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Abstract

QoS-Aware routing protocols have been the focus of
much attention in the past decade. This is due to the inter-
esting challenges posed by the problem of QoS routing, in
the absence of precise information - or even partial and al-
together imprecise information. In this paper, we present a
new QoS-aware routing protocol, OPsSAR, which achieves
very good performance results at a very reasonable cost, in
terms of memory and messages.

OPsAR is based on the Multi-path routing approach,
but constrains the number of paths used and leverages on
previous resource reservation attempts. Every reservation
attempt — successful or not — results in an update to the
knowledge-state recorded at all the nodes that had partic-
ipated in those attempts. This knowledge helps in avoiding
network bottlenecks and coping with congested path when
they are encountered. We present extensive simulation re-
sults and even compare ourselves favorably with a protocol
that explores all possible paths.

1. Introduction

This paper demonstrates the benefits of caching, when
combined with an adaptive protocol, in reducing the block-
ing probability of QoS requests. Specifically, we show that
keeping track of recent QoS queries drastically improves
the quality of the QoS routing, and optimizes communica-
tion resources. The information collected while executing
our protocol can be used by more sophisticated learning al-
gorithms to dynamically change the protocol’s parameters.

Much of the QoS routing research deals with multicast
routing. There are benefits to using unicast QoS, and appli-
cations using unicast QoS routing have lately emerged (e.g.,
point to point VPN services). The protocol in this paper is

1 Meaning - off the trail, especially a ski trail.
2 Anker is also with Radlan Computer Communications, Israel.

presented in the context of unicast QoS routing, although it
could also be applied to multicast routing as well.

The main challenge in QoS routing is to be able to re-
spond to online requests with minimal overhead, while min-
imizing probability of blocking (failures). A typical request
is to reserve a certain resource, typically bandwidth, along
a path from a transaction source to a transaction destina-
tion>. The dynamic nature of the system, in terms of avail-
ability of resources, network topology, etc., and the inability
to maintain the global state leads to use of adaptive proto-
cols.

Typically, QoS routing protocols adhere to shortest path
algorithms, deviating from them only when these fail to
offer the requested resources. In that case, full or limited
flooding will be employed. This paper presents the Off-Piste
qoS-Aware Routing protocol (OPsAR). In OPsAR, a node
keeps track of recent QoS requests that reach it to learn
about resource availability to and from various target points.
The learning is reflected in the node’s “knowledge-state”.

The protocol presented contains two phases, a Try_phase
and a Scan_phase. The Try_phase follows the shortest path
as long as it has the required resources. The deviation from
the shortest path takes an “off-piste” route that leverages on
the knowledge-state to optimize the routing protocol. The
protocol reserves the resources along the path toward the
transaction target during the Try_phase. Its deviation from
the shortest path is bounded. If resources cannot be reserved
within that boundary, the resources which have already been
reserved are released, and a request is sent to begin the
Scan_phase, a limited scanning from the transaction target
toward the transaction source (in the reverse direction). The
scanning process takes advantage of the knowledge-state to
optimize the search. The scan process is based on limited
Breadth-First-Search (BFS), which is bounded using a com-
bination of the knowledge-state and different techniques
and ideas borrowed from other related works, as specified
later.

Our protocol is influenced by QMRP [1] and S-

3 The application data source can be on either side.
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QMREP [2]. In [2], when the shortest path fails, the trans-
action target uses the preexisting multicast tree and devi-
ates from it when it fails to offer the requested resources.
We use that deviation concept in both phases of our proto-
col and gain a factor in efficiency. The scanning method re-
sembles the ideas of [1] and [2]. In [1], a multiple-path
routing is invoked once the shortest path fails to allocate re-
sources. A similar approach is used in the scanning process
of our protocol, while limiting the blowout of the scan-
ning process, as proposed in [3].

The resources requested by a QoS request can be di-
vided into additive resources (e.g. delay) and nonadditive
resources (e.g. bandwidth). The protocol and the simula-
tions in this paper specifically deal with bandwidth reser-
vation, though other nonadditive resource reservation can
be handled in a similar way. The protocol can be adapted to
handle additive resources, as we indicate later.

The OPsAR protocol presented in the paper meets the
following design goals:

o Efficiency: OPsAR increases the chances of finding a
QoS route while sending fewer messages. It leverages
on its knowledge-state, which is updated by previous
successful and failed attempts to reserve resources.

e Q0S Awareness: The protocol is aware of availabil-
ity and non-availability of QoS resource. The proto-
col uses a decay method to limit the effect of past in-
formation that may not be relevant any longer.

e Scalability and responsiveness: The protocol main-
tains a limited information base at each node. It re-
quires a bounded overhead, and it does not flood the
network. It responds to requests without wasting re-
sources that are not explicitly requested.

e Operability: OPsAR makes use of existing routing
protocols. It prefers the default shortest path route
when it has available resources. It does not use any
global network state but rather use a local state and ac-
cumulated information regarding partial QoS resource
availability toward some destinations, when such in-
formation is available.

e Adaptivity: The protocol adapts its routing preferences
as a function of ongoing requests, while leveraging
on its knowledge-state. Over time, it intelligently cov-
ers more and more possible routes, thus increasing the
chances of finding a successful one.

e Loop-free: The protocol produces loop-free routes and
does not require any extra machinery to either break
loops or detect them.

