
ASYNCHRONOUS BYZANTINE CONSENSUS t

Chagit Attiya
Danny Dolev

Joseph Gil

Institute of Mathematics and Computer Science
Hebrew University, Jerusalem

ABSTRACT: Reaching agreement in an
asynchronous environment is essential to
guarantee consistency in distributed data pro-
cessing. All previous asynchronous protocols
were either prubabilistic or they assumed a
fail-stop mode of failule. The deterministic
protocol presented in this paper reaches a
Strong Byzantine Agrcement in a system of
asynchronous processors; and therefore can
sustain arbitrary faults. In our model, pro-
cessors can be completely asynchronous,
though the communication network has the
property that a message being sent by a
correctly operating processor to a set of pro-
cessors will reach its destinations within a
predetermined period A. Additional results
presented in the paper prove that in the
above model one cannot leach a consensus
within a bounded time. A correctly operat-
ing processor should wait to receive messages
from other processors before making a deci-
sion. This result holds also for Weak Byzan-
tine Agreement, but not fi)r nontrivial con-
sensus. We present a trivial protocol to
reach a nontrivial consensus in bounded
time.

1. Introduction

The problem of reaching agreement
among independent processors is a funda-
mental problem of both practical and
theoretical importance in the area of distri-
buted systems; see, e.g. lAg, BL, DRS, I)Sb,
LSP, MSF, T]. Wc consider a system of n
processors iv1 p,, (n > 2) that commun-
icate by sending messages to each other. Ini-
tially, each Pi has a binary value xi. At
some point during its computation, a proces-
sor has to decide irreversibly on a binary
value v. Each processor follows a detmvninis-
tic protocol involving the reception and
transmission of messages. Even though the
protocols of individual processors are deter-
ministic, there are several potential sources of
nondeterminism in the system: processors
might run at varying speeds, having received
a sct of messages a processor cannot deter-
mine the order in which they wele sent, the
behavior of faulty processors can be com-
pletely arbitrary. We allow Byzantine
failures; that is, there is no assumption about
the behavior of faulty processors.

1 The research was SUl~POrted in part by the Unit-
ed States - Israel Binational Science Foundation, grant
no. 2439/82. (C I)

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by (C 2)
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

A protocol reaches a consensus if:

no matter how the system runs, every
nonfaulty processor makes a decision
after a finite mlmber of steps,

no matter how the system runs, two
different nonfaulty 16rocessors never
decide on different values.

© 1984 ACM 0-89791-143-1/84/008/0119 $00.75
A protocol reaches a Nonlriv&l Byzantine
Agreement if it also satisfies:

119

(CN) 0 and 1 are both possible decision
values for (possibly different) assign-
ments of initial values.

(Condition (CN) is needed to avoid the
trivial solution where each processor decides
1 regardless of its initial value. The decision
value may depend only on the existence of
~aulty behavior).

A protocol reaches a Weak Byzantine Agree-
ment if it also satisfies:

(CW) 0 or 1 is the decision value when all
processors are nonfaulty and all have
initial value 0 or 1, respectively.

A protocol reaches a Strong Byzantine
Agreement if it also satisfies

(CS) 0 or 1 is the decision value when all
correct processors have initial value 0
or 1, respectively.

M. Fischer [F] and t,. Lamport [L]
introduced the various agmemenks. Although
the agreements are almost the same, the
small differences among them distinguish
between possibility and impossibility to reach
consensus in certain situations.

If the processors and the communica-
tion system are completely reliable, con-
sensus protocols trivially exist. The problem
becomes interesting when the protocol must
operate correctly in spite of the existence of
faults in the system. The failure mode stu-
died in [DDS] was fail-stop, thus a failed
processor neithcr sends nor receives mes-
sages. The ability or impossibility to reach
various agreements in the presence of Byzan-
tine fidlures was left as an open question
there. In this paper we resolve some of the
open questions in [DDS]. A consensus pro-
tocol is t-resilient if it operates correctly
when at most t processors fail. The
existence of n-resilient consensus protocols
when the processors and the cummunication
system are both synchronous is known
([i)FFLS,I)Sa, I.SP, Re]). Intuitively, synchro-
nous processors implies that the internal
clocks of the processors are synchronized to
within some bounded rate of drift.

Synchronous communication implies that
there is a fixed upper bound on the time for
a message to be delivered. These synchroni-
zations are assumcd in much of the research
on "Byzantine Agreement" (see [DSc, F]).

In two recent papers ([FLP, DDS]) an
extensive study of possibility and impossibil-
ity of reaching consensus indicates that in
most asynchronous models it is imp&ssible to
reach consensus by deterministic protocols.
If processors are asynchronous and the net-
work is synchronous, then we have one of
the few cases in which there exists a protocol
for the fai l-s top mode. In this paper we
concentrate on this model, which is some-
what natural for a large distributed system of
processors, since individual processors are
asynchronous, that is, one cannot anticipate
when a processor will respond to a message
(a faulty one may never respond). This
assumption relaxes the assumption of having
an upper bound on the time at which a
correct processor should rcspond to a given
message. This assumption is natural when
correctly operating systems tend to be
saturated and operate very slowly. The com-
munication network that we consider will be
A--synchronous, i.c., a message sent by a
nonfaulty processor to a set of processors will
reach its destinations within h units of time.

