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ABSTRACT: Reaching agreement in an 
asynchronous environment is essential to 
guarantee consistency in distributed data pro- 
cessing. All previous asynchronous protocols 
were either prubabilistic or they assumed a 
fail-stop mode of failule. The deterministic 
protocol presented in  this paper reaches a 
Strong Byzantine Agrcement in a system of 
asynchronous processors; and therefore can 
sustain arbitrary faults. In our model, pro- 
cessors can be completely asynchronous, 
though the communication network has the 
property that a message being sent by a 
correctly operating processor to a set of pro- 
cessors will reach its destinations within a 
predetermined period A. Additional results 
presented in the paper prove that in the 
above model one cannot leach a consensus 
within a bounded time. A correctly operat- 
ing processor should wait to receive messages 
from other processors before making a deci- 
sion. This result holds also for Weak Byzan- 
tine Agreement, but not fi)r nontrivial con- 
sensus. We present a trivial protocol to 
reach a nontrivial consensus in bounded 
time. 

1. Introduction 

The problem of reaching agreement 
among independent processors is a funda- 
mental problem of both practical and 
theoretical importance in the area of distri- 
buted systems; see, e.g. lAg, BL, DRS, I)Sb, 
LSP, MSF, T]. Wc consider a system of n 
processors iv1 . . . . .  p,, (n > 2) that commun- 
icate by sending messages to each other. Ini- 
tially, each Pi has a binary value xi. At 
some point during its computation, a proces- 
sor has to decide irreversibly on a binary 
value v. Each processor follows a detmvninis- 
tic protocol involving the reception and 
transmission of messages. Even though the 
protocols of individual processors are deter- 
ministic, there are several potential sources of 
nondeterminism in the system: processors 
might run at varying speeds, having received 
a sct of messages a processor cannot deter- 
mine the order in which they wele sent, the 
behavior of faulty processors can be com- 
pletely arbitrary. We allow Byzantine 
failures; that is, there is no assumption about 
the behavior of faulty processors. 
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A protocol reaches a consensus if: 

no matter how the system runs, every 
nonfaulty processor makes a decision 
after a finite mlmber of steps, 

no matter how the system runs, two 
different nonfaulty 16rocessors never 
decide on different values. 

© 1984 ACM 0-89791-143-1/84/008/0119 $00.75 
A protocol reaches a Nonlriv&l Byzantine 
Agreement if it also satisfies: 
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(CN) 0 and 1 are both possible decision 
values for (possibly different) assign- 
ments of initial values. 

(Condition (CN) is needed to avoid the 
trivial solution where each processor decides 
1 regardless of its initial value. The decision 
value may depend only on the existence of 
~aulty behavior). 

A protocol reaches a Weak Byzantine Agree- 
ment if it also satisfies: 

(CW) 0 or 1 is the decision value when all 
processors are nonfaulty and all have 
initial value 0 or 1, respectively. 

A protocol reaches a Strong Byzantine 
Agreement if it also satisfies 

(CS) 0 or 1 is the decision value when all 
correct processors have initial value 0 
or 1, respectively. 

M. Fischer [F] and t,. Lamport [L] 
introduced the various agmemenks. Although 
the agreements are almost the same, the 
small differences among them distinguish 
between possibility and impossibility to reach 
consensus in certain situations. 

If the processors and the communica- 
tion system are completely reliable, con- 
sensus protocols trivially exist. The problem 
becomes interesting when the protocol must 
operate correctly in spite of the existence of 
faults in the system. The failure mode stu- 
died in [DDS] was fail-stop, thus a failed 
processor neithcr sends nor receives mes- 
sages. The ability or impossibility to reach 
various agreements in the presence of Byzan- 
tine fidlures was left as an open question 
there. In this paper we resolve some of the 
open questions in [DDS]. A consensus pro- 
tocol is t-resilient if it operates correctly 
when at most t processors fail. The 
existence of n-resilient consensus protocols 
when the processors and the cummunication 
system are both synchronous is known 
([i)FFLS,I)Sa, I.SP, Re]). Intuitively, synchro- 
nous processors implies that the internal 
clocks of  the processors are synchronized to 
within some bounded rate of drift. 

Synchronous communication implies that 
there is a fixed upper bound on the time for 
a message to be delivered. These synchroni- 
zations are assumcd in much of the research 
on "Byzantine Agreement" (see [DSc, F]). 

In two recent papers ([FLP, DDS]) an 
extensive study of possibility and impossibil- 
ity of reaching consensus indicates that in 
most asynchronous models it is imp&ssible to 
reach consensus by deterministic protocols. 
If processors are asynchronous and the net- 
work is synchronous, then we have one of 
the few cases in which there exists a protocol 
for the fai l-s top mode. In this paper we 
concentrate on this model, which is some- 
what natural for a large distributed system of 
processors, since individual processors are 
asynchronous, that is, one cannot anticipate 
when a processor will respond to a message 
(a faulty one may never respond). This 
assumption relaxes the assumption of  having 
an upper bound on the time at which a 
correct processor should rcspond to a given 
message. This assumption is natural when 
correctly operating systems tend to be 
saturated and operate very slowly. The com- 
munication network that we consider will be 
A--synchronous, i.c., a message sent by a 
nonfaulty processor to a set of processors will 
reach its destinations within h units of time. 

