
Distributed Computing (1991) 4 :105-110

Amotz Bar-Noy received the
B.A. degree in mathematics and
computer science in 1981, and the
Ph.D. degree in computer science
in 1987, both from the Hebrew
University of Jerusalem, Israel . He
was a post-doctoral fellow at Stan-
ford University, California, from
October 1987 to September 1989 .
Since October 1989 he has been a
visiting scientist at IBM T .J . Wat-
son Research Center, Yorktown
Heights, New York. His research
interests include communication
networks, distributed algorithms,
parallel algorithms and fault-toler-
ant computing .

Danny Dolev received a B .Sc . in
physics from the Hebrew Universi-
ty, Jerusalem, in 1971, an M.Sc . in
applied mathematics from the
Weizmann Institute of Science,
Israel, in 1973, and Ph .D. in com-
puter science in 1979 . After two
years as a post doctoral fellow at
Stanford and a year as a visiting
scientist at IBM, he joined the He-
brew University, Jerusalem, in
1982, and IBM Almaden Research
Center at 1987 . His major research
interests are distributed computing,
reliability of distributed systems,
and algorithms.

Abstract . Three main parameters characterize the effi-
ciency of algorithms that solve the Consensus Problem :
the ratio between the total number of processors and

* A preliminary version of this paper appeared in the Aegean
Workshop on Computing (AWOC), pp 380-390, 1988 . This work
was carried out while Dr . Bar-Noy was visiting Stanford University .
Supported in part by a Weizmann fellowship, by contract ONR
N00014-88-K-0166, and by a grant of Stanford's Center for Inte-
grated Systems

Offprint requests to : D. Dolev

1 Introduction

A major task in fault tolerant distributed systems is to
agree on common values . The importance of the task
stems from the need to overcome the uncertainty that
faults introduce . The famous Byzantine Generals prob-
lem is related to this task and has received much atten-
tion in the literature (e .g . [7]) . In this paper we deal
with a variant of this problem called the Consensus prob-
lem (first formulated in [7]) . This problem is defined
as follows . Let be a distributed system of n processors
where up to t of them might be faulty . Each processor
has an initial binary value . The goal is to find an algo-
rithm where each non-faulty processor decides on a bina-
ry value under the following two conditions :

Agreement. All the non-faulty processors decide on the
same binary value .

Validity . If the initial value is identical for all the non-
faulty processors, then this value will be the decision
value .

Consensus algorithms with one-bit messages*

Amotz Bar-Noy' and Danny Dolev 2
r IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
2 IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA and the Computer Science Department, Hebrew University,
Jerusalem, Israel

Received April 18, 1989/Accepted April 12, 1990

the maximum number of faulty processors (n and t, re-
spectively), the number of rounds, and the upper bound
on the size of any message . In this paper we present
a trade-off between the number of faulty processors and
the number of rounds by exhibiting a family of algo-
rithms in which processors communicate by one-bit mes-
sages. Let k be a positive integer and let s=tr e k . The
family includes algorithms where the number of proces-

k+ 1)
sors is less than 5 t

(
k = 5 - s t, and the number of rounds

is less than t + 3 tk k =1 + 3 . This family is based on a
s

very simple algorithm with the following complexity :
(2t+1)(t+1) processors, t+1 rounds, and one-bit mes-
sage size .

Key words : Consensus - Fault tolerance - One-bit mes-
sages

1 0 6

In this paper a standard and simple model is as-
sumed :

Processors are synchronized by rounds of communica-
tion in which each executes three operations : sending
messages, receiving messages, and performing a local
computation . By the last round of the algorithm, after
the local computation is completed, the processor
must decide .
The communication is carried out by a complete and
reliable network ; each processor can send a message
to every other processor and messages arrive unaltered
in the same round they are sent.
The processors are deterministic ; no randomized oper-
ations are allowed .
Faulty processors are malicious and might collude in
order to prevent reaching valid agreement .
For ease of exposition, processors' names are assumed
to be the numbers 1, . . ., n .