Having assumed completely asynchro-
nous processors, we have to define how time
is measnred. It is convenient to imagine that
one is standing outside the system holding a
"real time clock" that ticks at a constant rate.
At each tick of the real clock, every proces-
sor can take at most one step. The proces-
sors are modeled as infinite-state machines.
In the most general definition of "step", a
processor can attempt to receive a message,
and based on the value of the received mes-
sage (or based on the fact that no message
was received) it can change its state and
broadcast a message to all processors. Pro-
cessors need not have synchronous clocks or
the capability to precisely measure A. The
only requirement is the ability of every non-
fimlty processor to measure b units of time
on its timer that are not shorter that those of
the "real time clock".

120

The two protocols to reach Strong
Byzantine Agreement presented in the paper
consist of two interleaved processes. One is
the process of emulating phases. The proces-
sops run a protocol called die Phase Protocol,
that enables active processors to synchronize
themscb;es. The second process is simulation
of the basic Byzantine Protocols ([DSa,
DFFLS]) in order to agree on a set of values.
The key point in the phase protocol is that
when a processor realizes that other proces-
sors are running faster than it, it does not
send new values it holds, even if these values
are crucial and may influence the decision.
The phase protocol can be used to control
semi-synchronized behaviors in asynchro-
nous systems.

The protocol with authentication presented
operates in t + 2 artificial "phases", where
each phase is composed of broadcasting a
message and waiting to receive messages
from at least 3t + 1 other processors. There-
fore, the time it takes, for a given processor,
to reach an agreement depends on d~e rate at
which other correct processors proceed. The
number of messages being sent during the
protocol is O(nt + /3log t).

The protocol without authentication
presented is based on the "*" protocol of
[DFFI,S]. It operates in 2 t + 4 artificial
phases, and as in the protocol with authenti-
cation, each phase is broadcasting and receiv-
ing from at least 4t + 1 other processors. The
number of messages being sent is about the
same as those in [DFFI,S], O(nt + t 3).

A processor reaches an agreement in
bounded time if file numl~er of steps it exe-
cutes hefore reaching a decision state
depends only on the number of processors
and A, thus independent of the rate at which
other processors proceed. The presented
protocols do not have that property, while
the one of Theorem E.1 in [DDS] does. We
prove that even a Weak Byzantine Agree-
ment cannot be reached in bounded time.
On the ol.hcr hand we Fresent a protocol to
reach Nomrivial Byzantine Agreement within
bound,.'d time. The Nontrivial Protocol ends

with a decision value different from 0 only
when all faulty processors send signed mes-
sages saying "I am faulty" early in the proto-
col. A Nontrivial Agreement may have a
merit only in rare cases.

Notice that Rabin's protocol [Ra] for
the choice coordination problem works also
for asynchronous processors, and implicitly
assumes synchronous communication. In
that protocol, a processor may reach a deci-
sion within bounded time. But as in [DDS]
the only failure mode the protocol sustains is
fail-stop. We conjecture that the choice
coordination problem cannot be solved in
bounded time, in the presence of Byzantine
Failure (the problem itself should also be
redefined appropriately).

Another bound we obtain is the ratio
between correct and faulty processors that
has to hold in order to reach agieement.
The protocol with authentication for Strong
Byzantine Agreement requires n > 4t. If one
assumes a stronger broadcasting model, then
an agreement can be reached when n > 3t.
We prove that the ratio n > 3t is essential in
both models in order to reach a Strong
Byzantine Agreement. NOte that the proto-
col without authentication requires n > 5t.

Some of the protocols presented
assume the existence of an authentication
scheme in which a faulty processor cannot
forge a signature of other processors on a
message and every processor can identify the
signature of every other processor. One may
use a scheme like [RSA], or even just some
error correction (detection) code, depending
on the degree of resiliency one wishes to
tolerate.

121

2. Definitions

We follow the formalism of [DI)S]. A
consensus protocol is a system of n (it > 2)
processors P = p~ p,,. The processors
are modeled as infinite-state machines with
state set Z. There are two special initial
states Zo and zl. For v = 0,1, a processor

starts in state z, if its initial value is v. Each
processor then fi~llows a deterministic proto-
col involving the reception and transmission
of messages. The messages are drawn from
an infinite set M. Each processor has a buffer
for holding the messages that have been sent
to it but which the processor has not yet
received. Each buffer is modeled as an unor-
dered set of messages (message order asyn-
chronous, in the terminology of [DDS]). The
collection of buffers support two operations:

Send(p,m): places message m in p 's buffer;

Receive(p): deletes some collection (possi-
bly empty) of messages from
p's buffer and delivers these
messages to p.

The protocol of each processor p is
specified by a state transition fimction ~p and
a sending function B~,

8 p : Z X a) ~ Z ,

/@p:ZXA) --~ {BC_PXM I B is finite},

where/(1 is the set of finite subsets of M. A
pair (q,m) in the range of/~p means that p
sends message m to processor q. Since we
place no constraints on the message set M,
we can assume that for each
p,q E P, z £ Z and/~ £ M there is at most
one message m with (q,m) £ flp(z,/~). It is
also convenient to assume that a processor
attaches its name and a sequence number to
each message so that the same message m is
never sent by two different processors nor at
two different times.

Throughout the paper we assume that
receive/send is atomic; thus, in any state in
Z a processor can both receive and send
messages. The operation of receiving,
analyzing, and sending to a set of processors
is one atomic indivisible step. Note that if
the receive/send is not atomic, there is no
way to reach a consensus with one or more
faulty processors ([DDS]).

The transmission model assumed is
broadcast: a processor can send messages to
any set of processors in one step. In all the
protocols presented a nonfaulty processor

will send every message to all other proces-
sors (the terms "send" and "broadcast" are
both used). However, we do not assume that
faulty processors are forced to send every
message to all processors. Note that in
poin t - to-poin t transmission there is no
way to reach consensus with two or more
faulty processors [DDS].