Having assumed completely asynchro- 
nous processors, we have to define how time 
is measnred. It is convenient to imagine that 
one is standing outside the system holding a 
"real time clock" that ticks at a constant rate. 
At each tick of the real clock, every proces- 
sor can take at most one step. The proces- 
sors are modeled as infinite-state machines. 
In the most general definition of "step", a 
processor can attempt to receive a message, 
and based on the value of the received mes- 
sage (or based on the fact that no message 
was received) it can change its state and 
broadcast a message to all processors. Pro- 
cessors need not have synchronous clocks or 
the capability to precisely measure A. The 
only requirement is the ability of every non- 
fimlty processor to measure b units of time 
on its timer that are not shorter that those of 
the "real time clock". 
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The two protocols to reach Strong 
Byzantine Agreement presented in the paper 
consist of two interleaved processes. One is 
the process of emulating phases. The proces- 
sops run a protocol called die Phase Protocol, 
that enables active processors to synchronize 
themscb;es. The second process is simulation 
of the basic Byzantine Protocols ([DSa, 
DFFLS]) in order to agree on a set of values. 
The key point in the phase protocol is that 
when a processor realizes that other proces- 
sors are running faster than it, it does not 
send new values it holds, even if these values 
are crucial and may influence the decision. 
The phase protocol can be used to control 
semi-synchronized behaviors in asynchro- 
nous systems. 

The protocol with authentication presented 
operates in t + 2 artificial "phases", where 
each phase is composed of broadcasting a 
message and waiting to receive messages 
from at least 3t + 1 other processors. There- 
fore, the time it takes, for a given processor, 
to reach an agreement depends on d~e rate at 
which other correct processors proceed. The 
number of messages being sent during the 
protocol is O( nt + /3log t ). 

The protocol without authentication 
presented is based on the "*" protocol of 
[DFFI,S]. It operates in 2 t + 4  artificial 
phases, and as in the protocol with authenti- 
cation, each phase is broadcasting and receiv- 
ing from at least 4t + 1 other processors. The 
number of messages being sent is about the 
same as those in [DFFI,S], O( nt + t 3 ). 

A processor reaches an agreement in 
bounded time if file numl~er of steps it exe- 
cutes hefore reaching a decision state 
depends only on the number of processors 
and A, thus independent of the rate at which 
other processors proceed. The presented 
protocols do not have that property, while 
the one of Theorem E.1 in [DDS] does. We 
prove that even a Weak Byzantine Agree- 
ment cannot be reached in bounded time. 
On the ol.hcr hand we Fresent a protocol to 
reach Nomrivial Byzantine Agreement within 
bound,.'d time. The Nontrivial Protocol ends 

with a decision value different from 0 only 
when all faulty processors send signed mes- 
sages saying "I am faulty" early in the proto- 
col. A Nontrivial Agreement may have a 
merit only in rare cases. 

Notice that Rabin's protocol [Ra] for 
the choice coordination problem works also 
for asynchronous processors, and implicitly 
assumes synchronous communication. In 
that protocol, a processor may reach a deci- 
sion within bounded time. But as in [DDS] 
the only failure mode the protocol sustains is 
fail-stop. We conjecture that the choice 
coordination problem cannot be solved in 
bounded time, in the presence of Byzantine 
Failure (the problem itself should also be 
redefined appropriately). 

Another bound we obtain is the ratio 
between correct and faulty processors that 
has to hold in order to reach agieement. 
The protocol with authentication for Strong 
Byzantine Agreement requires n > 4t. If one 
assumes a stronger broadcasting model, then 
an agreement can be reached when n > 3t. 
We prove that the ratio n > 3t is essential in 
both models in order to reach a Strong 
Byzantine Agreement. NOte that the proto- 
col without authentication requires n > 5t. 

Some of the protocols presented 
assume the existence of an authentication 
scheme in which a faulty processor cannot 
forge a signature of other processors on a 
message and every processor can identify the 
signature of every other processor. One may 
use a scheme like [RSA], or even just some 
error correction (detection) code, depending 
on the degree of resiliency one wishes to 
tolerate. 
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2. Definitions 

We follow the formalism of [DI)S]. A 
consensus protocol is a system of n (it > 2) 
processors P = p~ . . . . .  p,,. The processors 
are modeled as infinite-state machines with 
state set Z. There are two special initial 
states Zo and zl. For v = 0,1, a processor 



starts in state z, if its initial value is v. Each 
processor then fi~llows a deterministic proto- 
col involving the reception and transmission 
of messages. The messages are drawn from 
an infinite set M. Each processor has a buffer 
for holding the messages that have been sent 
to it but which the processor has not yet 
received. Each buffer is modeled as an unor- 
dered set of  messages (message order asyn- 
chronous, in the terminology of  [DDS]). The 
collection of buffers support two operations: 

Send(p,m): places message m in p 's  buffer; 

Receive(p): deletes some collection (possi- 
bly empty) of  messages from 
p's  buffer and delivers these 
messages to p. 

The protocol of  each processor p is 
specified by a state transition fimction ~p and 
a sending function B~, 

8 p : Z X a )  ~ Z ,  

/@p:ZXA) --~ {BC_PXM I B is finite}, 

where/(1 is the set of finite subsets of  M. A 
pair (q,m) in the range of/~p means that p 
sends message m to processor q. Since we 
place no constraints on the message set M,  
we can assume that for each 
p,q E P, z £ Z and/~ £ M there is at most 
one message m with (q,m) £ flp(z,/~). It is 
also convenient to assume that a processor 
attaches its name and a sequence number to 
each message so that the same message m is 
never sent by two different processors nor at 
two different times. 

