ASYNCHRONOUS BYZANTINE CONSENSUS!

Chagit Attiya
Danny Dolev
Joseph Gil

Institute of Mathematics and Computer Science
Hebrew University, Jerusalem

ABSTRACT: Reaching agrcement in an

asynchronous environment is essential to
guarantee counsistency in distributed data pro-
cessing. All previous asynchronous protocols

were either probabilistic or they assumed a
fail —stop mode of failure. The detcrministic

protocol presented in- this paper rcaches a

Strong Byzantine Agreement in a system of

asynchronous processors; and therefore can
sustain arbitrary faults,
cessors can be completely. asynchronous,

In our modecl, pro-

though the communication network has the

property that a message being sent by a
correctly operating processor to a set of pro-
cessors will rcach its destinations within a
predetermined period A. Additional results

prescnted in the paper prove that in the
abovc model one cannot reach a consensus
within a bounded time. A correctly opcrat-
ing processor should wait to reccive messages
from other processors before making a deci-

sion. This result holds also for Weak Byzan-
tine Agreement, but not for nontrivial con-
Sensus.

We present a trivial protocol to
reach a nontrivial consensus in bounded
time.

! 'The research was supported in part by the Unit-

ed States - Israel Binational Science [Foundation, grant

no. 2439/82.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©

1984 ACM 0-89791-143-1/84/008/0119 $00.75

1. Introduction

The problem of reaching agreement
among independent processors is a funda-
mental problem of both practical and
theoretical importance in the area of distri-
buted systems; see, e.g. [Ag, BL, DRS, DSb,
LSP, MSF, T]. Wec consider a system of #
processors py, . . ., p, (n > 2) that commun-
icate by sending messages to cach other. Ini-
tially, each p; has a binary value x;. At
some point during its computation, a proces-
sor has to decide irreversibly on a binary
value v. Each processor follows a determinis-
tic protocol involving the reception and
transmission of messages. Even though the
protocols of individual processors arc deter-
ministic, there are scveral potential sources of
nondeterminism in the system: processors
might run at varying spceds, having received
a sct of messages a processor cannot deter-
mine the order in which they werc sent, the
behavior of faulty processors can be com-
pletely arbitrary. We allow Byzantine
failures; that is, there is no assumption about
the behavior of faulty processors.

A protocol reaches a consensus if:

(C1) no matter how the system runs, ¢very
nonfaulty processor makes a decision
after a finitc number of steps,

(C2) no matter how the system runs, two
different nonfaulty processors never

decide on different values.

A protocol reaches a Nontrivial Byzantine
Agreement if it also satisfics:

119

(CN) 0 and 1 are both possible decision
values for {(possibly different) assign-
ments of initial values.

(Condition (CN) is needed to avoid the
trivial solution where cach processor decides
1 regardless of its initial value. The decision
value may depend only on the existence of
faulty behavior).

A protocol rcaches a Weak Byzantine Agree-
ment if it also satisfies:

(CW) 0 or 1 is the decision value when all
processors are nonfaulty and all have
initial value 0 or 1, respectively.

A protocol reaches a Strong Byzantine
Agreement if it also satisfies

(CS) 0 or 1 is the decision value when all
correct processors have initial value 0
or 1, respectively.

M. Fischer [F] and L. Lamport [L]
introduced the various agrecments. Although
the agreements arc almost the same, the
small differences among them distinguish
between possibility and immpossibility to reach
consensus in certain situations.

If the processors and the communica-
tion system are completely reliable, con-
sensus protocols trivially exist. The problem
becomes interesting when the protocol must
operate correctly in spite of the cxistence of
faults in the system. The failure mode stu-
died in [DDS] was fail—stop, thus a failed
processor neither sends nor seceives mes-
sages. The ability or impossibility to rcach
various agrecments in the presence of Byzan-
tinc failures was Icft as an open question
there. In this paper we resolve some of the
open questions in [DDS]. A consensus pro-
tocol is ¢-resilient if it operates correctly
when at most ¢ processors fail. The
existence of n-resilicnt conscnsus protocols
when the processors and the commuunication
system arc both synchronous is known
([DFFLS,DSa,L.SP.Re]). Intuitively, synchro-
nous processors implics that the internal
clocks of the processors are synchronized to
within some bounded ratc of drift,

120

Synchronous communication implies that
there is a fixed upper bound on the time for
a mcssage to be delivered. These synchroni-
zations are assumed in much of the rescarch
on "Byzantine Agreement” (scc [DDSc, F]).

In two recent papers (JFLP, DDS]) an
extensive study of possibility and impossibil-
ity of reaching consensus indicates that in
most asynchronous models it is impossible to
rcach conschsus by deterministic protocols.
If processors are asynchronous and the net-
work is synchronous, then we have one of
the few cases in which there exists a protocol
for the fail—stop mode. In this paper we
concentrate on this model, which is some-
what natural for a large distributed system of
processors, since individual processors are
asynchronous, that is, one cannot anticipate
when a processor will respond to a message
(a faulty onc may never respond). This
assumption ‘relaxes the assumption of having
an upper bound on the time at which a
correct processor should respond to a given
message. This assumption is natural when
corrcctly operating systems tend to be
saturated and operate very stowly. The com-
munication network that we consider will be
A—synchronous, i.c., a message sent by a
nonfaulty processor to a sct of processors will
reach its destinations within A units of time.