A cot~guration C consists of

(i) n states st(pi,C) E Z, for
1 <_ i <_ n, specifying the current
state of each processor, and

(ii) n finite sets buff(pi,C) E)(4, for
1 <_ i <_ n, specifying the current
content of each buffer.

Initially, each state is either z0 or zl as
described above, and each buffer is empty.

An eyent is a pair (p,/~) where p £ P
and ~ C_ .4L Think of the event (p,#) as the
reception of the set of messages /~ by p.
Processor p is said to be the agent of the
event (p,/~). An event (p,/~) is applicable to
configuration C' only if/~ C_ buff(p,C).

If the event e = (p,/~) is applicable to
C, then the next configuration e(C) is
obtained as follows:

(a) p changes its state from z = st(p,C)
to 6p(z,/~) and the states of the other
processors do not change,

(b) for all (q,m)E [tp(Z,l~), add m to
buff (q , C),

(c) delete p. from buff(p,C).

To define "correctness" of a protocol,
we must consider sequences of events. A
schedule is a finite or infinite sequence of
events. Each event is a step token by some
processor. For simplicity assume that each
step takes at least one unit of "real time".
Hence, a processor that {akes one step,
knows that at least one real time unit passed.
A schedule a=cxl, ~2, " ' " is applicable to
an initial configuration I if:

(1) tile events of a can be applied in
turn starting from I , i.e., a l is

122

(2)

applicable to I , a2 is applicable to
trz(1), etc.;

for every j , let crj = (p,/t), if a mes-
sage m was sent to p by an event cri
with i < j - A (constant A > I) and
if none of the events cr~ with
i < k < j is the reception of m by p,
then m belongs to/t .

Condition (2) above is the A-synchronous
communication requirement.

If tr is finite, tr(1) denotes the result-
ing configuration, which is said to be reach-
able from L A configuration reachable from
some initial configuration is said to be acces-
sible. Henceforth, all configurations men-
tioncd are assumed to be accessible. If Q is
a set of processors, the schedule cr is Q-free
if n o p E Q takes a step in cr. A schedule
together with the associated sequence of
configurations are called a run.

A processor p is notCaulty i f all o f its
steps are according to the transition functions
~p and tip, and in an infinite mn it takes
infinitely many steps. Processor is faulty oth-
erwise. Processor p is nonfaulty in accessible
configuration C if it is nonfautty in a run
that accesses C, and all its steps are accord-
ing to 6p and tip.

We assume that there are two disjoint
sets of decision states Yo and Yz, such that i f
a processor enters a state in Yv, (vE{O,1}),
then it must remain in states in Yr. We say
that a processor p decided on v in a
configuration C if st(p,C) C Yr. A
configuration C has decision value v i f
st(p,C) E Yv for some nonfaulty processor
p.

if:

(C2)

(CN)

A consensus protocol is partially correct

no accessible configuration has more
than one decision value, and

for each v E {0,1}, some accessible
configuration has decision value v.

For 0 < t < n, an infinite run is a t-
admissible run from I if'.

(1) the associated schedule is applicable
to [,

(2) at most t processors are faulty in it.

A run is deciding if every nonfaulty processor
enters a decision state. A protocol is
t-resilient for the Nontrivial Byzantine
Agreement problem (NBA in short) if it is
partially correct and

(C1) every t -admissible run from every
initial configuration is a deciding run.

A protocol is t-resilient for the Weak
Byzantine Agreement problem (WBA in
shor0 if it also satisfies

(CW) if Iv is the initial configuration in
which all processors have initial value
v, then all configurations reachable
f r o m I v by 0-admissible deciding
runs have decision value v.

A protocol is t-resilient for the Strong
Byzantine Agreement problem (SBA in shot0
if instead of (CW) it satisfies

(CS) if Iv' is the initial configuration in
which all nonfaulty processors have
initial value v, then all deciding
configurations reachable from Iv' by
t-admissible deciding runs have deci-
sion value v.

For our impossibility proofs we have to
define the applicability of a schedule to a
noninitial configuration C. If C is reached
flom initial configuration I by schedule ~-,
then a is applicable to C iffrcr is applica-
ble to I. (To be completely prccise we
should include the history r as part o f the
configuration C However, in our impossibil-
ity proofs, the history is clear from the con-
text, so we simply say that a is applicable to
C rather than to (C,r).)

123

3. The Impossibility Result for a Bounded
Protocol

Let O be a constant depending only on
n, the number of processors, and A, the
communication time bound. A protocol is
said to be O-bounded provided that for
every processor p, every configuration C,
and every schedule a applicable to C, if p
takes 0 steps ill a, then

sRp.,~(C)) E YoU Yv

Notice that the protocol of Theorem E.1 in
[I)DS] is a bounded protocol.

l)efinition. Let X C P. Two configurations
C and D are X-equivalent if, for .every
p £ P - X , st(p,C) = st(p,D) and
buff(p,C) = buff(p,D).

1)efinition. Let e =(p,p.) be all event appli-
cable to a configuration C. Event e (when
applied to C) is a total reception if
iz = buff(p ,C).

Our impossibility result assumes a
total reception rather than A-synchronous
communication, and therefore of a stronger
nature.

Lemma 1. Let D and D' be two
configurations, and let p and q be two pro-
cessors, such that p is nonfaulty at D decid-
ing 1 in it, and q is nonfaulty at D' deciding
0 in it. . In any O - b o u n d e d 1-resi l ient
consensus protocol, configurations D and D'
are not {p,q}-equivalent.