Throughout the paper we assume that 
receive/send is atomic; thus, in any state in 
Z a processor can both receive and send 
messages. The operation of receiving, 
analyzing, and sending to a set of processors 
is one atomic indivisible step. Note that if 
the receive/send is not atomic, there is no 
way to reach a consensus with one or more 
faulty processors ([DDS]). 

The transmission model assumed is 
broadcast: a processor can send messages to 
any set of  processors in one step. In all the 
protocols presented a nonfaulty processor 

will send every message to all other proces- 
sors (the terms "send" and "broadcast" are 
both used). However, we do not assume that 
faulty processors are forced to send every 
message to all processors. Note that in 
poin t - to-poin t  transmission there is no 
way to reach consensus with two or more 
faulty processors [DDS]. 

A cot~guration C consists of  

(i) n states st(pi,C) E Z, for 
1 <_ i <_ n, specifying the current 
state of each processor, and 

(ii) n finite sets buff(pi,C) E )(4, for 
1 <_ i <_ n, specifying the current 
content of  each buffer. 

Initially, each state is either z0 or zl as 
described above, and each buffer is empty. 

An eyent is a pair (p,/~) where p £ P 
and ~ C_ .4L Think of  the event (p,#) as the 
reception of  the set of  messages /~ by p. 
Processor p is said to be the agent of the 
event (p,/~). An event (p,/~) is applicable to 
configuration C' only if/~ C_ buff(p,C). 

If  the event e = (p,/~) is applicable to 
C, then the next configuration e(C) is 
obtained as follows: 

(a) p changes its state from z = st(p,C) 
to 6p(z,/~) and the states of  the other 
processors do not change, 

(b) for all (q,m)E [tp(Z,l~), add m to 
buff ( q , C ), 

(c) delete p. from buff(p,C). 

To define "correctness" of a protocol, 
we must consider sequences of  events. A 
schedule is a finite or infinite sequence of  
events. Each event is a step token by some 
processor. For simplicity assume that each 
step takes at least one unit of  "real time". 
Hence, a processor that {akes one step, 
knows that at least one real time unit passed. 
A schedule a=cxl,  ~2, " ' "  is applicable to 
an initial configuration I if: 

(1) tile events of  a can be applied in 
turn starting from I ,  i.e., a l  is 
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(2) 

applicable to I ,  a2 is applicable to 
trz(1), etc.; 

for every j ,  let crj = (p,/t), if a mes- 
sage m was sent to p by an event cri 
with i < j - A (constant A > I )  and 
if none of the events cr~ with 
i < k < j is the reception of  m by p,  
then m belongs to/t .  

Condition (2) above is the A-synchronous  
communication requirement. 

If  tr is finite, tr(1) denotes the result- 
ing configuration, which is said to be reach- 
able from L A configuration reachable from 
some initial configuration is said to be acces- 
sible. Henceforth, all configurations men- 
tioncd are assumed to be accessible. If  Q is 
a set of processors, the schedule cr is Q-free 
if n o p  E Q takes a step in cr. A schedule 
together with the associated sequence of  
configurations are called a run. 

A processor p is notCaulty i f  all o f  its 
steps are according to the transition functions 
~p and tip, and in an infinite mn it takes 
infinitely many steps. Processor is faulty oth- 
erwise. Processor p is nonfaulty in accessible 
configuration C if it is nonfautty in a run 
that accesses C, and all its steps are accord- 
ing to 6p and tip. 

We assume that there are two disjoint 
sets of decision states Yo and Yz, such that i f  
a processor enters a state in Yv, (vE{O,1}), 
then it must remain in states in Yr. We say 
that a processor p decided on v in a 
configuration C if  st(p,C) C Yr. A 
configuration C has decision value v i f  
st(p,C) E Yv for some nonfaulty processor 
p. 

if: 

(C2) 

(CN) 

A consensus protocol is partially correct 

no accessible configuration has more 
than one decision value, and 

for each v E {0,1}, some accessible 
configuration has decision value v. 

For 0 < t < n, an infinite run is a t- 
admissible run from I if'. 

(1) the associated schedule is applicable 
to [,  

(2) at most t processors are faulty in it. 

A run is deciding if every nonfaulty processor 
enters a decision state. A protocol is 
t-resilient for the Nontrivial Byzantine 
Agreement problem (NBA in short) if it is 
partially correct and 

(C1) every t -admissible  run from every 
initial configuration is a deciding run. 

A protocol is t-resilient for the Weak 
Byzantine Agreement problem (WBA in 
shor0 if  it also satisfies 

(CW) if Iv is the initial configuration in 
which all processors have initial value 
v, then all configurations reachable 
f r o m I v  by 0-admissible  deciding 
runs have decision value v. 

A protocol is t-resilient for the Strong 
Byzantine Agreement problem (SBA in shot0 
if  instead of  (CW) it satisfies 

(CS) if Iv' is the initial configuration in 
which all nonfaulty processors have 
initial value v, then all deciding 
configurations reachable from Iv' by 
t-admissible deciding runs have deci- 
sion value v. 

