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We model a communication network as a graph in which a processor is a node
and a communication link is an edge . A routing for such a network is a fixed path,
or route, between each pair of nodes. ,Given a network with a predefined routing,
we study the effects of faulty components on the routing . Of particular interest is
the number of routes along which a message must travel between any two non-
faulty nodes . This problem is analyzed for specific families of graphs and for classes
of routings. We also give some bounds for general versions of the problem . Finally,
we conclude with one of the most important contributions of this paper, a list of
interesting and apparently difficult open problems .
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1. INTRODUCTION

We consider the problem of obtaining efficient, reliable, fault-tolerant
routings in a network . As usual, a network is modeled as a graph, with
nodes representing processors and edges representing communication links .
A routing is a partial function that assigns to pairs of nodes in the network
a fixed path between them . We assume that the network communication
protocol has no information about the topology of the network, and thus
all communication between nodes must go on this fixed routing (and only
nodes that have a route between them can communicate directly) .

In local area networks, the time required to send a message along a
route is often dominated by the message processing time at either end ;
intermediate nodes on a fixed route relay messages without doing any
extensive processing . Metaphorically speaking, the intermediate nodes pass
on the message without having to open its envelope . Thus, to a first
approximation, the time required to send a message along a fixed route is
independent of the length of the route .

* A preliminary version of this paper appeared in the "Proceedings, Sixteenth Annual ACM
Symposium on Theory of Computing, Washington, D.C., 1984 .
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FIGURE 1

Consider the network shown in Fig . 1 . Suppose we choose a minimal
length routing on this network ; i .e ., one for which the route between any
pair of nodes is a minimal length path between them . Where they exist, we
break ties by always taking the route that goes through the edge CD .

If in this example the edge CD becomes faulty, then many routes become
unavailable . Figure 2 is the surviving route graph, where two nodes are
joined by an edge exactly if the route between them is still up (i .e ., it did
not go through the edge CD) .

Suppose processor C wants to broadcast a message to all processors.
Since C can send messages only along the fixed routes, the message will not
reach D, E, or F. If G rebroadcasts the message, it will reach E and F, but
not D, since the route from G to D is also down. One more rebroadcast by
E or F is necessary to ensure that D gets the message .

Note that the worst case number of rebroadcasts needed to ensure that
all processors get a message will be the diameter of the induced graph of
Fig. 2 . This observation generalizes. Given a set of faults, the diameter of
the surviving route graph induced by these faults is exactly the number of
rebroadcasts required to ensure that all processors get a message . In
general, which nodes and edges in a graph will become faulty is not known
in advance . If we can calculate an upper bound d on the diameter of the
surviving route graph in the presence off faults for some fixed f, then by
rebroadcasting a message d times we are guaranteed that all processors get
the message (provided that indeed there are no more than f faults) . Thus
such a bound can be used to determine the number of phases required for
each round of certain distributed protocols (such as the Byzantine
agreement protocols of (Dolev and Strong, 1983 ; Strong and Dolev, 1982) .
Given the assumption that the time to send a message along a fixed route
is independent of its length, the diameter of the surviving route graph also
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gives a good estimate of the time required to complete a broadcast in the
presence of faults.

These observations motivate the problem we consider in this paper :
analyzing the number of routes along which a message must travel between
any two nonfaulty processors. In particular, we want to find good fault-
tolerant routings, i .e ., routings that keep the diameter of the surviving route
graph small for any set of faults of a given cardinality . Of course, the
analysis depends on both the types of faults that are considered (node
faults, edge faults, or both) and details of the topology of the original
network (for example, its connectivity) . This problem has given rise to
many interesting questions in graph theory, some of them still open .

Roughly speaking, the problem can be formalized as follows (detailed
definitions are given in Section 2) . Given a graph G, a routing p, and a set
of faults F, we consider the surviving route graph R(G, p)/F with the same
nodes as G - F, and an edge joining two nodes whenever the route between
them avoids F. We want to choose a routing p such that the diameter of
R(G, p)/F is minimized for any set of faults F of a given cardinality .

We first note that minimal length routings are not always optimal . Con-
sider the spoke graph shown in Fig . 3 . In this case, for any points on the
circumference that are not joined by an edge, there exists a minimal length
route that goes through the center node . If, however, the center node fails,
then it is easy to see that with a minimal length routing the diameter of the
surviving route graph grows to (n - 1)/2 (where n is the total number of
nodes). The problem with a minimal length routing in this case is that the
center node is overworked . Consider instead the routing p on S 1, ( the spoke
graph with n nodes) in which the route between two nodes on the circum-
ference is a minimal length path around the circumference (so that, for
example, the route from A to D in Fig. 3 would be ABCD, rather than
AMD) . In this case, the diameter of R(S,,, p),/F is easily seen to be <,2 if
F1 5 2.
This leads us to ask if we can always find good routings . We show

(Theorem 3) that for any (t + 1) node-connected graph G, we can
efficiently find a routing p such that the diameter of R(G, p)/F is no greater
than max(2t, 4) if JF1 s t .