Proof. Assume on the contrary that the con-
ditions of the Lemma .hold and for some
O - bounded 1 - resilient consensus protocol,
D and D ' are {p ,q } - equivalent. Let a be
a { p , q } - f r e e schedule in which every pro-
cessor in P - {p,q} makes O steps, where all
the steps are total reception. Schedule a is
applicable to both D and D'. Since tile pro-
tocol is O - b o u n d e d , all nonfaulty processors

have to be at a decision state by the end of
the run, whether the run is a applied to D,
or a applied to D' . Moreover, in both cases,
all processors reach the same decision value;
assume w.l.o.g, that it is 0. But this decision
violates requirement C2, because p is non-
faulty in D and decides on 1. []

In a O - b o u n d e d consensus protocol a
nonfaulty processor should enter a decision
state within 0 steps, even when it is the only
pl'ocessor currently running. This implies
that in a Weak Byzantine protocol a proces-
sor should decide on its own value. This
observation leads to a conu'adiction.

Theorem 1. In our asynchronous model,
there is no l - r e s i l i en t O - b o u n d e d Weak
Byzantine Agreement protocol.

Proof." Assume on the contrary that such a
protocol does exist. To obtain a contradic-
t.ion we make use of a Byzantine behavior in
which a faulty processor just ignores some of
the incoming messages.

Denote by ap a schedule composed
of O consecutive steps of p alone. The
schedule ap is applicable to every initial
configuration. Let I be an initial
configuration with st(p,i)=zv, then the
O - bounded condition implies that
st(p,ap(I)) E Yv; that is, p decides on its
initial value.

Let I be an initial configuration in
which: p has initial value 1, another proces-
sor, q, has initial value O, and all other pro-
cessors have arbitrary values. Let a=ffpaq
and a'=Oqap. Ill both schedules applied to
I the ftpst processor decides on its initial
value. Define the following runs for a and
a': processors q in a and p in a ' are faulty
and ignore all messages from other proces-
sors. Therefore q in a behaves exactly as in
a', and p in a ' behaves exactly as in a.

Define state D=apOq([), and state
D ' = a q % (I) . It is clear that D and D' are

124

[p,q}-equivalent. However, in D processor
p is nonfaulty and decides on 1, whereas
processor q is nonfaulty in D' and dccides
on 0; a contradiction to Lcmma 1. []

4. Unbounded Protocols For Strong Byzan-
tine Agreement

In the previous section we proved that
in our asynchronous model even a Weak
Byzantine Agreement cannot be achieved
within bounded time. We show that without
this requirement there are protocols to teach
Strong Byzantine Agreement.

In the synchronous case, a protocol to
reach SBA using authentication is simple (cf.
[DSa]). The difficulties in using it as is arise
from the lack of synchronism; moreover,
even when one finds a way to introduce
some notion of phase, a processor that is
relatively slow and that is not active at a
given phase, has to be provided with means
to catch up with faster nonfaulty processors.
The lower bound proof of the previous sec-
tion indicates some of the problems we have
to overcome.

4.1. The Phase Protocol

The basic idea in the Phase Protocol is
somewhat similar to the idea of Protocol E.1
in [DDS]. Every processor sends a claim to
be at phase k if it has received more than 2l
claims about phase k - l , or more. than t
claims about phase k. Phases will be
separated by 2A consecutive steps during
which a processor does not receive any valid
message. This phase separation enables usto
guarantee that two correct processors will not
send claims about two different phases "con-
currently" (i.e., in less than A units of time
apart). We assume that the cormnunication
system is such that the sender of a message
can be verified.

We describe how to run the phase pro-
tocol in order to obtain K phases, for some
constant K. The protocol uses two thres-
holds, TRH1 and TRH2, such that
T R i l l > T R H 2 + t > 2 t + l .

We denote by <m >k a message sent by
processor Pk. A ¢Pi- claim by processor Pk
is a message <i>k. Processor pk may send at
most one ¢Pi-claim, for every i; denote this
message by epi(Pk). When a nontaulty pro-
cessor sends a message it broadcasts it to all
processors, including itself.

Definition: A epi(pk)- message is valid if it is
the first one received from Pk about phase i,
and i < K. A ¢Pi-claim is valid if it was
received by a valid message and for i > 0
there are at least TRH2 valid ¢pi_t-claims.

A mute step is a step during which a
processor does not receive any valid ¢p "--mes-
sage.

The Phase Protocol

O)

(2)

Set phase counter PC to 0. Send a
¢P0- claim.

While PC < K do:
wait for 2A consecutive mute steps, and
then,

(2a) l.et j , j > PC, be the maximal
phase for which a valid ¢pj-claim
exists. If you have received at least
TRH2 valid ¢pj-claims, then broadcast
a ¢pj-claim to all the processors. Set
PC to j and return to step (2).

(2b) Else, if you have received at least
TRH1 valid q~i - claims, where
i = PC, theil broadcast a
cp~+ 1- claim to all the processors.
Increase PC by one and return to step
(2).

(2c) Else, return to step (2).

(3) Stop.

A processor that sends a ¢gi-claim as
result of step (2b) of its protocol is called

125

active at phase i. No processor is active at
phase 0.

Note that our model assumes that a
processor can receive, decide what to send,
and broadcast its messages in a single step.
This assumption is crucial to the correction
of tile protocol. This assumption means that
the last mute step in (2) and all subsequent
(2a) to (2c) are being executed in a single
step of a nonfaulty processor.