For our impossibility proofs we have to 
define the applicability of a schedule to a 
noninitial configuration C. If  C is reached 
flom initial configuration I by schedule ~-, 
then a is applicable to C iffrcr is applica- 
ble to I. (To be completely prccise we 
should include the history r as part o f  the 
configuration C However, in our impossibil- 
ity proofs, the history is clear from the con- 
text, so we simply say that a is applicable to 
C rather than to (C,r).)  
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3. The Impossibility Result for a Bounded 
Protocol 

Let O be a constant depending only on 
n, the number of  processors, and A, the 
communication time bound. A protocol is 
said to be O-bounded provided that for 
every processor p, every configuration C, 
and every schedule a applicable to C, if  p 
takes 0 steps ill a, then 

sRp.,~(C)) E YoU Yv 

Notice that the protocol of Theorem E.1 in 
[I)DS] is a bounded protocol. 

l)efinition. Let X C P. Two configurations 
C and D are X-equivalent if, for .every 
p £ P - X ,  st(p,C) = st(p,D) and 
buff(p,C) = buff(p,D ). 

1)efinition. Let e =(p,p.) be all event appli- 
cable to a configuration C. Event e (when 
applied to C) is a total reception if 
iz = buff(p ,C). 

Our impossibility result assumes a 
total reception rather than A-synchronous  
communication, and therefore of a stronger 
nature. 

Lemma 1. Let D and D'  be two 
configurations, and let p and q be two pro- 
cessors, such that p is nonfaulty at D decid- 
ing 1 in it, and q is nonfaulty at D'  deciding 
0 in it. .  In any O - b o u n d e d  1-resi l ient  
consensus protocol, configurations D and D'  
are not {p,q}-equivalent. 

Proof. Assume on the contrary that the con- 
ditions of  the Lemma .hold and for some 
O -  bounded 1 -  resilient consensus protocol, 
D and D '  are {p ,q } - equivalent. Let a be 
a { p , q } - f r e e  schedule in which every pro- 
cessor in P -  {p,q} makes O steps, where all 
the steps are total reception. Schedule a is 
applicable to both D and D'.  Since tile pro- 
tocol is O - b o u n d e d ,  all nonfaulty processors 

have to be at a decision state by the end of  
the run, whether the run is a applied to D, 
or a applied to D' .  Moreover, in both cases, 
all processors reach the same decision value; 
assume w.l.o.g, that it is 0. But this decision 
violates requirement C2, because p is non- 
faulty in D and decides on 1. [] 

In a O - b o u n d e d  consensus protocol a 
nonfaulty processor should enter a decision 
state within 0 steps, even when it is the only 
pl'ocessor currently running. This implies 
that in a Weak Byzantine protocol a proces- 
sor should decide on its own value. This 
observation leads to a conu'adiction. 

Theorem 1. In our asynchronous model, 
there is no l - r e s i l i en t  O - b o u n d e d  Weak 
Byzantine Agreement protocol. 

Proof." Assume on the contrary that such a 
protocol does exist. To obtain a contradic- 
t.ion we make use of a Byzantine behavior in 
which a faulty processor just ignores some of  
the incoming messages. 

Denote by ap a schedule composed 
of O consecutive steps of  p alone. The 
schedule ap is applicable to every initial 
configuration. Let I be an initial 
configuration with st(p,i)=zv, then the 
O - bounded condition implies that 
st(p,ap(I)) E Yv; that is, p decides on its 
initial value. 

Let I be an initial configuration in 
which: p has initial value 1, another proces- 
sor, q, has initial value O, and all other pro- 
cessors have arbitrary values. Let a=ffpaq 
and a'=Oqap. Ill both schedules applied to 
I the ftpst processor decides on its initial 
value. Define the following runs for a and 
a': processors q in a and p in a '  are faulty 
and ignore all messages from other proces- 
sors. Therefore q in a behaves exactly as in 
a',  and p in a '  behaves exactly as in a.  

Define state D=apOq([), and state 
D ' = a q % ( I ) .  It is clear that D and D' are 
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[p,q}-equivalent. However, in D processor 
p is nonfaulty and decides on 1, whereas 
processor q is nonfaulty in D' and dccides 
on 0; a contradiction to Lcmma 1. [] 

4. Unbounded Protocols For Strong Byzan- 
tine Agreement 

In the previous section we proved that 
in our asynchronous model even a Weak 
Byzantine Agreement cannot be achieved 
within bounded time. We show that without 
this requirement there are protocols to teach 
Strong Byzantine Agreement. 

In the synchronous case, a protocol to 
reach SBA using authentication is simple (cf. 
[DSa]). The difficulties in using it as is arise 
from the lack of synchronism; moreover, 
even when one finds a way to introduce 
some notion of phase, a processor that is 
relatively slow and that is not active at a 
given phase, has to be provided with means 
to catch up with faster nonfaulty processors. 
The lower bound proof of the previous sec- 
tion indicates some of the problems we have 
to overcome. 

4.1. The Phase Protocol 

The basic idea in the Phase Protocol is 
somewhat similar to the idea of Protocol E.1 
in [DDS]. Every processor sends a claim to 
be at phase k if it has received more than 2l 
claims about phase k - l ,  or more. than t 
claims about phase k. Phases will be 
separated by 2A consecutive steps during 
which a processor does not receive any valid 
message. This phase separation enables usto 
guarantee that two correct processors will not 
send claims about two different phases "con- 
currently" (i.e., in less than A units of time 
apart). We assume that the cormnunication 
system is such that the sender of a message 
can be verified. 

We describe how to run the phase pro- 
tocol in order to obtain K phases, for some 
constant K. The protocol uses two thres- 
holds, TRH1 and TRH2, such that 
T R i l l  > T R H 2 + t  > 2 t + l .  