Having assumed completely asynchro-
nous processors, we have to define how time
is measurcd. [t is convenicnt to imagine that
one is standing outside the system holding a
"real time clock" that ticks at a constant rate.
At each tick of the real clock, every proces-
sor can takc at most onc step. The proces-
sors are modeled as infinite —state machines.
In the most general definition of "step”, a
processor can attempt to reccive a message,
and bascd on the value of the received mes-
sage (or based on the fact that no message
was received) it can change its state and
broadcast a message to all processors. Pro-
cessors need not have synchronous clocks or
the capability to precisely mcasure A. The
only requirement is the ability of ¢very non-
faulty processor to measure A units of time
on its timer that arc not shorter that those of
the "real time clock”.

The two protocols to reach Strong
Byzantine Agreement presented in the paper
consist of two interlcaved processes. One is
the process of emulating phases. The proces-
sors run a protocol called the Phase Protocol,
that enables active processors to synchronize
themsclves. The second process is simulation
of the basic Byzantine Protocols ([DSa,
DFFLS)) in order to agree on a set of values.
The key point in the phase protocol is that
when a processor realizes that other proces-
sors are running faster than it, it does not
send new values it holds, cven if these values
are crucial and may influence the dccision.
The phase protocol can be used to control
semi—synchronized behaviors in asynchro-
nous systems.

The protocol with authentication presented
operates in ¢ + 2 artificial "phases”, where
each phase is composed of broadcasting a
message and waiting to receive messages
from at least 3¢/ +1 other processors. There-
fore, the time it takes, for a given processor,
to reach an agreement depends on the rate at
which other correct processors proceed. The
number of messages being sent during the
protocol is O(nt + r3log t).

The protocol without authentication
presented is based on the "*" protocol of
[DFFLS). It opcrates in 2/+4 artificial
phases, and as in the protocol with authenti-
cation, each phase is broadcasting and receiv-
ing from at least 47/ +1 other processors. The
number of messages being sent is about the
same as those in [DFFLS], O(nt + £2).

A processor reaches an agreement in
bounded time if the number of steps it exe-
cutes before reaching a dccision state
depends only on the number of processors
and A, thus independent of the rate at which
other processors proceed. The presented
protocols do not have that property, while
the one of Theorem E.1 in [DDS] does. We
prove that cven a Weak Byzantine Agree-
ment cannot be reached in bounded time.
On the other hand we present a protocol to
reach Nontrivial Byzantine Agreement within
bounded time. The Nontrivial Protocol cods

121

with a decision value different from 0 only
when all faulty processors send signed mes-
sages saying "l am faulty” ecarly in the proto-
col. A Nontrivial Agrecment may have a
merit only in rare cascs.

Notice that Rabin’s protocol [Ra] for
the choice coordination problem works also
for asynchronous processors, and implicitly
assumes synchronous communication. In
that protocol, a processor may reach a deci-
sion within bounded time. But as in [DDS]
the only failure mode the protocol sustains is
fail—stop. We conjecture that the choice
coordination problem cannot be solved in
bounded time, in the presence of Byzantine
Failure (the problem itsclf should also be
redefined appropriately).

Another bound we obtain is the ratio
between correct and faulty processors that
has to hold in order to reach agrcement.
The protocol with authentication for Strong
Byzantine Agreement requires n > 47. If one
assumes a stronger broadcasting model, thén
an agreement can be reached when n > 31,
We prove that the ratio n > 37 is essential in
both models in order to reach a Strong
Byzantine Agreement. Note that the proto-
col without authentication requires # > 5¢

Some of the protocols presented
assume the existence of an authentication
scheme in which a faulty processor cannot
forge a signature of other processors on a
message and every processor can identify the
sighature of every other processor. Onc may
use a scheme like [RSA], or even just some
error corrcction (detection) code, depending
on the degree of resiliency one wishes to
tolcrate.

2. Definitions

We follow the formalism of [DDS]. A
consensus protocol is a system of n (n > 2)
processors P = py,p, The processors
arc modeled as infinite — state machincs with
statc sct Z. There arc two special initial
states zg and zy. For v = 0,1, a processor

starts in state z, if its initial value is v. Each
processor then follows a deterministic proto-
col involving the reception and transmission
of messages. The messages are drawn from
an infinite set M. Each processor has a buffer
for holding the messages that have been sent
to it but which the processor has not yet
received. Fach buffer is modeled as an unor-
dered set of messages (message order asyn-
chronous, in the terminology of [DDS]). The
collection of buffers support two operations:

Send(p,m):
Reccive(p):

places message m in p’s buffer;

deletes some collection (possi-
bly empty) of messages from
p’s buffer and delivers these
messages to p.

The protocol of each processor p is
specified by a state transition function §, and
a sending function 8,,

8,:ZXM = Z,

B,:ZXM —> {BCPXM | B is finite},

where M is the set of finite subsets of M. A
pair (g,m) in the range of 8, means that p
sends message m to processor ¢. Since we
place no constraints on the message set M,
we can assume that for each
p.q € P,z € Z and p € M there is at most
one message m with (g,m) € B,(z.p). ltis
also convenicnt to assume that a processor
attaches its name and a scquence number to
each message so that the same mcssage m is
never sent by two different processors nor at
two different times.

Throughout the paper we assume that
reccive/send is atomic; thus, in any state in
Z a processor can both receive and send
messages. The opcration of receiving,
analyzing, and sending to a sct of processors
is one atomic indivisible step. Note that if
the receive/send is not atomic, there is no
way to reach a conscnsus with one or more
faulty processors ([DDS]).