It is easy to see that if tile number of
faulty processors is bounded by t and
n > T R H I + t , then the protocol terminates
within a finite time. By simple induction on
the phase number it can be shown that the
phases do increase. The following theorems
prove the basic properties of the Phase Proto-
col.

Theorem 2. Let n > 7'RHI-I-t. If an
active nonfaulty processor Pk sends epi at
"real time" T (as a result of step (2b) of its
protocol), and an active nonfaulty processor
Pl sends ~j, for j < i, at "real time" T' (as a
result of step (2b) of its protocol), then
T ' (T - A .

Proof" Let us look at the real times at which
the various steps of the processors occur. It
is enough to prove the Theorem for
j = i - 1 . For sending epi(Pk), an active
processor Pk should have received valid
cPi_a-claims from at least T R H I - t non-
faulty processors. Since processor Pt waited
for 2A mute steps before sending its claim as
a result of step (2b) of its protocol, all the
above claims should arrive to it not later than
time T - A . On the other hand. if processor
Pt would have received these claims before
time T' it would rcccive at : least
T R H 1 - t > TRH2 such claims ~md would
use step (2a) instead of step (2b), which
proves the theorem. []

Corollary 1. For each phase i,
1 < i < K - 1, all claims sent by nonfaulty
processors active at phase i will be received
by all processors active at phase i + 1.

Corollary 2. For each phase i, l < i < K,
all claims sent by nonfaulty processors active
at phase i will be received as valid claims by
every nonfaulty processor.

Theorem 3. Let n > T R t l I + t . For every
phase i, 1 < i < K, at least T R H 2 - t non-
faulty processors are active at phase i.

Proof." The proof follows easily from the
bound TRH2 at step (2a). []

The exact thresholds of the Phase pro.
tocol will be c.hosen according to the extra
restrictions about the ratio between faulty to
nonfaulty processors arise from protocols that
use tile Phase Protocol, as we will see in the
rest of the section.

4.2. Byzantine Protocol using authentica-
tion

We describe now how to use the Phase
Protocol in order to run a Byzantine Agree-
ment protocol while using authentication.

The protocol we present assumes the
existence of some authentication scheme hav-
ing the following properties:

(1) No processor can forge any signature
(even a faulty one canno0;

(2) No processor can alter the content or
the signature of a signed message
undetcetably.

(3) Every processor can identify a con'ect
signature of eve~ other processor.

Every processor will follow the proto-
col to know when, if at all, it is allowed to
send new values it obtains. While exchang-
ing the messages of the Please Protocol the
processors append to them, sometimes,
proofs on new values they have obtained.

The protocol presented here requires
t + l nonfhulty processors active in each
phase, hence by Theorem 3, it is enough to
choose TRtI2 = 2t-I-1, T R t t l = 3 t + l
and n > 4 t + 1 . A ratio n > 3 t + l . c a l l b e

126

reached using only one nonl~aulty processor
active in each phase. This can be done
assuming that every message received by a
nonfaulty processor will be received by all
nonfaulty processors within A. We call such
communication network a Strolzg Broadcast
Network. This requirement is too strong for
a natural communication network and will
not be used in the paper.

Definition: An a0-message is a message
< v,p, >, containing an information v of some
processor pk. The pair <v,p> is the value
carried by the message, and p is the subject
of the message. An ai -message is an
a0-message followed by i distinct signatures
xl xi, where the subject of the message
is the first of them. (i.e. an a i -mcssage
contains exactly i distinct signatures).

A con'ect processor will append a valid
a,. - message to a ep~-claim only when it is
active, that is, it sends the claim as a result of
step (2b) of its phase protocol. To simplify
the presentation of the protocol assume that
a processor receives its own a0-message
during phase 0 of the Phase Protocol.

for at least t + 1 processors p, decide
on 1; otherwise decide on 0.

Lemma 2: If a nonfaulty processor sends an
a i -mcssage, l < i < t, then at least t + l
nonfaulty processors will send the value of
that message in some aj - message (l < j).

Proof." (sketch) By Theorem 2, if a nonfaulty
processor sends a rpi-claim at step (2b) of
its phase protocol, it will arrive at every other
nonfaulty processor before that processor
sends a rPi+l-claim. By Theorem 3, there
will be at least t + l nonfaulty processors
who will send a ~oi+l-claim as a result of
step (2b) of their phase protocol. The
ot~ -message sent by p at phase i will reach
every one of them. Everyone of these pro-
cessors will append its signature and will
send the value carried by the ai-message,
unless it has done so in some previous phase.
[]

Lemma 3: Every nonfaulty processor has the
same set E.

The Byzantine Protocol

(1) Run the Phase Protocol with K = t + 2.

(la) If you are not active, act as in the
Phase Protocol.

(lb) l:or every I < i < K -] , if you are
active at phase i and you have received
an a i_ l -mcssage carrying a value you
have not sent before, add your signa-
ture to it and append it to the
~i - - claim.

(lc) Accumulate all the messagcs you
receive during the protocol.

(2) At the end of the Phase Protocol,
prepare a set E of values. Insert to this
set every value on which you have
received, in maybe different messages,
at least t + 1 distinct signatures, includ-
ing the authentication (signature) of the
,;ubjcct of the message.