We denote by <m >k a message sent by 
processor Pk. A ¢Pi- claim by processor Pk 
is a message <i>k. Processor pk may send at 
most one ¢Pi-claim, for every i; denote this 
message by epi(Pk). When a nontaulty pro- 
cessor sends a message it broadcasts it to all 
processors, including itself. 

Definition: A epi(pk)- message is valid if it is 
the first one received from Pk about phase i, 
and i < K. A ¢Pi-claim is valid if it was 
received by a valid message and for i > 0 
there are at least TRH2 valid ¢pi_t-claims. 

A mute step is a step during which a 
processor does not receive any valid ¢p "--mes- 
sage. 

The Phase Protocol 

O) 

(2) 

Set phase counter PC to 0. Send a 
¢P0- claim. 

While PC < K do: 
wait for 2A consecutive mute steps, and 
then, 

(2a) l.et j ,  j > PC, be the maximal 
phase for which a valid ¢pj-claim 
exists. If you have received at least 
TRH2 valid ¢pj-claims, then broadcast 
a ¢pj-claim to all the processors. Set 
PC to j and return to step (2). 

(2b) Else, if you have received at least 
TRH1 valid q~i - claims, where 
i = PC, theil broadcast a 
cp~+ 1-  claim to all the processors. 
Increase PC by one and return to step 
(2). 

(2c) Else, return to step (2). 

(3) Stop. 

A processor that sends a ¢gi-claim as 
result of step (2b) of its protocol is called 
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active at phase i. No processor is active at 
phase 0. 

Note that our model assumes that a 
processor can receive, decide what to send, 
and broadcast its messages in a single step. 
This assumption is crucial to the correction 
of tile protocol. This assumption means that 
the last mute step in (2) and all subsequent 
(2a) to (2c) are being executed in a single 
step of a nonfaulty processor. 

It is easy to see that if tile number of 
faulty processors is bounded by t and 
n > T R H I + t ,  then the protocol terminates 
within a finite time. By simple induction on 
the phase number it can be shown that the 
phases do increase. The following theorems 
prove the basic properties of the Phase Proto- 
col. 

Theorem 2. Let n > 7'RHI-I-t. If  an 
active nonfaulty processor Pk sends epi at 
"real time" T (as a result of step (2b) of  its 
protocol), and an active nonfaulty processor 
Pl sends ~j,  for j < i, at "real time" T' (as a 
result of  step (2b) of its protocol), then 
T ' ( T - A .  

Proof" Let us look at the real times at which 
the various steps of the processors occur. It 
is enough to prove the Theorem for 
j = i - 1 .  For sending epi(Pk), an active 
processor Pk should have received valid 
cPi_a-claims from at least T R H I - t  non- 
faulty processors. Since processor Pt waited 
for 2A mute steps before sending its claim as 
a result of step (2b) of  its protocol, all the 
above claims should arrive to it not later than 
time T - A .  On the other hand. if processor 
Pt would have received these claims before 
time T' it would rcccive at : least 
T R H 1 - t  > TRH2 such claims ~md would 
use step (2a) instead of  step (2b), which 
proves the theorem. [] 

Corollary 1. For each phase i, 
1 < i < K -  1, all claims sent by nonfaulty 
processors active at phase i will be received 
by all processors active at phase i + 1. 

Corollary 2. For each phase i, l < i < K, 
all claims sent by nonfaulty processors active 
at phase i will be received as valid claims by 
every nonfaulty processor. 

Theorem 3. Let n > T R t l I + t .  For every 
phase i, 1 < i < K, at least T R H 2 - t  non- 
faulty processors are active at phase i. 

Proof." The proof follows easily from the 
bound TRH2 at step (2a). [] 

The exact thresholds of the Phase pro. 
tocol will be c.hosen according to the extra 
restrictions about the ratio between faulty to 
nonfaulty processors arise from protocols that 
use tile Phase Protocol, as we will see in the 
rest of  the section. 

4.2. Byzantine Protocol using authentica- 
tion 

We describe now how to use the Phase 
Protocol in order to run a Byzantine Agree- 
ment protocol while using authentication. 

The protocol we present assumes the 
existence of  some authentication scheme hav- 
ing the following properties: 

(1) No processor can forge any signature 
(even a faulty one canno0; 

(2) No processor can alter the content or 
the signature of a signed message 
undetcetably. 

(3) Every processor can identify a con'ect 
signature of  eve~ other processor. 

Every processor will follow the proto- 
col to know when, if at all, it is allowed to 
send new values it obtains. While exchang- 
ing the messages of  the Please Protocol the 
processors append to them, sometimes, 
proofs on new values they have obtained. 

The protocol presented here requires 
t + l  nonfhulty processors active in each 
phase, hence by Theorem 3, it is enough to 
choose TRtI2 = 2t-I-1, T R t t l  = 3 t + l  
and n > 4 t + 1 .  A ratio n > 3 t + l . c a l l b e  
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reached using only one nonl~aulty processor 
active in each phase. This can be done 
assuming that every message received by a 
nonfaulty processor will be received by all 
nonfaulty processors within A. We call such 
communication network a Strolzg Broadcast 
Network. This requirement is too strong for 
a natural communication network and will 
not be used in the paper. 

Definition: An a0-message is a message 
< v,p, >, containing an information v of some 
processor pk. The pair <v,p> is the value 
carried by the message, and p is the subject 
of the message. An ai -message is an 
a0-message followed by i distinct signatures 
xl . . . . .  xi, where the subject of the message 
is the first of them. (i.e. an a i -mcssage 
contains exactly i distinct signatures). 