Three complexity measured determine the efficiency of
a solution : the ratio between n and t ; the number of
rounds required in the worst case, denoted by r ; and
the upper bound on the size of any message, denoted
by m. Traditionally, researches bounded the total
number of messages (or bits) sent during the algorithm,
instead of bounding the maximum size of a message .
In order to better understand the relationship between
m and the other two parameters (n/t and r), it is useful
to restrict m by preventing processors from reporting
too much information in a single message . In this paper,
we restrict the maximum size of any message to be at
most one bit, that is, in each round a processor may
send at most one bit to each processor . Algorithms in
which only one-bit messages are allowed are called one-
bit algorithms .

In many existing algorithms, messages contain identi-
ties of processors. Encoding such algorithms into one-bit
algorithms requires many rounds (log n rounds for each
processor identity). Therefore, the existence of one-bit
algorithms for the consensus problem, where the number
of rounds does not increase as a function of n, teaches
us that a solution for the consensus problem does not
require processors to relay identities of processors . We
view this as a necessary step in understanding the rela-
tionship among these three complexity measures .

There are three known lower bounds for these com-
plexity measures. These lower bounds are independent
in the sense that they are valid no matter what the values
of the other parameters are . The lower bounds are :

- n>3t+1 [7] .
- r>_t+l [5] .

m >_ 1, (obvious) .

The first upper bound appeared in [7] (a simple presen-
tation of this algorithm can be found in [1]). This algo-
rithm optimizes the number of processors and rounds
(n = 3 t + 1 and r = t + 1), but messages have size exponen-
tial in n. In [6, 3] algorithms are presented where
r = t + 1, is linear in t and m is polynomial in t. Another
known result is an algorithm with n = 3 t + 1, r = 2 t + 1

and m is polynomial in n [8] . Another one-bit algorithm
was presented in [2] with n = 4 t + 1 and r = 2 t + 2 .

Recently a family of algorithms with an additional
parameter d was presented [4, 1] . Every algorithm in
this family has the following complexity : n=3 t+ 1,
r = t + [t/d], and m = t°(d) . In the extreme, where d = t
or d = 1, these algorithms coincide with two of the above
algorithms. In this paper we present another family, a
family of one-bit algorithms which exhibits a trade-off
between the number of faulty processors and the number
of rounds. All these families of algorithms optimize one
complexity measure at the expense of the other two mea-
sures. Thus, the following question arises :

Question . Is there an algorithm that optimizes all three
parameters?

We view the results of this paper as a step towards
answering this question. We suggest the following prob-
lem as a candidate for a negative answer to the above
question .

Problem. Is there a one-bit algorithm that terminates
after t+1 rounds with n=0(t)?

The algorithms presented in this paper have other
interesting properties . First, the decidsion of when to
send a message is a function of the round number only .
Second, each processor is required only to compute a
majority of values arriving on a set of wires . Therefore,
in addition to the fact that the algorithms use only one-
bit messages, it is not hard to implement them in hard-
ware .

Our basic one-bit algorithm, s2t ,, , has complexity
n=(2t+1)(t+1) and r=t+1 . Furthermore, in this algo-
rithm each processor sends a one-bit message exactly
once. Using a parameter k>_1 and assuming t=sk for
some integer s >_ 2, we derive from Algorithm sit ,, a fami-
ly of one-bit algorithms, {sdt,k{k,, . The complexity of
Algorithm At,k is :

k+1

	

k 1

	

k 1

- n=4t k +t k <_5t , , and

k k-1

	

k-t
- r=

	

tk+t k <t+3t k
=o

k-I k-1
As t = sk , it follows that t k =- and that t k =s . t . There-

S

fore, another way to represent the above equation is :

n<5 •s •t, and

r<(1+ 3) t .
S

Asymptotically, fix k >_ 1 and 0 < a + 1, then, for a suffi-
ciently large t, there exists an algorithm where r < (1 + e) t
and n is almost linear in t .

2 Algorithm fit,,
This section describes Algorithm 4t,1 which is the basic
one-bit algorithm. In this algorithm the number of pro-
cessors is n=(2t+1)(t+1) and the number of rounds
is r=t+1 .