The transmission model assumed is
broadcast: a processor can send messages to
any set of processors in onc step. In all the
protocols presented a nonfaulty processor

will send every message to all other proces-
sors (the terms "send" and "broadcast” are
both used). However, we do not assume that
faulty processors are forced to send every
message to all processors. Note that in
point —to —point transmission there iS no
way to reach consensus with two or more
faulty processors [DDS].

A configuration C consists of

1) n states st(p;,C) € Z, for
1< i < n, specifying the current
state of each processor, and

(i) n finite sets buff(p;,.C) € M, for
1< i< n, specifying the current
content of each buffer.

Initially, each state is either zy or z; as
described above, and each buffer is empty.

An eyent is a pair (p,p) where p € P
and p C M. Think of the event (p,u) as the
reception of the set of messages u by p.
Processor p is said to be the agent of the
event (p,;n). An event (p,p) is applicable to
configuration C only if p C buff (p,C).

If the event e = (p,p) is applicablé to
C, then the next configuration e(C) is
obtained as follows:

(a) p changes its state from z = st(p,C)
to 8,(z,u) and the states of the other
processors do not change,

(b for all (g.m)€ B,(z,p), add m to
buff(q,C),
() delete p from buff(p,C).

To define "correctness” of a protocol,
we must consider sequences of cvents. A
schedule is a finite or infinite sequence of
events. FEach event is a step taken by some
processor. For simplicity assume that each
step takes at least one unit of "real time".
Hence, a processor that {akes one step,
knows that at least one real time unit passed.
A schedule o=o0q, 0y, * - is applicable to
an initial configuration I if;

(1) the events of ¢ can be applied in
turn starting from [/, ie, op is

122

applicable to /, o,
o1(/), etc.;

for every j, let o; = (p,p), if a mes-
sage m was sent to p by an event o;
with i < j — A (constant A>1) and
if none of the cvents o, with
i < k < is the reception of m by p,
then m belongs to p.

is applicable to

(2)

Condition (2) above is the A-synchronous
communication requircinent.

If o is finite, o(/) denotes the result-
ing configuration, which is said to be reach-
able from [. A configuration reachable from
some initial configuration is said to be acces-
sible. Henceforth, all configurations men-
tioned are assumed to be accessible. If Q is
a set of processors, the schedule o is Q-free
if no p € Q takes a step in 0. A schedule
together with the associated sequence of
configurations are called a run.

A processor p is nonfaulty if all of its
steps are according to the transition functions
8, and f3,, and in an infinite run it takes
infinitely many steps. Processor is faulty oth-
erwise. Processor p is nonfaulty in accessible
configuration C if it is nonfaulty in a run
that accesses €, and all its steps are accord-
ing to 8, and B,.

We assume that there are two disjoint
sets of decision states Y and Y\, such that if
a processor enters a state in Y, (v€{0,1}),
then it must remain in states in Y,. We say
that a processor p decided on v in a
configuration C if st(p,C) € Y,. A
configuration C has decision value v if
st(p,C') € Y, for some nonfaulty processor
.

A consensus protocol is partially correct
if:
(C2) no accessible configuration has more
than one decision value, and

(CN) for each v € {0,1}, some accessible
configuration has decision value v.

123

For 0 € ¢ < #n, an infinite run is a ¢-
adinissible run from I if:

(1) the associated schedule is applicable
to [,
(2) at most ¢ processors are faulty in it.

A run is deciding if every nonfaulty processor
centers a decision state. A protocol is
t—resilient for the Nontrivial Byzantine
Agreement problem (NBA in short) if it is
partially correct and

(C1) every t—admissible run from every
initial configuration is a deciding run.

A protocol is (—vesilient for the Weak
Byzantine Agreement problem (WBA in
short) if it also satisfies

(CW) if I, is the initial configuration in
which all processors have initial value
v, then all configurations rcachable
from I, by 0-—admissible deciding
runs have decision value v.

A protocol is t—resilient for the Strong
Byzantine Agreement problem (SBA in short)
if instead of (CW) it satisfies

(CS) if I,” is the initial configuration in
which all nonfaulty proccssors have
initial valuc v, then all deciding
configurations rcachable from I,” by
{-admissible deciding runs have deci-

sion value v.

For our impossibility proofs we have to
define the applicability of a schedule to a
noninitial configuration C., If C is rcached
from initial configuration I by schedule 7,
then o is applicable to C iff ro is applica-
ble to I. (To be completely precise we
should include the history = as part of the
configuration C. However, in our impossibil-
ity proofs, the history is clear from the con-
text, so we simply say that ¢ is applicable to
C rather than to (C,7).)

3. The Impossibility Result for a Bounded
Protocol

Let © be a constant depending only on
n, the number of processors, and A, the
communication time bound. A protocol is
said 0 be O-—bounded provided that for
every processor p, cvery configuration C,
and every schedule o applicable to C, if p
takes O steps in o, then

SI(R,G(C)) €Y0U Yl'

Notice that the protocol of Theorem E.1 in
[DDS] is a bounded protocol.

Definition. Let X C P. Two configurations
C and D are X —equivalent if, for every
pEP-X, st(p,C) = st(p,D) and
buff (p,C) = buff(p,D).

Definition. Let e =(p,p) be an event appli-
cable to a configuration C. Fvent e (when
applied to C) is a total reception if
w=buff (p,C).

Our impossibility result assumes a
total reception rather than A —synchronous
communication, and therefore of a stronger
nature.

Lemma 1. Let D and D’ be two
configurations, and let p and g be two pro-
cessors, such that p is nonfaulty at D decid-
ing 1 in it, and ¢ is nonfaulty at D' deciding
0 in it. . In any ©-—Dbounded 1—resilient
consensus protocol, configurations D and D’
arc not {p,q} —cquivalent.