The protocol was simulated on the power-law network
model ([4, 5]) augmented with bandwidth assignments. The
paper describes simulations that simulate streams of re-
quests originating from different sources and targeted at

different destinations. The simulation follows all the steps
of the protocol, including the actual assignment of band-
width, random duration of flow, resource releasing and so
on, in contrast to some past papers that described simula-
tions in which only an independent probability of success is
assigned to each link.

The rest of the paper is organized as follows. Related
work is discussed in Section 2. The OPsAR protocol is pre-
sented in Section 3. Simulation results are described in Sec-
tion 4.

2. Related Work

QoS in general, and QoS routing in particular, have re-
ceived considerable attention from the research community
in the past years. A good survey of QoS routing can be
found in [6]. Although the current paper is presented in the
context of unicast QoS routing, it draws heavily on multi-
cast QoS routing techniques.

The two main approaches used in multicast QoS rout-
ing are Single Path Routing (SPR) and Multi Path Routing
(MPR):

e Single path routing refers to the traditional multicast
routing protocols in which a new group member con-
nects to the multicast tree along the unicast route to-
wards the tree root (e.g., PIM [7], CBT [8]). Exten-
sions to such protocols to support QoS routing have
been proposed (e.g., [9]).

e Multi path routing is used to “scan” multiple routes
concurrently in order to find the best one that satisfies
a QoS reservation request that connects the new mem-
ber to the multicast tree.

The two multi-path routing schemes described in
QMRP [1] and S-QMRP [2] propose an adaptive ap-
proach. In both, the unicast route towards the multicast tree
root is checked first. If the unicast route has enough re-
sources to address the QoS request, then the target route
follows the unicast route. Otherwise, every protocol de-
ploys its own mechanism in order to bypass congested
nodes. Upon hitting a congested network node that can-
not satisfy the QoS request, QMRP branches from the uni-
cast route and continues searching on multiple branches,
for a route that does satisfy the QoS request.

In contrast, S-QMRP does not branch on the way toward
the root of the multicast tree. Instead, it first reaches the
root of the tree, and then it scans towards the new multi-
cast group member searching for a branch that will satisfy
its QoS request.

Another related protocol is QoSMIC [10]. QoSMIC is
best suited to a multicast environment, since it looks for a
point on a multicast tree to “hook™ on a new receiver. The
basic case where a single receiver tries to reserve resources
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from a data source is not handled optimally in QoSMIC,
since there are no means in QoSMIC to cope with a lack of
resources on the first branch from source to destination (i.e.,
when no other group members exists).

Another relevant work is ticket-based probing [3] which
extends [11]. The latter deploys multiple probe messages
that strive to reach the destination of the QoS route request.
These probes are sent based only on the state of local QoS
resources. Ticket-based probing [3] extends this work by
applying a new constraint on the flooding process: Every
source of the QoS route-request assigns a limited number of
“tickets” and distributes them among multiple probe mes-
sages. Every probe message is supposed to carry at least
one ticket. Thus, when a probe message splits into multi-
ple probes at a network node, it is limited by the total num-
ber of splits.

Other unicast routing protocols use link state either with
or without aggregation of information. Some of these pro-
tocols also enforce an hierarchical structure on the network.
The usage of aggregation and hierarchical structures are
common approaches to achieve scalability by reducing the
size of the network global state (see [6]).

3. Protocol
3.1. The Network Model

The network is described as a graph G = {V, E}. Each
edge (link) has allocated resources (e.g., bandwidth) that
may be different for each of its directions. Each node knows
the initial resource availability in each direction on each link
and the availability of that link.

We assume the existence of a unicast routing protocol.
Each node can store some temporary information, and can
maintain some local state (e.g., resource availability on ev-
ery outgoing and incoming link).

We do not assume the existence of any global network
state by the nodes.

We assume that a reservation process starts when the
edge router receives a request to reserve some bandwidth to-
ward a specific destination (usually reserving bandwidth for
an application that transmits data to one or more receivers).
The process of reserving the bandwidth will be referred to
as a transaction. The edge router is the transaction-source
and the target is the transaction-destination.

3.2. Motivation

Our objectives are similar to the objective of [2] that im-
proves those of [1]. Our main objective is to achieve an im-
proved tradeoff between the success ratio of meeting a re-
quested resource allocation and the overhead required. Like
many existing protocols ([12, 10, 1, 2]) we also chose a

tradeoff between the overhead of the protocol and the suc-
cess ratio it produces. As was already observed by previous
papers, the key to the performance is how to make an ef-
ficient path selection. Our method is to make an educated
guess of a feasible path by leveraging on the knowledge-
state at the nodes.

In addition, we seek a solution that adheres to unicast
routing, as long as resources are available, and attempts to
bypass a congestion point. When all else fails, the proto-
col forks to controlled multiple path selection.

The objective is to design a scalable protocol with
bounded memory requirements and bounded message over-
head per transaction, on average. The OPsSAR protocol,
described below, strives to achieve these objectives.

3.3. Protocol Overview

OPsAR handles transaction-source requests to reserve
QoS resources along a path to the transaction-destination.
Each node maintains a local state in which it holds its links’
status and the resource availability on them. It also main-
tains a bounded list of pairs <target nodes, outgoing-link>,
and for each one it maintains the resources availability to-
ward the target-node and from the target-node with respect
to that outgoing link. This information is updated occasion-
ally and is marked to identify the time of its last update.
That information is the node’s knowledge-state.