Fig . 1 . The partition of the processors and the flow of messages
in Algorithm X1, 1

Algorithm.r , 1 ;
1 . for r :=1 to t+ I do one of the following

1 .1 . ifr =round (p)=l then
v :=val ;
SEND v to processors (2 t+ 1)+ 1, . . ., 2(2 t+ 1) ;

1 .2 . if 1 <r = round (p) - 1 then
RECEIVE the messages of processors

(r-1)(2t+1)+1, . . .,r(2t+1) ;
v :=the majority value of these 2t+ 1 values ;

1 .3 . if I <r=round(p)< t+ 1 then
SEND v to processors r (2 t + 1) + 1, . . ., (r + 1) (2 t + 1) ;

1 .4. ifr=round(p)=t+I then
SEND v to all processors ;

2 . at the end of round t+ 1 do
2 .1 . RECEIVE the messages of processors

t(2t+i)+1, . . ., (t+l)(2t+l) ;
2.2. v :=the majority value of these 2 t + I values ;
2.3 . DECIDE on v ;

Fig . 2 . Algorithm 41, 1 for processor p with initial value val

Informally, the algorithm can be described as follows .
The n processors are partitioned into t+1 disjoint sets,
each of cardinality 2t+1. Denote these sets by
S 1 , S2 , . . ., S,+ , . In general, in round i, only processors
from set S i send messages and only to processors from
set S i + 1 . More specifically, in the first round all the pro-
cessors in S, send their initial value to every processor
in S2 . In round i -1, 1 < i < t + 1, each processor p cS i
receives 2t+1 bits from processors in S i _ 1 . In round
i, p sends the majority value of these 2t+1 values to
every processor in Si+l . In the last round i=t+l, each
processor pESr+r sends the majority value to all the
processors. The decision value for every processor is the
majority value of the 2 t+ 1 bits it has received from
the processors in St+r in round t+1 . This informal de-
scription is depicted in Fig . 1 .

The formal description of the algorithm, for proces-
sor p whose initial value is val, appears in Fig . 2 . In

the code, the function round(i) is defined to be	
i

12t+1
In the operation RECEIVE, 0 is the default value for
a message that did not arrive or did not consist of a
single bit .

Proof' of correctness . For 1 < i < t + 1, define
S i = {(i- 1)(2t+ 1) + 1, . . ., i(2t+ 1)} .

Note that if p e S i then round (p) = i.
There are t+1 disjoint sets and at most t faulty pro-

cessors, implying the existence of a set S i that does not
contain any faulty processors . If i = t + 1, then all the

processors receive an identical set of 2 t + 1 binary values
(Step . 2 .1) and therefore decide on the same value (Steps
2.2 and 2.3) .

If i < t + 1, then all the non-faulty processors in S i + 1

receive the same 2 t + 1 bits and compute the same major-
ity value (Step 1 .2) . In S i + 1 there are 2t+1 processors,
at least t + 1 of which are non-faulty . Denote by u the
majority value computed by these t + 1 processors. From
that point on in all rounds j, i < j < t+ 1, all the non-
faulty processors in 5j+, will compute u as their majority
value (Step 1 .2) and in round t+1 all non-faulty proces-
sors will compute u as their majority value (Step 2.2) .
Thus, all non-faulty processors will decide on u (Step
2.3) and the agreement condition holds .

Now assume that all the non-faulty processors have
u as their initial value . The same arguments as before
prove that u will be the decision value of all non-faulty
processors and the validity condition holds . 0

The following remarks present possible extensions of the
algorithm that will later be used in the more general
algorithms .

Remark 1 . If n>(2t+1)(t+1), then the processors can
be partitioned into disjoint sets of almost equal cardina-
lity (the cardinality of every two sets differs by at most
1). The proof of correctness holds as the non-faulty pro-
cessors form a majority in each set .

Remark 2. Assume we add the following initial round
to Algorithm slt ,, . In this round all the processors send
their original initial value to all other processors . Then
they adopt the majority of the n values they received
as their new initial value and apply Algorithm -4,,, with
this new initial value. It is not hard to see that if
r(n 2+1

+t] non-faulty processors have v as their initial

value then all non-faulty processors decide on v.