Proof. Assumec on the contrary that the con-
ditions of the Lemma hold and for some
O —bounded 1-resilient consensus protocol,
D and D’ are {p.q}—equivalent. Let ¢ be
a {p.g}—free scheduie in which every pro-
cessor in P —{p.q} makes O steps, where all
the steps arc total reception. Schedule o is
applicable to both D and D’. Since the pro-
tocol is © —bounded, all nonfaulty processors

have to be at a decision state by the end of
the run, whether the run is o applied to D,
or o applicd to D'. Morcover, in both cascs,
all processors reach the same decision value;
assume w.l.o.g. that it is 0. But this decision
violates requircment C2, because p is non-
faulty in 2 and decideson 1. O

In a ©® —bounded conscnsus protocol a
nonfaulty processor should enter a decision
statc within © steps, cven when it is the only
processor currently tunning. This implics
that in a Weak Byzantine protocol a proces-
sor should decide on its own value, 'This
observation Icads to a contradiction.

Theoremm 1. In our asynchronous model,
there is no l-—resilicnt © —bounded Weak
Byzantine Agrcement protocol.

Proof: Assume on the contrary that such a
protocol does cxist. To obtain a contradic-
tion we make use of a Byzantine behavior in
which a faulty processor just ignores some of
the incoming mcssages.

Denote by o, a schedule composed
of O consccutive steps of p alone. The
schedule o, is applicable to every initial
configuration. Let [be an initial
configuration with st(p,i)=z,, then the
O-—bounded condition implies that
st(p.o,(I)) € Y,; that is, p decides on its
initial value.

Let 7/ be an initial configuration in
which: p has initial value 1, another proces-
sor, g, has initial value 0, and alt other pro-
cessors have arbitrary values. Let o=0,0,
and o'=o,, o,. In both schedules applied to
I the first processor decides on its initial
value. Define the following runs for ¢ and
o’: processors g in o and p in ¢ are faulty
and ignore all messages from other proces-
sors. Therefore ¢ in ¢ behaves exactly as in
¢’, and p in ¢’ behaves exactly as in o.

Define state D =o0,0,(/), and state
D'=0y0,(/). Ttis clear that D and D' are

124

{p.q}-equivalent. Howcver, in D processor
p is nonfaulty and decides on 1, whereas
processor g is nonfaulty in 0’ and decides
on 0; a contradiction to Lemma 1. O

4. Unbounded Protocols For Strong Byzan-
tine Agreement

In the previous scction we proved that
in our asynchronous model even a Weak
Byzantine Agreement cannot be achicved
within bounded time. Wec show that without
this rcquirement therc are protocols to reach
Strong Byzantine Agrecment.

In the synachronous case, a protocol to
reach SBA using authentication is simple (cf.
[DSa]). The difficulties in using it as is arise
from the lack of synchronism; morcover,
even when one finds a way to introduce
some notion of phase, a processor that is
rclatively slow and that is not active at a
given phase, has to be provided with mcans
to catch up with faster nonfaulty processors.
The lower bound proof of the previous sec-
tion indicates some of the problems we have
to overcome.

4.1. The Phase Protocol

The basic idea in the Phase Protocol is
somewhat similar to the idea of Protocol E.1
in [DDS]. Every processor sends a claim to
be at phase & if it has received more than 2¢
claims about phase k—1, or more than ¢
claims about phase k. Phases will be
separated by 2A consccutive steps during
which a processor does not receive any valid
message. This phase scparation enables us. to
guarantee that two correct processors will not
send claims about two different phases "con-
currently” (i.c., in less than A units of time
apart). We assume that thc communication
systemn is such that the sender of a message
can be verified.

We describe how to run the phase pro-
tocol in order to obtain K phases, for some
constant K. The protocol uses two thres-
holds, TRH1 and TRH2, such that
TRH1 >TRH2+1t > 21+1.

We denote by <m>k a message sent by
processor px. A @; —claim by processor py
is a message <i>k. Processor p, may send at
most one @; —claim, for cvery i; denote this
message by ¢;(pr). When a nonfaulty pro-
cessor sends a message it broadcasts it to all
processors, including itself.

Definition: A @;(p,)—message is valid if it is
the first one reccived from p; about phase i,
and i < K. A @;~claim is valid if it was
received by a valid message and for i >0
there are at least TRH2 valid ¢; _{—claims.

A mute step is a step during which a
processor does not receive any valid ¢ —mes-
sage.

The Phase Protocol

(1) Set phase counter PC to 0. Send a
po—claim.

(2) While PC < K do:
wait for 2A cousccutive mute steps, and
then,

(2a)T.et j, j> PC, be the maximal
phasc for which a valid ¢;—claim
exists. If you have rececived at least
TRH2 valid ¢, -claims, then broadcast
a @;—claim to all the processors. Set
PC to j and return to step (2).

(2b) Else, if you have received at least
TRH1 valid ¢;—~claims, where
i = PC, then broadcast a
@;+1—claim to all the processors.
Increase PC by one and return to step

().
(2¢) Else, return to step (2).
(3) Stop.

A processor that scnds a ¢; —claim as
result of step (2b) of its protocol is called

active at phase i. No processor is active at
phase 0.

Note that our modecl assumes that a
processor can receive, decide what to send,
and broadcast its messages in a single step.
This assumption is crucial to the correction
of the protocol. This assumption means that
the last mute step in (2) and all subsequent
(2a) to (2c) are being exccuted in a single
step of a nonfaulty processor.