Any message traversing a node is used to update
the knowledge-state by updating the resource avail-
ability to/from the message origin (whether it is the
transaction-source or transaction-destination) and the re-
source availability along the message’s last hop. The proto-
col messages are: TRY-MESSAGE, SCAN-MESSAGE, ACK-
MESSAGE, NACK-MESSAGE and RELEASE-MESSAGE.

A source-node initiates a request by composing a TRY-
MESSAGE and initiating the Try_phase of OPsAR. The TRY-
MESSAGE contains the QoS resource request (transaction-
source), the transaction-destination, and the list of traversed
nodes (This list is used to avoid routing loops).

When a TRY-MESSAGE arrives at a node, it tries to
choose the best link that can meet the QoS requirements.
The choice is made according to the resource availability
along the various links toward the target, and according to
how recent that information is (based on its knowledge-
state). There is a preference for choosing the link that
is on the shortest path unicast route, over other links. A
counter on the TRY-MESSAGE identifies the number of off-
piste decisions in which the unicast route was not cho-
sen. The amount of deviations from the shortest path uni-
cast route that a request can make is bounded, using the
off-piste counter. Once that bound is reached, no further
off-piste traversal is allowed. In this case if the unicast
route cannot be taken at a certain node, that node initi-
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ates a backward-path NACK-MESSAGE to release all re-
source reservation with respect to that request*. The TRY-
MESSAGE is marked as failed and is sent along the unicast
path (of the unicast routing protocol) to the target-node to
initiate the Scan_phase.

If the TRY-MESSAGE arrives successfully at the target-
node, it responds by sending an ACK-MESSAGE along the
reverse path. The ACK-MESSAGE is used also, as mentioned
above, to update the resource availability toward and from
the transaction-destination node along the path.

If the target-node receives the request to initiate a
Scan_phase it invokes a scan toward the transaction-source.
The knowledge-state is used to choose intelligently to
which links to fork in order to increase the chance of suc-
cess. The scan forks at nodes along the way until the maxi-
mal number of alternative paths is reached. We use a tick-
eting scheme ([3]) to bound the total number of paths.
We also limit the branching degree at each node in or-
der to increase the variety of potential paths to traverse.
On the other hand, we limit the distance from the short-
est path by using an off-piste counter similar to the
Try_phase. When the off-piste limit is reached and the uni-
cast route does not have the resources, or when no outgo-
ing link has the requested resources the SCAN-MESSAGE is
dropped.

An important observation is that we neither reserve re-
sources in the Scan_phase nor keep any state that relates to
the specific scan.

If the transaction-source receives several successful scan
messages, it initiates the Try_2_phase. It chooses the “best”
route from the successful scan messages and asks to re-
serve the resources along that path by generating a TRY-
MESSAGE with the explicit requested route. This reservation
request TRY-MESSAGE for explicit route resembles the tra-
ditional RSVP, until a reservation failure along the explicit
route is detected. From that failure point, the OPSAR tries
to route the reservation request message (TRY-MESSAGE) to
the transaction-destination using alternative routes that the
off-piste mechanism offers. If that fails, this message is not
forwarded to the transaction-destination to request another
scan process (as oppose to the initial Try_phase). Instead,
a NACK-MESSAGE is returned to the transaction-source in-
dicating the need to choose another explicit route from the
previous scan results.

As in the classic RSVP, there is always the op-
tion to release the reserved resources by sending a
RELEASE-MESSAGE message along the reservation path.

4 Note that the backward failure message is used to update the resource
availability toward the transaction-target in each node along the path.

Common Header
(TRY*MESSAGE, SCAN-MESSAGE, ACK-MESSAGE, NACK-MESSAGE )

TargetIP OriginlP TransactionlD MsgType Mag\i/giirom Mi‘;(rz\?r’\-ro
BW RouteLength L O R IPn
route
TRY-MESSAGE Fields
OPCTry OPCScan MBD Tickets Flags
SCAN-MESSAGE Fields
OPCScan MBD Tickets

Figure 1: Messages Format

3.4. Detailed Description

3.4.1. Terminology and notations In the protocol de-
scription we make use of the following notations:

nh : a candidate next hop;

nuqs¢ : next hop according to the unicast route to dst;

tqst : transaction-destination;

tsrc : transaction-source;

bw : required bandwidth;

ne : group of all the node’s neighbors;

Nefresh(dsty - group of neighbors with recently-updated
knowledge-state to/from dst node;

Ne€stale(dst) * group of neighbors with stale knowledge-state
info to/from dst node;

Negd(dst) : group of neighbors with no knowledge-state
info to/from dst node;

bin(nh) : the amount of free bandwidth from neigh-
bor nh;
bout(nh) the amount of free bandwidth to neigh-
bor nh.