3 The 1 k family of algorithms

A generalization of Algorithm sit ,, into a family of one-
bit algorithms {s~t,k}k>1 is presented in this Section .
Each algorithm in the family depends on two parame-
ters, t and k, 1 < k < t . For simplicity, in the following
presentation we assume that t=sk , for some integer s >_ 2 .
The number of processors is :

k+1

	

k-1

	

k+1
n(t,k)=4t k +t k <5t k ,

and the number of rounds is :
k

k-1

	

k-1
r(t,k)= Y t k +t k <_t+3t k

i=o

In order to present Algorithm 14t,k, a tree T(t, k) is de-
fined . The tree is recursively described, but the algorithm
itself will be explicit. In this tree, each node represents
a subset of the n(t, k) processors .

1 0 7

1 0 8

Fig. 3. The description of the tree, k = 3

If k = 1, the n processors are partitioned into t+1 dis-
joint sets of almost equal cardinality (the cardinality
of every two sets differs by at most 1). The root of
the tree is the set of all n processors and the children
are these t + 1 sets .
If k> 1, the processors are partioned into s=tk disjoint

k-1
sets of equal cardinality . Define t'= t k and
n'= n(t', k - 1) . The root of this tree is the set of all
n processors and each child of the root is the root
of a T(t',k-1) tree associated with one of these dis-
joint sets.

Note that the recursive construction can indeed be ap-
plied as,

(k-1)+1

	

(k-1)-I
n'=4t' k-1 +t' k - 1

k-1	k

	

k -1 k- 2

	

k-2

=4(t k))k-1 + (t k)k-1 =4t+t k = t l/k'
n

In Fig. 3, an example of such a tree for k = 3 is given .
When unfolding the recursion, one can see that for

each processor there is a corresponding path in the tree
starting at the root and ending at a leaf. Each processor
belongs to every set that is represented by the nodes
of its corresponding path . The set represented by the
root consists of all the processors .

The tree is assumed to be ordered from left to right .
The root is numbered 0, and the rest of the nodes are
numbered in a post-order fashion. Hereafter, each node
in the tree is referred to by its post-order number and
the set of processors in node r is denoted by procs(r) .

For a given tree, the following definitions and nota-
tions are used in specifying the rules of the algorithm :

n=L,t 4/3 .t 2/3

t=s 3 for some integer s

Left : the set of all the nodes in the tree that do not
have a left sibling .
Right : The set of all the nodes that do not have a
right sibling.
Start : The nodes that have no left siblings and have
no ancestors with left siblings (the left edge of the
tree) .
RightMost(x) : The rightmost child of node x (unde-
fined for leaves) .
LeftMost(x) : The leftmost child of node x (undefined
for leaves) .
Next(x) : A function from the nodes of the tree to
the nodes of the tree .
- x=0 (the root) : Next (0)=LeftMost(x) .
- x~Right : Next(x)=the right sibling of x .
- xeRight (x=A 0) : Next(x)=the parent of x .
Prev(x) : A function from the nodes of the tree to the
nodes of the tree .
- x ~ Left : Prev (x) = the left sibling of x.
- x c- Start : Prev (x) = 0 (the root) .
- xeLeftAx~Start : Prev(x)=Prev(y), where y is the
parent of x . That is, Prev(x) is the left sibling of the
closest ancestor that has a left sibling .

In the algorithm, the number of rounds is the same as
the number of nodes in the tree . In each round r, 0 <
r<r(t, k), processors in procs(r) send a one-bit message
to the processors in procs(Next(r)) . The following rules
determine the value of the bit, denoted by v, that proces-
sor peprocs(r) should send .

- If r=0 (node r is the root), then v is the initial value
of processor p .

Algorithm , k ;
1 . for r:=0 to r(t, k)-1 do one of the following

1 .1 . if r is the root then
SEND val to procs(Next(r)) .

1 .2 . if peprocs(Next(r)) and roRight\]1{0} then
1 .2.1 . RECEIVE v 1 , . . ., v, from procs(r) ;
1 .2.2. v(Prev) :=the majority value of v 1	
1 .2.3 . supportV(w)) :=I{i :v i = v}I

1 .3 . if p eprocs (Next (r)) and reRight\{0} then
1 .3 .1 . RECEIVE v 1 , . . ., v, from procs(r) ;
1 .3 .2 . v(RightMost) :=the majority value of v 1 , . . ., v. ;

1 .4. if pE procs(r) and r is a leaf then
SEND v(Prev) to procs(Next(r)) ;