(3) Apply a decision function to E; for
cxample: if E contains values <l,p>,

Proof." Let a0 be a value in the set Z of
some nonfaulty processor pk. By the
definition of Z, Pk gathered t + l distinct sig-
natures on or0. Let Pt be the first nonfaulty
processor that signed a message containing
or0, say at phase j. If j<t +1, then, by
Lemma 2, a0 would be sent by at least t +1
non faulty processors to every processor, and
therefore a0 will be in the set of values of
every nonfaulty processor. If j = t +1 then
a0 was received as a t+ l -message .by Pl.
The t + 1 signatures in it should include one
of a nonfaulty processor beside Pt, a contrad-
iction to the minimality property defined for
Pt. []

Theorem 4. Let n > 4t. The Byzantine Pro-
tocol reaches Strong Byzantine Agreements.

Proof: By I.emma 3, all nonfaulty processors
apply the decision function on the same set
of values. We have to show that if all non-
faulty processors !~ave initial value 0, then
tile decision is 0, and if all have initial value

127

1, the decision is 1. By Theorem 3, at least
t +1 nonfaulty processors are sending their
own values at phase 1, and by Lcmma 2, all
these values will be in Z. Therefore, if all
nonfaulty starts with 0 (resp. 1), then the
decision should be on 0 (resp. 1). []

We conclude this section by some com-
plementary remarks about the protocol. The
protocol actually runs in t + 2 phases,
because phase t +3 is required only to find
out that phase t +2 was completed. An extra
phase can be saved by combining phase 0
phase 1. The protocol is written for only two
possible values, 0 and 1. It is easy to gen-
eralize it to any set of values. Moreover, one
can add a preliminary phase during which
every processor should try to get n - t signa-
tures on its value. This method prevents a
faulty processor from introducing too many
values during the protocol.

The total number of messages being
sent during the protocol is O(tn2), where the
number of values being sent is O(n3),
because in the worst case all processors are
synchronized, and everyone sends a value to
everyone else. The number of different
values each processor sends is O(n). One
can reduce the number of messages in our
protocol to O(nt + t 3) by using the same
trick as in [DSa]; that is, by limiting the
number of "active" processors and prevent-
ing the rest from taking an active part in the
protocol. But in the asynchronous case it is
better to pay the extra number of possible
messages, and to be able to continue running
the protocol whenever, some subset of the
processors is operating correctly, thus run-
ning the protocol at the rate of the 3t +1
fastest nonfaulty processors.

4.3. Byzantine Protocol without using
authentication

The protocol described here is based
on the "* algorithm" ([DFFI.S]) and assumes
initial values of either 0 or 1 for each proces-
sor. As in the authenticated case, we modify
a synchronous algorithm in order to run it in

128

an asynchronous system using the Phase Pro-
tocol. Some other synchronous algorithms
for reaching Byzantine Agreement can be
similarly adapted. We could not adapt all
the known algorithms, which suggests the
question: what properties a synchronous
algorithm should have in order to be adopt-
able to asynchronous system using the Phase
Protocol?

We describe the algorithm rather infor-
mally and proofs are omitted. The reader is
referred to [DFFLS] to complete the details.
We will use the Phase Protocol starting at
phase 1, tbr being consistent with [DFFLS].

The protocol uses two thresholds,
HIGH=2t+I and LOW=t+1. When
you have HIGH evidences to some informa-
tion you know that every other nonfaulty
processor has at least LOW evidences to the
same information. The protocol r6quires
HIGH nonfaulty processors active in each
phase, therefore the ratio needed (according
to Theorem 3) is n >- 5t + 1.

During the algorithm two types of mes-
sages will be sent: a "*" message and mes-
sages consisting of some name of some pro-
cessor. The "*" represent the assertion that
the sender has value 1, and a name represent
that the named processor has sent "*"

Each processor keeps a record of all
messages it has received. Consider this col-
-tcction as held by some processor p. For the
sake of simplicity we remove the index p
from ~e sets defined below. Denote by Wx
the set of processors that have sent the mes-
sage x to processor p. We call Wx the set
of witnesses to message x. Processor p is a
direct supporter for processor r if p receives
"*" directly from r. Processor p is an
indirect supporter for r if it has a set of
witnesses to r of cardinality LOW, i.e. if
I Wr I >--LOW for p.

Processor p confirms r if the cardinality
of the set of witnesses to r (i.e. I l'Vr [) is at
least HIGH. Each processor p has a set
(possibly empty) of confirmed processor

which we denote by C.

The last notion we need is "initiation",
which means being ready to send "*". Pro-
cessor p is initiated at phase k if either k = 1
and at phase 1 it is active and has value 1, or
at the beginning of phase k the cardinality of
the set C of confirmed processors it has
received is at least L O W + max(0, [k/21 - 1).

We assume that whenever a processor
broadcasts a message to all others, it also
sends one to itself, for purposes of recording
its own messages. Every message is sent only
once by a correct processor. Only active
processors send messages. All processors col-
lect messages and perform the other transi-
tions (e.g. computing Wx). For technical
reasons, and for being able to present our
arguments about phases we assume that a
processor processes its incoming messages
(that are not messages of the Phase Protocol)
just before sending a cp-claim at either step
(2a) or (2b) of its Phase Protocol. Thus,
when a processor notices that a phase has
been just changed it reads its mail to find out
what messages it have received since the last
time he processed its messages.

We now give the rules for correct
operation:

(RO) Run the Phase Protocol with K = 2t + 5
and with thresholds TRH 1 = 4t + 1 and
TRH2= 3t + I.

(R1) At phase 1 every active processor
broadcasts "*" to all processors, if its
value is 1.

(R2) If a processor is active at phase k>l it
broadcasts the names of all processors
for which it is either direct or indirect
supporter. If, in addition, it is initiated
at this phase it also sends a "*" mes-
sage.