It is easy to see that if the number of
faulty processors is bounded by ¢ and
n > TRH1+1, then the protocol terminates
within a finitc time. By simple induction on
the phase number it can bc shown that the
phases do increasc. The following theorems
prove the basic propertics of the Phase Proto-
col.

Theorem 2. Let n > TRH1-+¢. If an
active nonfaulty processor px sends @; at
"real time" T (as a result of step (2b) of its
protocol), and an active nonfaulty processor
pr sends @;, for j < i, at "real time" 7' (as a
result of step (2b) of its protocol), then
T' < T—A.

Proof: Let us look at the real times at which
the various steps of the processors occur. It
is cnough to prove the Thcorem for
j = i—=1. For sending ¢;{py), an active
processor p;, should have received valid
@;_1—claims from at least TRH1—1 non-
faulty processors. Since processor p; waited
for 2A mute steps before sending its claim as
a result of step (2b) of its protocol, all the
above claims should arrive to it not later than
time 7~A. On the other hand. if processor
p; would have received these claims before
time 7' it would rcccive at ” least
TRH1—1t > TRH? such claims and would
use step (2a) instcad of step (2b), which
provcs the theorem. O

Corollary 1. For each phase i,
1< i <€ K—1, all claims sent by nonfaulty
processors active at phase i will be received
by all processors active at phase i + 1.

126

Corollary 2. For each phase i, 1 < i < K,
all claims sent by nonfaulty processors active
at phase / will be reccived as valid claims by
every nonfaulty processor.

Theorem 3. Lct n > TRH1+1. For every
phase i, 1 < i < K, atlcast TRH2—t non-
faulty processors are active at phase .

Proof: The proof follows ecasily from the
bound TRH2 at step (2a). O

The exact thresholds of the Phase Pro-
tocol will be chosen according to the extra
restrictions about the ratio between faulty to
nonfaulty processors arise from protocols that
usc the Phase Protocol, as we will see in the
rest of the scction.

4.2.
tion

Byzantine Protocol using authentica-

We describe now how to use the Phasc
Protocol in order to run .a Byzantine Agrec-
ment protocol while using authentication.

The protocol we present assumes the
existence of some authentication scheme hav-
ing the following properties:

(1) No processor can forge any signature
(even a faulty one cannot);

(2) No processor can alter the content or
the signature of a signed message
undetectably.

(3) Every processor can identify a correct

signature of every other processor.

Every processor will follow the proto-
col to know when, if at all, it is allowed to
send new valucs it obtains. While exchang-
ing the messages of the Phase Protocol the
processors append to them, sometimes,
proofs on new values they have obtained.

The protocol presented here requires
{+1 nonfaulty processors active in cach
phase, hence by Theorem 3, it is cnough to
choose TRH2 = 2¢+1, TRH1 = 3t+1

and n > 4¢+1. A ratio n > 3141 can be

reached using only one nonfaulty processor
active in cach phase. This can bc done
assuming that every message reccived by a
nonfaulty processor will be reccived by all
nonfaulty processors within A. We call such
communication nctwork a Strong Broadcast
Network. 'This requirement is too strong for
a natural communication network and will
not be used in the paper.

Definition: An «ap—message is a message
<{v,pe >, containing an information v of some
processor p,. The pair <v,p> is the value
carried by the message, and p is the subject
of the message. An «;—message iS an
ag—message followed by i distinct signatures
X1, - -+, X;, where the subject of the message
is the first of them. (i.e. an a;—message
contains exactly / distinct signatures).

A correct processor will append a valid
a;—message to a g; —claim only when it is
active, that is, it sends the claim as a result of
stecp (2b) of its phase protocol. To simplify
the presentation of the protocol assume that
a processor receives its own ag—message
during phase 0 of the Phasc Protocol.

The Byzantine Protocol

(1) Run the Phase Protocol with K =1+2.

(1a) If you are not active, act as in the
Phase Protocol.

(Ib) For every 1<i<K —1, if you are
active at phase i and you have received
an a;_;—message carrying a value you
have not sent before, add your signa-
ture to it and append it to the
@; —~claim.

(1c) Accumulate all the messages you
reccive during the protocol.

At the end of the Phase Protocol,
prepare a set 2 of values. Insert to this
set cvery value on which you have
reccived, in maybe diffcrent messages,
at least ¢ +1 distinct signatures, includ-
ing the authentication (signature) of the
subject of the message.

Apply a deccision function to %; for
example: if X contains values <1,p>,

)

€)

127

for at least + + 1 processors p, decide
on 1; otherwisc decide on 0.

Lemma 2: If a nonfaulty processor sends an
a;—message, 1 <7 < ¢, then at least £+1
nonfaulty processors will send the value of
that message in some a; —message (1< /).

Proof: (sketch) By Theorem 2, if a nonfaulty
processor sends a g; —claim at step (2b) of
its phase protocol, it will arrive at every other
nonfaulty processor before that processor
sends a ¢@;,;~—claim. By Theorem 3, there
will be at least ¢+1 nonfaulty processors
who will send a @;43~claim as a result of
step (2b) of their phase protocol. The
a; —message sent by p at phase i will reach
every one of them. Everyone of these pro-
cessors will append its signature and will
send the value carried by the «;—message,
unless it has done so in some previous phase.
a

Lemma 3: Every nonfaulty processor has the
same set 2.