3.4.2. message format The message format fields are
given in Figure 1. The following is a brief descrip-
tion of each field and its usage:

TargetI P : The message target IP address, which can be
the address of either transaction-destination or transaction-
source. The message is forwarded hop by hop according to
the protocol (not necessarily according to the IP forward-
ing table);

OriginI P > The message origin IP address, which can be

5 Both T'argetl P and Originl P are presented here only for simplic-
ity. They could be inferred directly from the IP header of the OPsAR
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the address of either transaction-destination or transaction-
source;

MaxBW FromOrigin : The maximum bandwidth avail-
able through some route from OriginIP to the previous hop
IPS. This field is updated at every node that it traverses, ac-
cording to the node’s local knowledge-state;
MaxBWToOrigin The maximum BW available
through some route from the previous hop IP to the Ori-
gin IP. This field is updated at every node that it tra-
verses, according to the local knowledge-stateat the node;
P1 — Pn : The current message’s route from the Ori-
gin IP to the previous hop IP ;

RouteLength : The current message’s route length;

BW : The bandwidth requirement.

OPCTry : The maximum Off-Piste Count (the num-
ber of deviations from the unicast route) allowed for the
TRY-MESSAGE;

OPCScan : The maximum Off-Piste Count (the num-
ber of deviations from the unicast route) allowed for the
SCAN-MESSAGE;

MBD : The Maximum Branching Degree allowed for the
SCAN-MESSAGE to use at each Branch;

Tickets : The maximum number of individual routes al-
lowed for the SCAN-MESSAGE in the Scan_phase;

flags : Try_phase flags. TRY_FAILED - means the
Try_phase failed to find a route. NO_SCAN - means do not
invoke Scan after the Try_phase.

3.4.3. Knowledge State The knowledge-state data struc-
ture at a node (denoted as ks) contains a set of records, one
per pair of <outgoing-link, target-node>. We maintain a
global_count variable per endpoint (which is an edge router
that participated in a transaction as either a transaction-
source or a transaction-destination) that is incremented by
one for each update done for any of the records pertaining
to that endpoint. Each record contains the following fields:
bwyyt : is the bandwidth available to the endpoint from the
neighbor attached to the link;

bw;,, : is the bandwidth available from the endpoint to the
neighbor attached to the link;

refresh_count: contains the value of the global_count at the
time of the last updating of the record.

3.4.4. Protocol Flow In the context of the specific pro-
tocol we will limit our description to bandwidth reserva-
tion requests. Other QoS resources (additive and nonaddi-
tive) can be handled in a very similar manner. Also, the pro-
tocol is described as if the transmitting application starts
the reservation request (starts the Try_phase). However, it

packet.
6  The previous hop IP can be identified from the full route piggyback
on the OPsAR packet (see P1 — Pn).

can be easily adapted to use the RSVP model in which
the receivers start the reservation requests towards the data
source.

The reservation process starts when the edge router
(transaction-source) receives a request to reserve some
bandwidth toward a specific destination (transaction-
destination). The transaction-source constructs a TRY-
MESSAGE and then processes it as if it was received from
the network.

Every intermediate node that receives a protocol mes-
sage invokes the message dispatcher algorithm (see Fig-
ure 8). The message is handled according to its type. Iden-
tifying the next hop node for TRY-MESSAGE is handled
by the Try-decision algorithm (Figure 9) and for a SCAN-
MESSAGE by Scan-decision (Figure 12).

3.4.5. Maintaining the Knowledge State The knowledge
state is organized in records. The records are kept for each
pair of a transaction endpoint’ and a network interface. For
every ongoing transaction processed by a node, the node
consults its knowledge state. If a corresponding record is not
found then a new record is created. Note that a transaction
involves at least two records®: one record is a knowledge
database containing information about the known available
bandwidth on the path from the node to the transaction-
destination. The other record maintains information about
the path back to the transaction-source (the “backwards
path”).

When a protocol message is received by a node, the node
retrieves the knowledge record corresponding to the mes-
sage origin endpoint and the incoming interface. It then up-
dates the record according to the message content. In ad-
dition, the node updates the message content to reflect the
maximum bandwidth available to/from the message origin,
based on its updated knowledge-state information. The next
hop router will later uses this information to update its own
knowledge-state.

The set of records per endpoint is divided into three cat-
egories:

e The first category is for the recently updated records
(corresponding to the neg,csp(ast) group).

e The second category is for stale records that have
not been recently updated (corresponding to the
nestale(dst))-

e The third category contains records that are candidates
to be aged out, or already aged out (corresponding to
the neqqdst))-

7  Whether it is the source or the destination.

8 Observe that for every transaction multiple protocol messages may
pass through a node.
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Refer to Try-decision algorithm (Figure 9) and Scan-
decision algorithm (Figure 12) that specify the use of these
groups. There are two thresholds used by the algorithm:
Stale Threshold and Aged-out Threshold. The assignment
of a record to a category is done in the following way:
if (global_count - record.refresh_count) is smaller than the
stale threshold then the record belongs to the fresh records
set. If (global_count - record.refresh_count) is between the
stale and the aged out thresholds then the record belongs to
the stale records set. If (global_count - record.refresh_count)
is greater than the aged-out threshold, then the record be-
longs to the aged out records set.

Record assignment and aging out are ongoing processes.
Each query/access of a knowledge-state data structure about
a specific endpoint triggers the aging and re-assignment
process as needed, for the records that correspond to that
specific endpoint.

Apart from aging within the set of records belonging to
a specific endpoint, the algorithm also has a mechanism
for aging out a whole set of records belonging to a spe-
cific endpoint. This means that, whenever the algorithm
reaches a predefined memory limit, the records associated
with the least updated endpoint are removed. Note that all
the records in all the sets (fresh/stale/aged-out) of the node
are removed.