A con'ect processor will append a valid 
a,. - message to a ep~-claim only when it is 
active, that is, it sends the claim as a result of 
step (2b) of its phase protocol. To simplify 
the presentation of the protocol assume that 
a processor receives its own a0-message 
during phase 0 of the Phase Protocol. 

for at least t + 1 processors p, decide 
on 1; otherwise decide on 0. 

Lemma 2: If a nonfaulty processor sends an 
a i -mcssage,  l < i < t, then at least t + l  
nonfaulty processors will send the value of 
that message in some aj - message ( l <  j). 

Proof." (sketch) By Theorem 2, if a nonfaulty 
processor sends a rpi-claim at step (2b) of 
its phase protocol, it will arrive at every other 
nonfaulty processor before that processor 
sends a rPi+l-claim. By Theorem 3, there 
will be at least t + l  nonfaulty processors 
who will send a ~oi+l-claim as a result of 
step (2b) of their phase protocol. The 
ot~ -message  sent by p at phase i will reach 
every one of them. Everyone of these pro- 
cessors will append its signature and will 
send the value carried by the ai-message, 
unless it has done so in some previous phase. 
[] 

Lemma 3: Every nonfaulty processor has the 
same set E. 

The Byzantine Protocol 

(1) Run the Phase Protocol with K = t + 2. 

(la) If you are not active, act as in the 
Phase Protocol. 

(lb) l:or every I < i < K - ] ,  if you are 
active at phase i and you have received 
an a i_ l -mcssage  carrying a value you 
have not sent before, add your signa- 
ture to it and append it to the 
~i  - -  claim. 

(lc) Accumulate all the messagcs you 
receive during the protocol. 

(2) At the end of the Phase Protocol, 
prepare a set E of values. Insert to this 
set every value on which you have 
received, in maybe different messages, 
at least t + 1 distinct signatures, includ- 
ing the authentication (signature) of the 
,;ubjcct of the message. 

(3) Apply a decision function to E; for 
cxample: if E contains values <l,p>, 

Proof." Let a0 be a value in the set Z of 
some nonfaulty processor pk. By the 
definition of Z, Pk gathered t + l distinct sig- 
natures on or0. Let Pt be the first nonfaulty 
processor that signed a message containing 
or0, say at phase j. If j<t +1, then, by 
Lemma 2, a0 would be sent by at least t +1 
non faulty processors to every processor, and 
therefore a0 will be in the set of values of 
every nonfaulty processor. If j = t +1 then 
a0 was received as a t+ l -message  .by Pl. 
The t + 1 signatures in it should include one 
of a nonfaulty processor beside Pt, a contrad- 
iction to the minimality property defined for 
Pt. [] 

Theorem 4. Let n > 4t. The Byzantine Pro- 
tocol reaches Strong Byzantine Agreements. 

Proof: By I.emma 3, all nonfaulty processors 
apply the decision function on the same set 
of  values. We have to show that if all non- 
faulty processors !~ave initial value 0, then 
tile decision is 0, and if all have initial value 
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1, the decision is 1. By Theorem 3, at least 
t +1 nonfaulty processors are sending their 
own values at phase 1, and by Lcmma 2, all 
these values will be in Z. Therefore, if all 
nonfaulty starts with 0 (resp. 1), then the 
decision should be on 0 (resp. 1). [] 

We conclude this section by some com- 
plementary remarks about the protocol. The 
protocol actually runs in t + 2  phases, 
because phase t +3  is required only to find 
out that phase t +2  was completed. An extra 
phase can be saved by combining phase 0 
phase 1. The protocol is written for only two 
possible values, 0 and 1. It is easy to gen- 
eralize it to any set of values. Moreover, one 
can add a preliminary phase during which 
every processor should try to get n - t  signa- 
tures on its value. This method prevents a 
faulty processor from introducing too many 
values during the protocol. 

The total number of messages being 
sent during the protocol is O(tn2), where the 
number of values being sent is O(n3), 
because in the worst case all processors are 
synchronized, and everyone sends a value to 
everyone else. The number of different 
values each processor sends is O(n). One 
can reduce the number of messages in our 
protocol to O(nt + t 3) by using the same 
trick as in [DSa]; that is, by limiting the 
number of "active" processors and prevent- 
ing the rest from taking an active part in the 
protocol. But in the asynchronous case it is 
better to pay the extra number of  possible 
messages, and to be able to continue running 
the protocol whenever, some subset of the 
processors is operating correctly, thus run- 
ning the protocol at the rate of the 3t +1  
fastest nonfaulty processors. 

4.3. Byzantine Protocol without using 
authentication 

The protocol described here is based 
on the "* algorithm" ([DFFI.S]) and assumes 
initial values of either 0 or 1 for each proces- 
sor. As in the authenticated case, we modify 
a synchronous algorithm in order to run it in 
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an asynchronous system using the Phase Pro- 
tocol. Some other synchronous algorithms 
for reaching Byzantine Agreement can be 
similarly adapted. We could not adapt all 
the known algorithms, which suggests the 
question: what properties a synchronous 
algorithm should have in order to be adopt- 
able to asynchronous system using the Phase 
Protocol? 

We describe the algorithm rather infor- 
mally and proofs are omitted. The reader is 
referred to [DFFLS] to complete the details. 
We will use the Phase Protocol starting at 
phase 1, tbr being consistent with [DFFLS]. 