Proofi Let ag be a value in the set X of
some nonfaulty processor pg. By the
definition of Z, p, gathered 7+ 1 distinct sig-
natures on ap. Let p; be the first nonfaulty
processor that signed a message containing
ag, say at phase j. If j<r+1, then, by
Lemma 2, ag would be sent by at least ¢+1
nonfaulty processors to every processor, and
therefore ag will be in the set of values of
every nonfaulty processor. If j=¢+1 then
og was received as a1 —message by py.
The ¢ +1 signatures in it should include one
of a nonfaulty processor beside p;, a contrad-
iction to the minimality property defined for
p- 0

Theorem 4. Let n > 41. The Byzantine Pro-
tocol reaches Strong Byzantine Agreements.

Proof: By Lemma 3, all nonfaulty processors
apply the decision function on the same set
of values. We have to show that if all non-
faulty processors have initial value 0, then
the degision is 0, and if all have initial value

1, the decision is 1. By Theorem 3, at least
t+1 nonfaulty processors are sending their
own values at phase 1, and by Lemma 2, all
these values will be in 2. Therefore, if all
nonfaulty starts with 0 (resp. 1), then the
decision should be on 0 (resp. 1). O

We conclude this section by some com-
plementary remarks about the protocol. The
protocol actually runs in ¢+2 phascs,
because phase ¢+3 is required only to find

out that phase ¢ +2 was completed. An extra

phase can be saved by combining phase 0
phase 1. The protocol is written for only two
possible valucs, 0 and 1. It is easy to gen-
eralize it to any set of values. Moreover, one
can add a preliminary phase during which
every processor should try to get n —¢ signa-
tures on its value. This method prevents a
faulty processor from introducing too many
values during the protocol.

The total number of messages being
sent during the protocol is O (1n?), where the
number of values being sent is O(n3),
because in the worst case all processors are
synchronized, and everyone sends a value to
everyone else. The number of different
values each processor sends is O(n). One
can reduce the number of mecssages in our
protocol to O(nt + %) by using the same
trick as in [DSa]; that is, by limiting the
number of "active™ processors and prevent-
ing the rest from taking an active part in the
protocol. But in the asynchronous case it is
better to pay the extra number of possible
messages, and to be able to continue running
the protocol whencver. somc subset of the
processors is operating correctly, thus run-
ning the protocol at the rate of the 3¢+1
fastest nonfaulty processors.

4.3. Byzantine Protocol without using

authentication

The protocol described here is based
on the "* algorithm” ([DFFI.S]) and assumes
initial valucs of cither 0 or 1 for each procces-
sor. As in the authenticated case, we modify
a synchronous algorithm in order to run it in

128

an asynchronous system using the Phase Pro-
tocol. Some other synchronous algorithms
for reaching Byzantine Agreement can be
similarly adapted. We could not adapt all
the known algorithms, which suggests the
question: what properties a synchronous
algorithm should have in order to be adopt-
able to asynchronous system using the Phase
Protocol?

We describe the algorithm rather infor-
mally and proofs are omitted. The reader is
referred to [DFFLS] to complete the details.
We will use the Phase Protocol starting at
phase 1, for being consistent with [DFFLS].

The protocol uses two thresholds,
HIGH=2t+1 and LOW=t+1. When
you have HIGH evidences to some informa-
tion you know that every other nonfaulty
processor has at least LOW evidences to the
same information. The protocol rcquires
HIGH nonfaulty processors active in each
phase, thercfore the ratio needed (according
to Theorem 3)is n > St+1.

During the algorithm two types of mes-
sages will be sent: a "*" message and mes-
sages consisting of some name of some pro-
cessor. The "*" represent the assertion that
the sender has value 1, and a name represent
that the named processor has sent "*"'.

Each processor keceps a rccord of all
messages it has received. Consider this col-
fection as held by some processor p. For the
sake of simplicity we remove the index p
from the sets defined below. Denote by W,
the set of processors that have sent the mes-
sage x to processor p. We call W, the set
of witnesses to mcssage x. Proccssor p is a
direct supporter for processor r if p receives
"* directly from r. Processor p is an
indirect supporter for r if it has a set of
witnesses to r of cardinality LOW, i.e. if
| W, | >LOW for p.

Processor p confirms r if the cardinality
of the sct of witnesses to r (i.e. | W,]) is at
lcast HIGH. Each proccssor p has a set
(possibly empty) of confirmed processor

which we denote by C.

The last notion we need is "initiation”,
which means being ready to send "*". Pro-
cessor p is initiated at phase k if either k=1
and at phasc 1 it is active and has value 1, or
at the beginning of phase k the cardinality of
the sct C of confirmed processors it has
received is at least LOW +max(0,1k 72] -1).

We assume that whenever a processor
broadcasts a message to all others, it also
scnds onc to itself, for purposes of recording
its own mcssages. Every message is sent only
once by a correct processor. Only active
processors send messages. All processors col-
lect messages and perform the other transi-
tions (e.g. computing W,). For technical
reasons, and for being able to present our
arguments about phases we assume that a
processor processes its incoming messages
(that are not messages of the Phase Protocol)
just before sending a ¢-claim at either step
(2a) or (2b) of its Phase Protocol. Thus,
when a processor notices that a phase has
been just changed it reads its mail to find out
what messages it have received since the last
time he processed its messages.

We now give the rules for correct
operation:

(R0O) Run the Phase Protocol with K =2¢+5
and with thresholds TRH1=4¢+1 and
TRH2=3¢+1.

(R1) At phase 1 every active processor
broadcasts "*" to all processors, if its
value is 1.

(R2) If a processor is active at phase A>1 it
broadcasts the names of all proccssors
for which it is either direct or indirect
supporter. If, in addition, it is initiated
at this phase it also sends a "*" mes-
sage.