4. Simulation

We have validated our protocol using extensive simula-
tions. This section describes both the simulation model, the
environment used and the result achieved.

4.1. Simulation Model

The OPsAR protocol was simulated extensively using
the NS-2 simulator [13]. Our simulations were conducted
on Power-Law network topologies [4]. The Power-Law
topologies are based on the results reported in [4], which
showed that the node degrees in the Internet obey a power
log law: most nodes have small degrees and a small num-
ber of nodes have large degrees; as the degree increases, the
number of nodes with that degree decreases exponentially.
We used the topology generator described in [5].

The simulations were done in networks with 600, 1300,
and 2000 nodes. The bandwidth on the links was uni-
formly distributed from {10,34,45,100 } Mb/s. In or-
der to make sure that the congestion would first occur in the
core network and not on the first or last hop, we re-assigned
the bandwidth of the endpoints (the nodes that would
act as transaction-source and transaction-destination) to
1000Mb. This reflects the case where the last hop is a
server with a gigabit network interface card (or a last
hop router with a gigabit interface receiving the reserva-

tion request to servers/hosts residing in its directly attached
networks). We also conducted tests with hierarchical band-
width assignment chosen from {10Mb,100Mb,1G,10G}
bits per second, capacities that are in use in Metro
and backbone networks. The networks we have simu-
lated with these link capacities (and with the number
of nodes varying from 600 to 2000) are usually consid-
ered as over-provisioned (especially in the case of giga-
bit+ links). In these over-provisioned networks we have
confirmed that there is almost no congestion for the cur-
rent usual bandwidth reservation requests. Therefore, the
topologies simulated were only large edge networks (au-
tonomous systems or large enterprise networks) and ISP
like networks.

As already noted, the topology used for the simulations
were generated according to the the power-law network
model ([4, 5]). Although there is a research that studies
ISPs’ topologies [?], other research efforts in the QoS rout-
ing area used the lower-law self-generated networks. Thus,
in order to compare our results with previous results we
have generated the topology with similar tools. Note that
the assignment of bandwidth to the links in the simulated
topology is not a trivial task. We have chosen the above link
bandwidth assignment model in order to be somewhat close
to real life network scenarios.

The transaction bandwidth allocation was uniformly dis-
tributed between [1,100] Mb. A transaction was invoked ev-
ery 0.5 seconds and the transaction lifetime was uniformly
distributed out of [1,1000] seconds; thus an average of 1000
transactions concurrently existed in the network. About one
fifth of the nodes in the simulated network were used as end-
points of the transactions. These nodes were selected based
on their distance (hop count) from the network core. The
network core is the set of routers with which the power-law
network generator starts.

In the simulations conducted, in contrast to the other
simulations done in [1, 2], we practically allocated the QoS
requirement on the links and released it when the transac-
tion’s lifetime was expired. This simulated rather closely a
“real” world model of transaction allocation and thus led to
more realistic results.

4.2. Simulation Results

For the basic set of simulations, a network of 600
nodes was used. The transaction-source and transaction-
destination were uniformly selected out of 120 edge nodes.
In most of the simulations, each point in the simulation re-
sults’ graphs is the result of 10,000 transactions performed
on six different generated topologies.

To address the scalability issue, we also used a larger
number of nodes. To measure the memory requirement and
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Figure 2: Memory usage vs. success ratio

impact on reservation success ratio we conducted simula-
tions with 55,000 and 100,000 transactions.

Our simulations were done in the context of unicast
reservations. However, with minor adaptations, OPsAR can
be used for QoS multicast routing as well. For example, this
can be accomplished by terminating the search for a desti-
nation as soon as a node which is not a tree is encountered.

We ran each simulation on 5 different protocol types:

e Traditional RSVP - We adapted the traditional RSVP
to allocate the QoS requirement along the unicast route
toward the transaction-destination;

e S-QMRP* - We adapted the S-QMRP protocol [2] so
that it would work on top of unicast routing. The adap-
tation was done by applying the S-QMRP protocol on
a “degenerated” multicast tree that is comprised of a
single node, which is the transaction-destination in the
simulation. Also, S-QMRP#* reserves bandwidth and
does not handle delay gurantees (as S-QMRP does).
Thus the branching decision in the Scan_phase is not
based on the end to end delay information;

e S-QMRP*D - We enhanced the S-QMRP* proto-
col to allow deviations from the shortest path on the
Try_phase;

e OPsAR - The Off-Piste QoS-aware Routing Protocol;

e OPT - Implemented as a BFS from transaction-source
to transaction-destination which finds the shortest path
that fulfills the bandwidth QoS requirements. Every
transaction was handed to the OPT protocol. At every
transaction the initial state of the protocol was derived
from the accumulated state of the transactions previ-
ously handled by the protocol.

S-QMRP [2] is an enhancement of QMRP [1]. The ex-
pected performance of QMRP for non-additive metrics is
similar to S-QMRP ([2]). Therefore we did not implement
it, nor did we compare it to OPsAR.

As was described in Section 2, a relevant protocol to
compare with is QoSMIC [10]. However, as described,
there are some inherent differences between OPsAR and
QoSMIC. As such, direct comparison with QoSMIC is
beyond the scope of this paper. Nevertheless, QMRP [1]
shows better results than QoSMIC for non-additive metrics.