The protocol uses two thresholds, 
HIGH=2t+I  and LOW=t+1.  When 
you have HIGH evidences to some informa- 
tion you know that every other nonfaulty 
processor has at least LOW evidences to the 
same information. The protocol r6quires 
HIGH nonfaulty processors active in each 
phase, therefore the ratio needed (according 
to Theorem 3) is n >- 5t + 1. 

During the algorithm two types of  mes- 
sages will be sent: a "*" message and mes- 
sages consisting of some name of some pro- 
cessor. The "*" represent the assertion that 
the sender has value 1, and a name represent 
that the named processor has sent "*" 

Each processor keeps a record of  all 
messages it has received. Consider this col- 
-tcction as held by some processor p. For the 
sake of simplicity we remove the index p 
from ~e  sets defined below. Denote by Wx 
the set of processors that have sent the mes- 
sage x to processor p. We call Wx the set 
of witnesses to message x. Processor p is a 
direct supporter for processor r if p receives 
"*" directly from r. Processor p is an 
indirect supporter for r if it has a set of  
witnesses to r of cardinality LOW, i.e. if 
I Wr I >--LOW for p. 

Processor p confirms r if the cardinality 
of the set of  witnesses to r (i.e. I l'Vr [ ) is at 
least HIGH. Each processor p has a set 
(possibly empty) of  confirmed processor 



which we denote by C. 

The last notion we need is "initiation", 
which means being ready to send "*". Pro- 
cessor p is initiated at phase k if either k = 1 
and at phase 1 it is active and has value 1, or 
at the beginning of phase k the cardinality of  
the set C of  confirmed processors it has 
received is at least L O W  + max(0, [k/21 - 1). 

We assume that whenever a processor 
broadcasts a message to all others, it also 
sends one to itself, for purposes of recording 
its own messages. Every message is sent only 
once by a correct processor. Only active 
processors send messages. All processors col- 
lect messages and perform the other transi- 
tions (e.g. computing Wx). For technical 
reasons, and for being able to present our 
arguments about phases we assume that a 
processor processes its incoming messages 
(that are not messages of the Phase Protocol) 
just before sending a cp-claim at either step 
(2a) or (2b) of  its Phase Protocol. Thus, 
when a processor notices that a phase has 
been just changed it reads its mail to find out 
what messages it have received since the last 
time he processed its messages. 

We now give the rules for correct 
operation: 

(RO) Run the Phase Protocol with K = 2t + 5 
and with thresholds TRH 1 = 4t + 1 and 
TRH2= 3t + I. 

(R1) At phase 1 every active processor 
broadcasts "*" to all processors, if its 
value is 1. 

(R2) If a processor is active at phase k>l it 
broadcasts the names of all processors 
for which it is either direct or indirect 
supporter. If, in addition, it is initiated 
at this phase it also sends a "*" mes- 
sage. 

(R3) If a processor confirms HIGH proces- 
sors it commits to 1. 

(R4) If, after phase 2t +4, value 1 is com- 
mitted then agree on 1; otherwise, 
agree on 0. 

Note that processors may skip phases, 
when they are not active. A nonfulty nonac- 
tive processor keeps track of phases by scan- 
ning its incoming lnessagcs. Whenever it has 
TRH2 valid ¢Pi- claims, it knows that phase 
i has passed. 

Let d = 2t +4. The following claims 
prove that the Protocol reaches SBA. 

(,) If a nonfaulty processor p sends "*" at 
phase"k, 1 < k < d - l ,  then all non- 
faulty processors will confirm p by 
phase k +2. 

(,) If HIGH nonfaulty processors send "*" 
by phase k, 1_< k < d - 2 ,  then by 
phase k + 2  all nonfaulty processors 
commit. 

(*) If p, q, r are nonfaulty processors, r 
active at phase k, 1 < k <_d+l ,  and 
x a message, then rE Wx of p by 
phase k iff rE W x of q by phase k. 

(*) If a nonfaulty processor r confirms p at 
phase k, 1 < k < d ,  then all nonfaulty 
processors will confirm p by phase 
k + l .  

(*) If HIGH nonfaulty processors are ini- 
tiated at phase 1, then all nonfaulty 
processors commit by phase 3. 

(.) If LOW nonfaulty processors send "*" 
by phase k, 1 _ k < d - 3 ,  then every 
nonfaulty processor commits by phase 
k + 4 .  

(,) If a nonfaulty processor p does not 
send "*" by phase k, 1 < k < d ,  then 
a nonfaulty processor q will neither be 
a direct support for it by phase k + 1 
nor an indirect support by phase k +2. 
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(.) If a nonfaulty processor commits at 
phase k, 2 _< k then there are at least 
LOW nonfaulty processors which have 
sent "*" by phase k - I. 

(*) If a nonlhulty processor commits by 
phase d + 1, then all do. 

(*) If only faulty processors initiate at 
phase 1, then no nonfaulty processor 
will ever commit. 

Note again that for completing the 
derails of the proof the reader has to read 
first the complete proof in [1)FFLSI, and 
then to fill in the details about the phases 
defined by the phase protocol. The main 
differences between our proof and the one in 
[DFFLS] are: in our protocol there is no sin- 
gle transmitter who sends its value at phase 
1; at every phase, only HIGH nonfaulty pro- 
cessors necessarily sends messages; and the 
beginning and the end of a phase is more 
delicate in the our protocol. The number of 
bits exchanged in the above protocol (not 
counting the messages of the Phase Protocol) 
is as those of the algorithm in [DFFLS], and 
a similar trick as the active and passive pro- 
cessors can be applied here for further saving 
of messages. 

messages: 

(IMF) "I am faulty" message, may be sent 
only by faulty processors. 