(R3) If a processor confirms HIGH proces-
sors it commits to 1,

(R4) 1f, after phase 27 +4, value 1 is com-
mitted then agrce on 1; otherwise,
agrec on 0,

Note that processors may skip phases,
when they are not active. A nonfulty nonac-
tive processor keeps track of phases by scan-
ning its incoming messages. Whenever it has
TRH2 valid ¢; —claims, it knows that phase
i has passed.

Let d = 2¢t+4. The following claims
prove that the Protocol reaches SBA.

(*) If a nonfaulty processor p sends "*" at
phase”k, 1 < k <d-1, then all non-
faulty processors will confirm p by
phase &k +2.

(*) If HIGH nonfaulty processors send "*"
by phase &, 1 < k <d-2, then by
phase k+2 all nonfaulty processors
commit.

(™ If p, q, r arc nonfaulty processors, r
active at phase k, 1 < k& <d+1, and
x a message, then r€W, of p by
phase k iff r€W, of g by phase k.

(*) If a nonfaulty processor r confirms p at
phase £, 1 < k <d, then all nonfaulty
processors will confirm p by phase
k+1.

(*) If HIGH nonfaulty processors are ini-
tiated at phase 1, then all nonfaulty
processors commit by phase 3.

(*) If LOW nonfaulty processors send "*"
by phase k, 1 < k& <d -3, then every
nonfaulty processor comumits by phase
k +4.

(*) If a nonfaulty processor p does not
send "*" by phase k£, 1 < k <d, then
a nonfaulty processor g will neither be
a direct support for it by phase k+1
nor an indirect support by phase k +2.

129

(*) If a nonfaulty proccssor commits at
phasc £, 2 < k then there arc at least
L.OW nonfaulty processors which have
sent "*" by phase £ — 1.

(*) If a nonfaulty processor commits by
phase d + 1, then all do.

(*) If only faulty processors initiate at
phase 1, then no nonfaulty processor
will ever commit.

Note again that for completing the
details of the proof the rcader has to read
first the complete proof in [DFFLS], and
then to fill in the details about the phases
defined by the phase protocol. The main
differences between our proof and the one in
[DFFLS] are: in our protocol there is no sin-
gle transmitter who sends its value at phase
1; at every phase, only HIGH nonfaulty pro-
cessors necessarily sends messages; and the
beginning and the end of a phase is more
delicate in the our protocol. The number of
bits exchanged in the above protocol (not
counting the messages of the Phase Protocol)
is as those of the algorithm in [DFFLS], and
a similar trick as the active and passive pro-
cessors can be applied here for further saving
of messages.

5. A Trivial Bounded Protocol for Nontrivial
Agrcement

In Section 3, we have shown that Weak
Byzantine Agreement cannot be achicved
within bounded time. We contrast this result
with the fact that a nontrivial agrecment can
be achicved within bounded time.

The following protocol obtains a con-
sensus on 1 only in the strange case when all
faulty processors "admit" to be faulty early
in the protocol. In all the other cases the
consensus is on 0,

All messages sent arc signed. We
assume an authentication scheme like the one
used in Scction 4. We usc three types of

messages:

(IMF) "I am faulty” message, may be scnt

only by faulty processors.
"decide 0" message.

"decide 1" message, always accom-
panied by IMF messages from ¢
different processors, other than the
sender.

(D0)
(DY

During the protocol any nonfaulty processor
sends at most one message of each type.
Nonfaulty processors ignore a message if it is
not of onc of the above types, or if a mes-
sage of the same type was already received
from the same processor.

Agreement Protocol:

(1) Attempt to receive messages for 2A
steps.

(2) If no valid message had arrived
broadcast D0, decide on 0 and stop.

(3) If a valid Dl message was accepted,
then decide 1 and stop.

(4) If there are ¢ differcnt IMF messages,
then -

a. Send a D1 message.

b. Attempt to receive messages
from nonfaulty processors for 2A
steps. (By now the faulty proces-
sors arc known).

¢. If vou have received a D0 mes-
sage - decide 0, otherwise -
decide 1.

d. Stop.

(5) Otherwise, return to step (1).

The above protocol exposcs the weakness of
the nontrivial agrcement.

Theorem 5. For n > 1 and A-synchronous
comununication, the above protocol rcaches a
Nontrivial Byzantine agreement.

Proof. It is obvious that the protocol satisfics
conditions C1 and CN. 1t remains to show
that the protocol satisfics condition C2; that
is, there is no run with two different ‘decision
values.

Assume on the contrary that there is
such a run. Nonfaulty processors never send
an IMF message, and a valid D1 message
should be sent by a processor which did not
send an IMF message. Hence, a faulty pro-
cessor cannot create a valid D1 message.

If no nonfaulty processor sent a D1
message, then C2 is satisfied. It can be seen
that a DO message sent by a faulty processor
will never change a decision of a nonfaulty
Processor.

The only case left is when some non-
faulty processor p broadcasts D1 and another
one, say ¢, broadcasts DO. Let #,, and 7, be
the "real times™ at which the processors send
these imessages, respectively. Assume on the
contrary that they decide on 1 and 0, respec-
tively. The A—synchronous condition and
step (4.b) of the protocol imply

L +2A < +A (1)

On the other hand, the A— synchronous con-
dition and step (3) implics that

i <t +A
Inequality (1) contradicts (2). O

)

Notc the triviality of the protocol; we
do not claim that this algorithm is of any use.
[t shows however, that the dependency of the
agrccment on the initial values disables
rcaching agreement within bounded time.