We performed different simulations to compare different
parameters and their relationship to the reservation success
ratio: 1. Message overhead; 2. Memory usage; 3. Amount of
concurrent transactions; 4. Number of edge nodes; 5. Num-
ber of destination nodes.

The simulations proved that the results of the OPsAR
protocol were very close of the results of the OPT, and more
closely resembled those results than any of the other proto-
cols.

4.3. Memory Usage vs Success Ratio

Due to the nature of OPsAR and its usage of cache, it is
important to measure the effect that the amount of available
memory has on its success. In order to evaluate the memory
usage of OPsAR and the performance implications of the
amount of available memory, we have conducted the fol-
lowing test. We ran the simulation with different amounts
of memory limit. The implementation of “memory limit”
was that in case a new cache entry was to be saved and
the amount of consumed memory was above the limit, we
have deleted some old information from the cache in order
to accommodate the new data. In addition to running the
protocol with different amounts of memory limitations, we
used simulated networks of 600, 1300 and 2000 nodes, and
10000, 55000, 100000 transactions correspondingly, with
several off-piste counter values. This verified the scalabil-
ity of memory requirements over network load and size.

Figure 2 shows the consolidated graph of the simula-
tion runs. Each line in the graph is a result of keeping the
network size, transaction number and a value of off-piste
counter fixed, while iterating with increasing memory sizes.
Each point in each line is the average of several runs with
the same parameters. In the graph, one can see that each
set of parameters resulted in a convergence to a point be-
yond which an additional amount of memory had minimal,
if any, impact on the success ratio.

The reason for the convergence phenomenon is that no
new knowledge-state can be effectively used beyond a cer-
tain point, because the success ratio limitation is bounded
by another protocol parameter. For example, increasing the
off-piste counter does increase the success ratio, as can be
seen in the graph (though resulting in more messages and
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longer routes). The graph shows variation of the off-piste
value from 7 to 13, in a 2000-node network where we ran
100,000 transactions. By varying the off-piste values, we
improved the results from 76% to 85%.

All in all, we can conclude from the graph that the
amount of memory sufficient to achieve about 85% of suc-
cess ratio is very reasonable. Furthermore, the memory
bound is theoretically bounded by the out degree of a core
node times the number of possible transaction-destination
nodes. The protocol makes use of the aged-out threshold
in order to limit the amount of neighbors per destination
for which the knowledge-state is kept (in our simulations
this threshold was set to 9). For example, in the largest net-
work simulated (2000 nodes and 400 participating endpoint
where each knowledge-state record in the simulation code
consumes 40B) it was about 160KB. In practice, a much
smaller memory size suffices. The average memory con-
sumption was about 10% of the theoretical bound, where
60KB was the actual bound set in the simulation code. Our
simulations showed that increasing the number of neigh-
bors for which knowledge-state per endpoint is kept (aged-
out threshold), for example from 9 to 60, did not produce
any better results.

4.4. Concurrent Transactions vs Success Ratio

In order to evaluate the performance implications of the
number of concurrent transactions, we ran the simulation
with a different transaction lifetime average. Figure 3 de-
picts the results and shows that the success value improve-
ment of the OPsAR over other protocols gets lower as the
transaction lifetime grows, and that the performance results
of OPsAR are quite close to that of the OPT.

4.5. Message Overhead vs. Success Ratio

The OPsAR protocol is flooding based that explores por-
tions of the BFS tree rooted at the transaction-source. The
flooding capabilities of the protocol can be configured by
changing one of the following three parameters: branching
degree, scanning deviation, and number of tickets. We stud-
ied all the parameter’s possible combination within a spe-
cific range and ran the simulation on all the flooding based
protocols (OPsAR,S-QMRP*,S-QMRP*D). Each simula-
tion result generated one point in the graph: the transaction
success number as a function of messages overhead. Fig-
ure 4 depicts the results. Since S-QMRP*D performed mi-
norly better then S-QMRP*, we chose not to present it in
the graph (for clarity). Note also that OPT and RSVP are
presented as single dots in the graph. We can observe that
for the same amount of message overhead, the OPsAR im-
proves the success ratio up to 30% more than S-QMRP*.

The message overhead required to achieve a given ra-
tio of success was also compared. For example, in order
to achieve success in 7500 transactions out of 10,000, the
OPsAR required about 230,000 messages while in order
to achieve the same success the S-QMRP* required about
530,000 messages. Another interesting point to note is that
since the RSVP protocol is not affected by the adjusted pa-
rameters, it was more successful when the topology and
transactions were constant. The success ratio of RSVP in
any given set of topology and transactions was 3,000 out of
10,000, where the amount of messages it used was about
50,000. The OPsAR used 260,000 in order to achieve suc-
cess of 8,700 transactions. Thus, increase of overhead by
five times yields about three times the success ratio. Con-
sider the OPT algorithm, which uses 200,000 messages
to achieve a success of 9,700 transaction, with an over-
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head/sucess ratio (number of messages per success trans-
action) of 20.6. The overhead/sucess ratio of the OPsAR,
on the point above, is 29.8 which is only 30% more then
the OPT. Another point to consider is that the average path
length is about 8 hops when deviation is allowed and 4 hops
when deviation is forbidden (e.g. RSVP).

