimity in an Unknown and

Unreliable Environment", 22nd Annual

Symposium on Foundations of Computer

Science, pp. 159-168, 1981.

D. Dolev, M. Fischer, R. Fowler, N.

Lynch, and R. Strong, "Efficient

Byzantine Agreement Without

Authentication", IBM Research Report

RJ3428 (1982).

D. Dolev and H. R. Strong, "Polynomial

algorithms for multiple processor

agreement", proceedings, the 14th ACM

SIGACT Symposium on Theory of Computing,

May 1982.

D. Dolev and H. R. Strong, "Authenticated

Algorithms for Byzantine Agreement",

IBM Research Report RJ3416 (1982).

D. Dolev and H. R. Strong, "Distributed

Commit with Bounded Waiting", Pro-

ceedings, Second Symposium on Reliabil-

ity in Distributed Software and Database

Systems, Pittsburgh, July 1982.

D. Dolev and H. R. Strong, "Requirements

for Agreement in a Distributed System",

Proceedings, the Second International

Symposium on Distributed Data Bases,

Berlin, Sep. 1982.

[FFL]

[FL]

[La]

[LSP]

[LF]

[PSL]

[RSA]

M. Fischer, R. Fowler, and N. Lynch, "A

Simple and Efficient Byzantine Generals

Algorithm", Proceedings, Second Sympo-

sium on Reliability in Distributed Soft-

ware and Database Systems, Pittsburgh,

July 1982.

M. Fischer, and L. Lamport, private com-

munication of paper in preparation,

April, 1982.

L. Lamport, "The Weak Byzantine Generals

Problem", JACM, to appear.

L. Lamport, R. Shostak, and M. Pease,

"The Byzantine Generals Problem", ACM

Trans. on Programing Languages and Sys-

tems, to appear.

N. Lynch, and M. Fischer, "A Lower Bound

for the Time to Assure Interactive Con-

sistency", Information Processing Let-

ters, to appear.

M. Pease, R. Shostak, and L. Lamport,

"Reaching Agreement in the Presence of

Faults", JACM, vol. 27, no. 2, pp.

228-234, 1980.

R. L. Rivest, A. Shamir, and L. Adleman,

"A method for obtaining digital signa-

tures and public-key cryptosystems",

Comm. ACM 21(1978), 120-126.

140