1 .5 . if peprocs(r) and r is neither a leaf nor the root then
1 .5 .1 . if support (~.(w))>_w-t'~k

then SEND v(Prev) to procs(Next(r)) ;
(*the forwarding rule*)

else SEND v(RightMost) to procs(Next(r)) ;
(*the calculating rule*)

2. at the end of round r(t, k) do
2 .1. RECEIVE vi , . . ., vn from procs(Right Most(0)) ;
2 .2 . v :- the majority value among v 1 , . . ., v„ . ;
2 .3 . DECIDE on v ;

Fig. 4. Algorithm '4t,k for processor p with initial value val

If node r is a leaf, then v is the majority of the values
that p received from procs(Prev(r)) . Note that this is
well defined, as procs (Next (Prev (r))) D procs (r).
Otherwise (node r is neither the root nor a leaf), the
set of processors represented by procs (Prey (r)) consists
of w=4'Ik +t (' -2)ik processors, for some ~ that is a
function of the level of node Prev(r) in the tree .

The forwarding rule. In case p received some value
u from at least w - t' lk processors from procs (Prey (r)),
then v = u .

The calculating rule . Otherwise, v is the majority of
the values p received from procs(RightMost(r)) . Again,
this is well defined as Next (RightMost (r)) = r .

The decision value is the majority of the values the pro-
cessor received from RightMost(0), (the rightmost child
of the root) .

A more formal description of the algorithm appears
in Fig . 4 . As in Algorithm d 1 , r ,O is the default value
for any message that did not arrive or includes more
than one bit . The root is node 0 and the algorithm dis-
tinguishes between leaf and non-leaf nodes . For any w
of the form w=4t('-2) i k define '(w)= '-1 .

Observation 1 . If k = 1, the above description is exactly
Algorithm sit,, after applying the two modifications
mentioned in Remarks 1 and 2 at the end of the previous
section .

Observation 2. Let r be a node in level t, 0 < ' < k, where
the level of a leaf is 0 and the level of the root is k .
Denote by -4r the sub-algorithm performed by procs(r)
in the sub-tree rooted in r . Then -4r differs from s1te,k , i
only in the first round . In S1,11k , ,1, the processors
in procs(r) should send their initial value to
procs(LeftMost(r)) in the first round. In M,, processors

in procs(LeftMost(r)) receive messages from
procs (Prev (r)) . We claim that the correctness of dre,k,'
implies the correctness of -4r , where the validity condi-
tion is related to the initial values of processors in
procs(Prev(r)) . This is true because l procs(r)l c
lprocs(Prev(r))l and processors in procs(r) could have
the initial values of some subset of procs(Prev(r)).

Proof of correctness . We first prove that the validity con-
dition holds . Recall that s = tk and let r r , . . ., r s be the
children of the root. The number of processors in
procs (ri) is 4 t + t(k 2)Ik, where at least 3 t + tuk 2)ik of them
are non-faulty processors . Therefore, if v is the initial
value of all the non-faulty processors, then in each
procs(r i), the processors apply the forwarding rule
(Steps 1.2.3 and 1 .5.1) when they send messages to
procs (Next (r i)) . As the root is Next(r s), all the processors
decide on v and the validity condition holds .

The proof for the agreement condition is by induc-
tion on k and t. When k=1, it follows from the agree-
ment condition stisfied by Algorithm d r ,, and the above
Observation 1 . Now assume that the agreement condi-
tion holds for 1 < k'< k and 1 < t'< t and let us prove
it for k and t.

A pigeon hole argument implies the existence of a
k-1

set procs (ri) with at most t' = t k faulty processors . Oth-
erwise, there would be a total of more than tk -t' = t faulty
processors .

If, in this set procs(ri), there exists a processor that
applies the forwarding rule, then this processor must nec-
essarily have received some value u from at least n'-t
processors (n - t, if i = 1). In this case, every other non-
faulty processor in procs(ri) receive u from a majority
of at least n' = 2 t > n'/2 processors (n - 2 t > n/2, if i=t) .
By the above Observation 2 and by the induction hy-
pothesis, the agreement condition satisfied by s1r,k_r
implies that all the non-faulty processors send u to
procs(r i+r) (or to all other processors if i=s). The same
arguments as in the proof that the validity condition
holds, show that this value is preserved until it becomes
the decision value .