4.6. Number of Edge Nodes vs Success Ratio

In order to evaluate the performance implications of the
distribution of edge nodes, we ran the simulation with vary-
ing number of edge nodes. For each of those runs we ex-
tracted the total transaction success value. Figure 5 depicts
the results. In all the protocols we noticed that when the ra-
tio of edge nodes increases (while the total number of con-
current transactions is constant) the success ratio improves.
The reason is that the transactions are spread over larger ar-
eas of the network and there are less bottlenecks. We can
also observe that OPsAR always succeeds more than oth-
ers and closely adheres to OPT.

4.7. Number of Destinations Nodes vs. Success Ra-
tio

To further base the findings of the previous subsection,
we increased the ratio of the destination nodes, while keep-
ing the number of edge nodes and concurrent transactions
the same. We ran the simulation with a constant number of
25% edge nodes (as opposed to the 20% we usually used).
The number of candidate destination nodes (out of which
the transaction destination nodes were chosen) varied from
1% up to the whole set of edge nodes (25%). The candi-
date set of source nodes was always the whole set of edge
nodes. Only the links from those destination nodes were as-

signed a bandwidth capacity of 1000Mb. For each of those
runs, we extracted the total transaction success value. Fig-
ure 6 depicts the results. We can observe the success ratio
of protocols improves drastically as the number of desti-
nation nodes is increased. Here, too, the results of OPsAR
closely resembled the results of the ultimate protocol OPT.

4.8. The Cost and Performance Gain of Us-
ing Try&Scan Phases

The OPsAR protocol improves on past results by using
a two stages approach: a Try phase followed (when neces-
sary) by a Scan phase. This double stage process naturally
takes longer time than using only a Try phase. We analyzed
the simulation results to compare the relative success rate
and cost of using only the Try phase to that of using both
phases. Figure 7 describes the number of successful trans-
actions using both Try and Scan, and how much of those
were obtained at the Scan phase. We can see that in OP-
sAR less than 25% of the transactions required the Scan
phase. Thus, most of the transactions did not required the
extra time and messages of the Scan phase. Our simulations
showed that the time to complete a Try followed by a Scan
is three times the time it takes to complete the Try phase
alone. Thus, the expected cost is an increase of about 50%
in the time it takes to complete a successful transaction. Ob-
serve, that when the network is congested it is more costly
to ensure the success of a transaction.

5. Conclusions and Future Work

In this paper, we have demonstrated that maintenance
of a limited knowledge-state, combined with constrained
multi-path routing, can improve the success ratio for find-
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ing a path. We defined a knowledge state as a cache of re-
cent route information about resource availability. The re-
sults can be explained by observing that the overall scheme
of our protocol is an intelligent choice of routes from a full
Breadth-First-Search algorithm (BFS). Future research can
focus on improving the educated choice of routes while lim-
iting the overhead in memory. We expect to find ways to use
machine learning techniques to achieve that goal.

Future work can also try to save in memory by ag-
gregating the information, using techniques like longest
prefix matching on transactions destination. For example,
knowledge-state entries can be aggregated according to ad-
dresses of destinations that share a common prefix. In this
case, some aggregation method should be applied to the
knowledge-state as well. One such method is to take the
minimum on all available bandwidth towards all the end-
points (in the knowledge-state) covered by the aggregated
prefix.

Currently, packet losses are not handled by the sug-
gested protocol. However, the protocol can be easily ex-
tended to cope with losses. The protocol is sensitive to ACK-
MESSAGE and NACK-MESSAGE losses. Using timeouts one
can detect the loss event. The protocol can be extended
to invoke a special re-try message. Reservations that were
made but were not acknowledged would then be released
after a short timeout. Moreover, the protocol can be turned
into a soft-state based protocol by requiring that the reser-
vation state be refreshed periodically, using a longer time-
out.

Currently the OPsAR protocol already includes mech-
anisms to cope with link/node failures and to overcome
inaccuracies in knowledge-state (e.g., old informa-
tion that was not updated). When a transaction hits a failed
link/node an NACK-MESSAGE message is sent back to

the transaction-source. This message would update the
knowledge-state along its path and would make sure fu-
ture transactions would not follow the exact same path
towards the transaction-destination. Turning the proto-
col into a soft state protocol will also take care of remnants
of the past reservations that are affected by the fail-
ure.

In this paper, we have presented a non-additive resource
reservation (bandwidth). Handling additive resources, like
delay, requires minor changes to the protocols presented.
For example, we need to maintain the accumulated delay
and to test the route of choice accordingly.

The OPsAR protocol presented invokes the transaction
request from the data source towards the data destination.
However, this methodology was selected in order to sim-
plify the protocol presentation. The protocol can be modi-
fied, so that it is invoked from the data destination towards
the data source, while making the reservation from the data
source toward the data destination. In some network en-
vironments, such as shared media links, the handling of a
failed TRY-MESSAGE may require a single link backtrack.

In the course of the simulations, while tuning the
knowledge-state tunable parameters, we made some in-
teresting observations. For example, we noted the thresh-
old which defines the size of the nefresp(dsr) group and
the size of negiqie(ast) group. We found dependencies be-
tween the sizes of these groups. For example, we no-
ticed that linear increase in the negcsn(ast) group size did
not necessarily increase the success ratio. Also, even in-
creasing the size of both groups (by increasing the mem-
ory size) did not guarantee increase in the performance of
the protocol, and in some cases it even caused degrada-
tion in the overall success ratio. The source of this phe-
nomenon has to do with the fact that the protocol was try-
ing routes with state information which is not “fresh”
enough. Further research must be conducted in order to ex-
plore the inter-dependencies among the various vari-
ables of OPsAR, and to automatically learn and choose
the optimal values, possibly using machine-learning tech-
niques.