(R3) If a processor confirms HIGH proces-
sors it commits to 1.

(R4) If, after phase 2t +4, value 1 is com-
mitted then agree on 1; otherwise,
agree on 0.

Note that processors may skip phases,
when they are not active. A nonfulty nonac-
tive processor keeps track of phases by scan-
ning its incoming lnessagcs. Whenever it has
TRH2 valid ¢Pi- claims, it knows that phase
i has passed.

Let d = 2t +4. The following claims
prove that the Protocol reaches SBA.

(,) If a nonfaulty processor p sends "*" at
phase"k, 1 < k < d - l , then all non-
faulty processors will confirm p by
phase k +2.

(,) If HIGH nonfaulty processors send "*"
by phase k, 1_< k < d - 2 , then by
phase k + 2 all nonfaulty processors
commit.

(*) If p, q, r are nonfaulty processors, r
active at phase k, 1 < k <_d+l , and
x a message, then rE Wx of p by
phase k iff rE W x of q by phase k.

(*) If a nonfaulty processor r confirms p at
phase k, 1 < k < d , then all nonfaulty
processors will confirm p by phase
k + l .

(*) If HIGH nonfaulty processors are ini-
tiated at phase 1, then all nonfaulty
processors commit by phase 3.

(.) If LOW nonfaulty processors send "*"
by phase k, 1 _ k < d - 3 , then every
nonfaulty processor commits by phase
k + 4 .

(,) If a nonfaulty processor p does not
send "*" by phase k, 1 < k < d , then
a nonfaulty processor q will neither be
a direct support for it by phase k + 1
nor an indirect support by phase k +2.

129

(.) If a nonfaulty processor commits at
phase k, 2 _< k then there are at least
LOW nonfaulty processors which have
sent "*" by phase k - I.

(*) If a nonlhulty processor commits by
phase d + 1, then all do.

(*) If only faulty processors initiate at
phase 1, then no nonfaulty processor
will ever commit.

Note again that for completing the
derails of the proof the reader has to read
first the complete proof in [1)FFLSI, and
then to fill in the details about the phases
defined by the phase protocol. The main
differences between our proof and the one in
[DFFLS] are: in our protocol there is no sin-
gle transmitter who sends its value at phase
1; at every phase, only HIGH nonfaulty pro-
cessors necessarily sends messages; and the
beginning and the end of a phase is more
delicate in the our protocol. The number of
bits exchanged in the above protocol (not
counting the messages of the Phase Protocol)
is as those of the algorithm in [DFFLS], and
a similar trick as the active and passive pro-
cessors can be applied here for further saving
of messages.

messages:

(IMF) "I am faulty" message, may be sent
only by faulty processors.

(DO) "decide 0" mcssage.

(D1) "decide 1" message, always accom-
panied by IMF messages from t
different processors, other than the
sender.

During the protocol any nonfaulty processor
sends at most one message of each type.
Nonfaulty processors ignore a message if it is
not of one of the above types, or if a mes-
sage of the same type was already received
from the same processor.

Agreement Protocol:

(1) Attempt to receive messages for 2A
steps.

(2) If no valid message had arrived
broadcast DO, decide on 0 and stop.

(3) If a valid D1 message was accepted,
then decide 1 and sto.p.

(4) If there are l different IMF messages,
then -

5. A Trivial Bounded Protocol for Nontrivial
Agreement

In Section 3, we have shown that Weak
Byzantine Agreement cannot be achieved
within bounded time. We contrast this rcsult
with the fact that a nontrivial agreement can
be achieved within bounded time.

The following protocol obtains a con-
sensus on 1 only in the strange case when all
faulty processors "admit" to be faulty early
in the protocol. In all the other cases the
consensus is on 0.

a. Send a D1 message.

b. Attempt to receive messages
from nonfaulty processors for 2A
steps. (By now the faulty proces-
sors are known).

c. If you have received a DO mes-
sage decide 0, otherwise
decide 1.

d. Stop.

(5) Otherwise, return to step (1).

All messages sent are signed. We
assume an authentication scheme like the one
used in Section 4. We use three types of

130

The above protocol exposes the weakness of
the nontrivial agreement.

Theorem 5. For n ~ t and A-synchronous
communication, the above protocol reaches a
Nontrivial Byzantine agreement.

Proof. It is obvious that the protocol satisfies
conditions C1 and CN. It remains to show
that the protocol satisfies condition C2; that
is, there is no run with two different decision
values.

Assume on the contrary that there is
such a ran. Nonfaulty processors never send
an IMF message, and a valid D1. message
should be sent by a processor which did not
send an 1MF message. Hence, a faulty pro-
cessor cannotcreate a valid D1 message.

If no nonfaulty processor sent a D1
message, then C2 is satisfied. It can be seen
that a DO message sent by a faulty processor
will never change a decision of a nonfaulty
processor.

The only case left is when some non-
faulty processor p broadcasts D1 and another
one, say q, broadcasts DO. Let tp, and tq be
the "real times" at which the processors send
these messages, respectively. Assume on the
contrary that they decide on 1 and 0, respec-
tively. The A--synchronous condition and
step (4.b) of the protocol imply

tp + 2A (tq + A (1)

On the other hand, the A-synchronous con-
dition and step (3) implies that

lq (lp + A (2)

Inequality (1) contradicts (2). []

Note the triviality of the protocol; we
do not claim that this algorithm is of any use.
It shows however, that the dependency of the
agreement on the initial values disables
reaching agreement within bounded time.