131

6. A Lower Bound on the Number of Faulty
Processors

The protocol with authentication
presented in Scction 4 reaches consensus
only for n >4¢. The protocol without
authentication requires n > 5¢. In this sec-
tion we show that in our model n > 3¢ is a
necessary condition to achieve Strong Byzan-
tine Agreement. There still remains to estab-
lish whether there is an protocol (using
authentication and without assuming a strong
broadcast) with 37 < n < 4¢, or whether 4¢
is a tight lower bound on the number of
faulty processors such a protocol can handle.
Similarly, what is the actual lower bound for
protocols that so not use authentication?

Theorem 6. In a system of n asynchronous
processors there is no t—resilient -Strong
Byzantine Agreement protocol, with n > 3¢.

Proof. In any consensus protocol a decision
must be reached after n —¢ nonfaulty proces-
sors exchanged a finitc number of messages.
Thercfore, for every initial configuration [
and X C P, where | X| < ¢, if a schedule
o is X -free and applicable to I and all pro-
cessors in P —X are nonfaulty, then there is
some finite prefix 7 of o, such that

Sl(]),’r(])) € YQU Yy
forallp € P—-X.

Assume that n = 3¢. Partition the set
of processors into 3 groups, A, B, C, each
with ¢ processors in it. Let / be the initial
configuration in which processors in A are
nonfaulty and have initial value 0, processors
in B are nonfaulty and have initial value 1,
and processors in C are faulty and have ini-
tial value 1.

Apply some C —frec infinite schedule
7 1o I let 7" be its finite prefix in which all
processors enter decision states. The proto-
col must reach Strong Byzantine Agrecment,
Thercfore all decide on the same value, say
w.lo.g. 0.

Now look at the initial configuration /'
similar to 7/ in which processors in A are
faulty and have initial value 1. Processors in
C arc nonfaulty and have initial valuc 1.
Using 7" applied to /' define a run in which
the faulty processors in A behave as though
they were running from initial configuration
I. Processors in group B receive the same
messages in 7'(/) as in 7'(Z). Hence, v'(I')
has dccision value 0. O

Theorem 6 holds also for Strong
Broadcast Network. Therefore, in this type
of nctwork the protocol of Section 4 is

optimal.

References.

[Ag]

(BL]

[DDS]

[DFFLS]

[DRS]

H. Aghili, M. Astrahan, S. Finkel-
stein, W. Kim, J. McPherson, M.
Schkolnick and H. R. Strong, A
Prototypc for a Highly available
Database System, IBM Research
Report RJ3755, 1983.

H. Breitwieser and M. Leszak,
Improving availability of Partily
Redundant Databascs by Majority
Consensus Protocols, in Distri-
buted Database, FH.J. Schneider
(ed), North— Holland, 1982.

D. Dolev, S. Dwork and L. Stock-
meyer, On the Minimal Synchron-
ism Needed for Distributed Con-
sensus, proceedings, the 24th
Annual Symposium on Founda-
tions of Computer Science, 1983.

D. Dolev, M. Fischer, R. Fowler,
N. Lynch and R. Strong, Efficient
Byzantine Agreement Without
Authentication, Information and
Control 3(1983), pp. 257-274.

D. Dolev, R. Reischuk, and R. H.
Strong, proceedings, the 23rd
Annual Symposium on

[DSa]

[DSb]

[DSc]

[F]

[FLP]

(L]

[LSP]

[MSF]

132

Foundations of Computer Science,
1932.

D. Dolev and H. R. Strong,
Authenticated Algorithms for
Byzantine Agreement, Siam Jour-
nal on Computing 12(1983), pp.
656-666.

D. Dotev and H. R. Strong, Distri-
buted Commit with Bounded
Waiting, Proceedings, Second
Symposium on Rcliability in Dis-
tributed Software and Database
Systems, Pittsburgh, July 1982.

D. Dolev and H. R. Strong,
Byzantine Agrcements, proceed-
ings, COMPCONS83, San Fran-
cisco, pp. 77-81, Mar 1983.

M. J. Fischer, The Consensus
Problem in Unreliable Distributed
Systems, Proc. International
Conference on Foundations of
Computation Theory, 1983.

M. J. Fischer, N. A. Lynch and
M. S. Peterson, Impossibility of
Distributed Cousensus with one
Faulty Process, Proc. 2nd ACM
symp. on Principles of Database
Systems, 1983.

L. Lamport, The Weak Byzantine
Generals Problem, JACM
30(1983), pp. 663-676.

I.. Lamport, R. Shostak and M.
Pease, The Byzantine Generals
Problem, ACM Trans. on Pro-
gramming Languages and Systems
4(1982), pp. 382-401.

Mohan, Strong and Finkelstein,
Method for Distributed Transac-
tion Commit and Recovery Using
Byzantine Agrcement within Clus-
ters of Processors, Proc. ACM 2nd
symp. on Principles of Distributed

[Ra]

[Re]

[RSA]

(1]

Computing, 1983, pp. 89-103.

M. O. Rabin, The Choice Coordi-
nation Problem, Acta Informatica
17 (1982), pp. 121-134,

R. Reischuk, A New Solution for
the Byzantine Generals Problem,
IBM Recport RJ3673, November
1982,

L. Rivest, A. Shamir and L. Adle-
man, A mcthod for obtaining digi-
tal signatures and public—key
cryptosystems, Comm. ACM
21(1978), pp. 120-126.

R. H. Thomas, A Majority Con-
sensus Approach to Concurrency
Control for Multiple Copy Data-
bases, ACM TODS 4(1979) 2, pp.
10-209.

133