5.1. Gradual Deployment within RSVP Frame-
work

The OPsAR protocol can be designed to fit in the RSVP
framework (See [14]). Furthermore, there is no inherent
limitation in the protocol that prohibits its use in an incre-
mental manner. For example, future work can focus on test-
ing the OPsAR protocol deployed only within several core
routers and measure the impact of having the ability to di-
vert from the shortest path (the approach that RSVP take)
within the main core routers.
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Mai dispatcher(

i) F

in_link):

Knowledge-state-update(message, in_link);

i)

Message-bw-update(message);
switch (message. MsgType)
case TRY-MESSAGE:
/* Message’s TargetIP is tqs¢. */
if (message.Flags = TRY_FAILED)
send(message, nu(tast));
return;
nh = Try-decision();
if (nh = NULL or
(nh # nu(tqast) and message.OPCTry = 0))
/* Inverse route and message Source/TargetIP. */
/* NACK message TargetIP is tg,c. */
message-nack.route = inverse(message.route);
send(message — nack, pop(message — nack.route));
/* if Try_phase (and not Try_2_phase). */
if (message.Flags # NO_SCAN);
message.Flags = TRY _FAILIED;
send(message, nu(tast));
return;
if (nh # nu(tere)
messagetmp.OPCTry — —;
reserve(nh, message. BW);
send(message, nh);
case SCAN-MESSAGE:
/* Message’s TargetIP is tsyc. */
{nh} = Scan-decision();
nh_size = min(message.Tickets, message. M BD);
{nh'} = take nh_size nodes out of {nh};
while ({nh’} # 0)
nh = pop({nh'});
message_tmp = message;
if (nh # nu(tsre))
if (message.OPC Scan = 0) then continue;
message-tmp.OPCScan — —;
message_tmp.Tickets/ = nh_size;
send(message_tmp, nh);
case ACK-MESSAGE:
/* Message’s TargetIP is tgyc. */
nh = pop(message.route);
send(message, nh);
case NACK-MESSAGE:
/* Message’s TargetIP is tgyc. */
nh = pop(message.route);
free reservation (nh, message. BW);

send(message, nh);

Figure 8: Message dispatcher at intermediate node.
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Try-decision():
/* In the two steps below we search for the neighbor with maximum end-to-end BW from
the "fresh” knowledge-state group that satisfies the BW requirement. The first step checks
whether the unicast next hop meets the requirements. */
if (min(ks[nu(tase), tase]-bWout, bout (Nu(tast))) > bw)
and (nu(tast) € Netresh(dst)))

return nu(tast);

if (

max {min(ks[nh, tast].bWout, bout (nh))} > bw)

nheneg esp(dst)
return nh;

/* Take the next unicast hop if it is not in the "fresh’ knowledge-state group but satisfies
the next hop BW requirement. If it is in the "fresh’ knowledge-state group, then we have
information indicating insufficient BW towards destination (end-to-end) */
if (bout (nu(tase)) > bw) and (nu(tast) & Negresn(ast)))

return nu(tase);

/* Take the neighbor with maximum end-to-end BW from the ’stale’ knowledge-state group
that satisfies the BW requirement.*/

if max {min(ks[nh, tast]-bWout, bout(nh))} > bw)

nhe€ncgqre(dst)
return nh;

/* Take the neighbor with maximum next hop BW from the ’stale’ or "old’ knowledge-
state groups that satisfies the BW requirement. We can not use the ’fresh’ group because
the neighbors from the *fresh’ knowledge-state group do not have enough end-to-end BW
availability (according to the knowledge-state). */

if {bout(nh)} > bw)

max
nhe€negqle(dst) Y Cold(dst)
return nh;

/* Take the neighbor with the maximum next hop BW from the entire neighbors group.*/
if (max{boy:(nh)} > bw)
nh

return nh;

return NULL;

Knowledge-state-update(message, in_link):

if (ks[in_link, message.OriginI P] = NULL) then create it;
ks[inlink, message.Originl P].bw,,; = message.MaxBWToOrigin;
kslin-link, message.Originl P].bw;, = message.MaxBWFromOrigin;

ks[inlink, message.Originl P].refresh_count = global_count;

Figure 10: Updating the knowledge-state data base.

Message-bw-update( ge):
message.MaxBWToOrigin =
max{min(ks[nh, message.Originl P].bwoyt, bout (nh))}
nh

message.MaxBWFromOrigin =
max{min(ks[nh, message.Originl P].bw;y, biy (nh))}
nh

Figure 11: Updating the message’s BW fields.

Scan-decision():

The scan decision is identical to the Try-decision() described in Figure 9 with the following
exceptions: 1. Every out should be replaced by in 2. Each “return” should not return the
best (max) nh that fulfills the condition but rather collect all nhs that fulfill it, and return
the list sorted by the bandwidth availability.

Figure 9: Decision making in the try message process.
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Figure 12: Decision making in the scan message process.
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