(DO) "decide 0" mcssage. 

(D1) "decide 1" message, always accom- 
panied by IMF messages from t 
different processors, other than the 
sender. 

During the protocol any nonfaulty processor 
sends at most one message of each type. 
Nonfaulty processors ignore a message if it is 
not of one of the above types, or if a mes- 
sage of the same type was already received 
from the same processor. 

Agreement Protocol: 

(1) Attempt to receive messages for 2A 
steps. 

(2) If no valid message had arrived 
broadcast DO, decide on 0 and stop. 

(3) If a valid D1 message was accepted, 
then decide 1 and sto.p. 

(4) If there are l different IMF messages, 
then - 

5. A Trivial Bounded Protocol for Nontrivial 
Agreement 

In Section 3, we have shown that Weak 
Byzantine Agreement cannot be achieved 
within bounded time. We contrast this rcsult 
with the fact that a nontrivial agreement can 
be achieved within bounded time. 

The following protocol obtains a con- 
sensus on 1 only in the strange case when all 
faulty processors "admit" to be faulty early 
in the protocol. In all the other cases the 
consensus is on 0. 

a. Send a D1 message. 

b. Attempt to receive messages 
from nonfaulty processors for 2A 
steps. (By now the faulty proces- 
sors are known). 

c. If you have received a DO mes- 
sage decide 0, otherwise 
decide 1. 

d. Stop. 

(5) Otherwise, return to step (1). 

All messages sent are signed. We 
assume an authentication scheme like the one 
used in Section 4. We use three types of 
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The above protocol exposes the weakness of 
the nontrivial agreement. 



Theorem 5. For  n ~ t and A-synchronous  
communication, the above protocol reaches a 
Nontrivial Byzantine agreement. 

Proof. It is obvious that the protocol satisfies 
conditions C1 and CN. It remains to show 
that the protocol satisfies condition C2; that 
is, there is no run with two different decision 
values. 

Assume on the contrary that there is 
such a ran. Nonfaulty processors never send 
an IMF message, and a valid D1. message 
should be sent by a processor which did not 
send an 1MF message. Hence, a faulty pro- 
cessor cannotcreate a valid D1 message. 

If no nonfaulty processor sent a D1 
message, then C2 is satisfied. It can be seen 
that a DO message sent by a faulty processor 
will never change a decision of  a nonfaulty 
processor. 

The only case left is when some non- 
faulty processor p broadcasts D1 and another 
one, say q, broadcasts DO. Let tp, and tq be 
the "real times" at which the processors send 
these messages, respectively. Assume on the 
contrary that they decide on 1 and 0, respec- 
tively. The A--synchronous condition and 
step (4.b) of the protocol imply 

tp + 2A ( tq + A (1) 

On the other hand, the A-synchronous  con- 
dition and step (3) implies that 

lq ( lp + A (2) 

Inequality (1) contradicts (2). [] 

Note the triviality of  the protocol; we 
do not claim that this algorithm is of any use. 
It shows however, that the dependency of  the 
agreement on the initial values disables 
reaching agreement within bounded time. 
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6. A Lower Bound on the Number of Faulty 
Processors 

The protocol with authentication 
presented in Section4 reaches consensus 
only for n >4 t .  The protocol without 
authentication requires n > 5t. In this sec- 
tion we show that in our model n > 3t is a 
necessary condition to achieve Strong Byzan- 
tine Agreement. There still remains to estab- 
lish whether there is an protocol (using 
authentication and without assuming a strong 
broadcast) with 3t < n <_ 4t, or whether 4t 
is a tight lower bound on the number of  
faulty processors such a protocol can handle. 
Similarly, what is the actual lower bound for 
protocols that so not use authentication? 

Theorem 6. In a system of  n asynchronous 
processors there is no t - res i l ien t  .Strong 
Byzantine Agreement protocol, with n > 3t. 

Proof. In any consensus protocol a decision 
must be reached after n - t nonfaulty proces- 
sors exchanged a finite number of messages. 
Therefore, for every initial configuration I 
and X C P,  where IX[ < t, if a schedule 
a is X-free and applicable to I and all pro- 
cessors in P - X  are nonfaulty, then there is 
some finite prefix r of  a,  such that 

sl(p o'(I)) C Yo~J r l ,  

for all p £ P - X. 

Assume that n = 3t. Partition the set 
of  processors into 3 groups, A, B, C, each 
with t processors in it. Let I be the initial 
configuration in which processors in A are 
nonfaulty and have initial value 0, processors 
in B are nonfaulty and have initial value 1, 
and processors in C are faulty and have ini- 
tial value 1. 

Apply some C -  flee infinite schedule 
~- to I let ~-' be its finite prefix in which all 
processors enter decision states. The proto- 
col must reach Strong Byzantine Agreement. 
Therefore all decide on the s~ime value, say 
w.l.o.g. 0. 



Now look at the initial configuration I '  
similar to I in which processors in A are 
faulty and have initial value 1. Processors in 
C are nonfaulty and have initial value 1. 
Using ¢' applied to I '  define a run in which 
the faulty processors in A behave as though 
they were running from initial configuration 
I. Processors in group B receive the same 
mes~ges in ~-'(I') as in -r'(I). Hence, ~"(I') 
has decision value 0. [] 

Theorem 6 holds also for Strong 
Broadcast Network. Therefore, in this type 
of network the protocol of Section 4 is 
optimal. 
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