131

6. A Lower Bound on the Number of Faulty
Processors

The protocol with authentication
presented in Section4 reaches consensus
only for n >4 t . The protocol without
authentication requires n > 5t. In this sec-
tion we show that in our model n > 3t is a
necessary condition to achieve Strong Byzan-
tine Agreement. There still remains to estab-
lish whether there is an protocol (using
authentication and without assuming a strong
broadcast) with 3t < n <_ 4t, or whether 4t
is a tight lower bound on the number of
faulty processors such a protocol can handle.
Similarly, what is the actual lower bound for
protocols that so not use authentication?

Theorem 6. In a system of n asynchronous
processors there is no t - res i l ien t .Strong
Byzantine Agreement protocol, with n > 3t.

Proof. In any consensus protocol a decision
must be reached after n - t nonfaulty proces-
sors exchanged a finite number of messages.
Therefore, for every initial configuration I
and X C P, where IX[< t, if a schedule
a is X-free and applicable to I and all pro-
cessors in P - X are nonfaulty, then there is
some finite prefix r of a, such that

sl(p o'(I)) C Yo~J r l ,

for all p £ P - X.

Assume that n = 3t. Partition the set
of processors into 3 groups, A, B, C, each
with t processors in it. Let I be the initial
configuration in which processors in A are
nonfaulty and have initial value 0, processors
in B are nonfaulty and have initial value 1,
and processors in C are faulty and have ini-
tial value 1.

Apply some C - flee infinite schedule
~- to I let ~-' be its finite prefix in which all
processors enter decision states. The proto-
col must reach Strong Byzantine Agreement.
Therefore all decide on the s~ime value, say
w.l.o.g. 0.

Now look at the initial configuration I '
similar to I in which processors in A are
faulty and have initial value 1. Processors in
C are nonfaulty and have initial value 1.
Using ¢' applied to I ' define a run in which
the faulty processors in A behave as though
they were running from initial configuration
I. Processors in group B receive the same
mes~ges in ~-'(I') as in -r'(I). Hence, ~"(I')
has decision value 0. []

Theorem 6 holds also for Strong
Broadcast Network. Therefore, in this type
of network the protocol of Section 4 is
optimal.

References.

[Agl H. Aghili, M. Astrahan, S. Finkel-
stein, W. Kim, J. McPherson, M.
Schkolnick and H. R. Strong, A
Prototype for a Highly available
Database System, IBM Research
Report RJ3755, 1983.

[BLI H. Breitwieser and M. Leszak,
Improving availability of Partily
Redundant Databases by Majority
Consensus Protocols, in I)istri-
buted Database, i-I.J. Schneider
(ed), North-Holland, 1982.

[DDSI D. Dolev, S. Dwork and L. Stock-
meyer, On the Minimal Synchron-
ism Needed for Distributed Con-
sensus, proceedings, the 24th
Annual Symposium on Founda-
tions of Computer Science, 1983.

[DFFLS] D. Dolev, M. Fischer, R. Fowler,
N. Lynch and R. Strong, Efficient
Byzantine Agreement Without
Authentication, Information and
Control 3(1983), pp. 257-274.

[DRSI D. Dolev, R. Rei~huk, and R. H.
Strong, proceedings, the 23rd
Annual Symposium on

[DSal

[DSbl

[DScl

[F]

[FLP]

[L]

[LSP]

[MSF]

132

Foundations of Computer Science,
1982.

D. Dolev and l{. R. Strong,
Authenticated Algorithms for
Byzantine Agreement, Siam Jour-
nal on Computing 12(1983), pp.
656-666.

D. Dolev and H. R. Strong, Distri-
buted Commit with Bounded
Waiting, Proceedings, Second
Symposium on Reliability in Dis-
tributed Software and Database
Systems, Pittsburgh, July 1982.

D. Dolev and H. R. Strong,
Byzantine Agreements, proceed-
ings, COMPCON83, San Fran-
cisco, pp. 77-81, Mar 1983.

M. J. Fischer, The Consensus
Problem in Unreliable Distributed
Systems, Proc. International
Conference on Foundations of
Computation Theory, 1983.

M. J. Fischer, N. A. Lynch and
M. S. Petelson, hnpossibility of
Distributed Consensus with one
Faulty Process, Proc. 2rid ACM
syrup, on Principles of Database
Systems, 1983.

L. Lamport, The Weak Byzantine
Generals Problem, JACM
30(1983), pp. 668-676.

L. Lamport, R. Shostak and M.
Pease, The Byzantine Generals
Problem, ACM Trans. on pro.
gmmming Languages and Systems
4(1982), pp. 382-401.

Mohan, Strong and Finkelstein,
Method for Distributed Transac-
tion Commit and Recovery Using
Byzantine Agreement within Clus-
ters of Processols, Proc. ACM 2nd
syrup, on Principles of Distributed

Computing, t983, pp. 89-103.

IRa] M. O. Rabin, The Choice Coordi-
nation Problem, Acta Informatica
17 (1982), pp. 121-134,

[Rel R. Reischuk, A New Solution for
the Byzantine Generals Problem,
IBM Report RJ3673, November
1982.

[RSAI L. Rivest, A. Shamir and L. Adle-
man, A method for obtaining digi-
tal signatures and public-key
cryptosystems, Comm. ACM
21(1978), pp. 120-126.

[rl R. H. Thomas, A Majority Con-
sensus Approach to Concurrency
Control for Multiple Copy Data-
bases, ACM TODS 4(1979) 2, pp.
10-209.

133