The remaining case is when all the processors in
procs(r i) apply °fir, (Observation 2) . Then again, by the
same arguments as before, it follows that all the non-
faulty processors in procs(r i) send the same value to
procs(r i+r) (or to all other processors if i=s) . This value
is forwarded until decision is reached on it and the agree-
ment condition holds . 0

Number of rounds . Recall that r(t, k), the number of
rounds in the algorithm, is also the number of nodes
in the tree T (t, k) . We prove by induction that

k i

	

k-r
r(t, k)= Y, t k +t k .

i=o

When k = 1, the tree has t + 2 nodes. This is the desired
value, because

1

	

0

r(t, 1)=t,+t1+tl=t+2 .

1 0 9

110

When k > 1, the construction of the tree implies

r(t,k)=1+tkr(t',k-1)
lk -1	 i

	

k-2
=1+tk Y t'k-l+tzk-1

i=0
1k - 1 k-1	i

	

1 k-1 k-2
=1+tk Y(t k)k-l +tk(t k)k-1

i=o
1k -1 i

	

k-1
=1+tk Y tk +t k

i=0
0

	

k i

	

k-1
=tk+ L tk +t k

i=1
k

	

k-1
k +t k

0

Notice that since

k-2 i k-2

	

Sk-1 - 1
Y tk= L S`<	<$k-1
i=0

	

i=0

	

S-1

we conclude

0
k

	

k-1

	

k-1
r(t,k)= Y t k +t k <_t+3t k .

i=o

Remark 3. In this paper, we present a family of one-bit
algorithms depending on two parameters 1 < k < t. We
bind t to be Sk for some integer s >_ 2 . It is possible to
modify the algorithm to work for any choice of t >_ k
but then the presentation and the proof are much more
tedious. We believe that the idea is well demonstrated
even for these restricted values of t .

Remark 4. Assume that the partition of the processors
can be encoded in hardware. Then the implementation
of all the algorithms presented in this section is straight-
forward (especially of Algorithm 4,, 1) . The following
properties of our algorithms illustrate their simplicity :

- The messages contain only one bit of information .

- The rounds in which processors receive or send mes-
sages can be controlled by a clock as they do not
depend on the input .

- The processors need only "general majority gates" to
compute the message they should send .

Remark 5. Finally, note that unlike some other solutions
to the consensus problem, in our algorithms processors
participate in "few" consecutive rounds . Consequently,
many instances of the consensus problem can be solved
in a pipeline fashion. It is not hard to verify that the
time complexity of x instances of Algorithm a~t , k is
r (t, k) + x . r (t k , k-1) instead of x . r (t, k) . In particular,
the overall number of rounds of x instances of Algorithm
,2/t,1 is t+x .

Acknowledgement. The authors would like to thank Ray Strong
for his part in developing the 4,,, algorithm .

References

1 . Bar-Noy A, Dolev D, Dwork C, Strong HR: Shifting Gears :
Changing algorithms on the fly to expedite Byzantine Agreement .
Proc 6th ACM Symp. of Principles of Distributed Computing
1987, pp 42-51

2. Berman P, Garay JA : Asymptotically optimal distributed con-
sensus . Proc Int Conf on Automata, Languages and Program-
ming (ICALP), 1989

3. Berman P, Garay JA, Perry K : Towards optimal distributed
consensus. Proc 30th Symp on Foundations of Computer Sci-
ence, 1989

4. Coan BA : A communication-efficient canonical form for fault-
tolerant distributed protocols. Proc. 5th ACM Symp of Principles
of Distributed Computing 1986, pp 63-72

5. Fischer, M, Lynch N : A lower bound for the time to assure
interactive consistency . Inf Process Lett 14 :183-186 (1982)

6. Moses Y, Waarts 0 : (t - 1)-round Byzantine Agreement in polyn-
omial time. Proc 29th Symp on Foundations of Computer Sci-
ence 1988, pp 246-255

7. Pease M, Shostak R, Lamport L : Reaching agreement in the
presence of faults, JACM 27 :228-234 (1980)

8. Toueg S, Perry KJ, Srikanth TK : Fast distributed agreement,
SIAM J Comput 16 :445-458 (1987)

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