Although minimal length routings are not always optimal, they are
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useful and easy to generate . Indeed, a common routing algorithm (used, for
example, in the Highly Available Systems project at IBM (Aghili et al.,
1983) produces random minimal length routings. Thus, it becomes impor-
tant to find networks for which all minimal length routings are fault
tolerant.

As an example, consider K,,, the completely connected network on n

nodes. If p is the unique minimal length routing on K,,, then the diameter
of R(K,,, p)/F is 2 if I FI < n - 2 . (To see this, suppose F is fixed and that a

and b are any two nonfaulty nodes in K,, . Then either the link between a

and b is nonfaulty, or, since I Fl < n - 2, there must exist a nonfaulty node c
such that both the link between a and c and the link between c and b are
nonfaulty . )

Unfortunately, because of high fan-in and fan-out, completely connected
networks are often impractical . As in several other contexts (e .g ., Valiant,
1982) networks laid out as an n-dimensional cube (C„) achieve surprisingly
good results . In Theorem 1 we show that for any minimal length routing p

on C„ and any set of faults F with I FI < n - 1, the diameter of
R(C,,, p)/F,< 3, independent of n . The proof of Theorem 1 is short but non-
trivial. The result generalizes to n-dimensional rectangular grids and is
easily seen to be optimal .

We also show (Theorem 2) that there exists a minimal length routing ti n
on C,, such that R(C,,, A,,)/F<, 2 if I Fl < n . This in fact is a corollary to a
more general result of (Broder et al., 1984) (although the proof for this
special case is much simpler than that of op . cit .) .

We can also obtain bounds on the diameter of the surviving route graph
for arbitrary graphs, provided minimal length routings are used . If we
restrict our attention to edge faults, then the diameter of the surviving
route graph grows at worse linearly with the number of faults . In an earlier
version of this paper (Dolev et al., 1984), we showed that if F consists only
of edge faults, G/F (i .e ., G with all the elements of F removed) is connected,
and p is any minimal length routing on G, then the diameter of R(G, p)/F
is <, 3 1F1 + 1 . We conjectured that this result could be improved to
2 Fl + 1, a conjecture that was recently proved by (Feldman, 1985) . This
result is optimal, since we can also exhibit graphs where this bound is
attained . The spoke example shows that with node faults things may get
much worse . Even a single node fault can force the diameter of the surviv-
ing route graph to grow to 0(n) . However, a closer look at this example
suggests that the diameter can only grow in this way if there are nodes of
high degree. In (Dolev et al., 1984) we substantiated this intuition by show-
ing that if F consists only of node faults, G/F is connected, and p is a
minimal length routing on G, then the diameter of R(G, p)/F is bounded
above by IIFII, the sum of the degrees of the faulty nodes in F. We conjec-
tured that this bound could be improved to IFII - FI + 1 ; this conjecture
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was also proved in (Feldman, 1985) . We can also exhibit graphs to show
that the latter bound is tight .

Chung and Garey (1983) were able to obtain analogous results for sur-
viving graphs G/F (as opposed to surviving route graphs) . This can be
viewed as dealing with the important special case where the routing just
consists of the edges in the original graph. (More precisely,
G/F= R(G, p)/F, where p is that routing such that p(x, y) = xy if (x, y) is
an edge in the graph, and is undefined otherwise .) Again the spoke example
shows that one node fault can cause the diameter of the surviving graph to
be 0(n) . However, Chung and Garey show that if F consists of only edge
faults and G/F is connected, then the diameter of G/F is <(I + IFI)(the
diameter of G) + Off l ) . In the case of node faults, they compute a bound
on the diameter of G/F in terms of the degree of the faulty nodes . They also
give examples in both cases where their bounds are essentially achieved .

The rest of the paper is organized as follows . In Section 2 the necessary
definitions are given. Section 3 contains the results on the n-dimensional
cube. In Section 4 good routings for general graphs are discussed . Section 5
gives general results for minimal length routings . There are still many open
questions in this area ; we list a few of them in Section 6 .

2. SURVIVING ROUTE GRAPHS

Unless otherwise noted, we deal with an undirected graph G = ( V, E)
that corresponds to a communication network . A node routing p on V is a
partial function p: V x V -> V* such that p(x, y), if it is defined, is a
sequence of nodes in V starting with x and ending with y ; i .e., a word of the
form xuy with u c V* . A node routing p on V is a routing on G = ( V, E) if
p(x, y) (when defined) corresponds to a simple path (one with no loops) in
G from x to y ; i .e., every consecutive pair of nodes in p(x, y) is an edge in
E. A routing p on V determines an edge-labelled, directed route graph
R = (V, dom(p)), where two nodes x and y are joined by an edge exactly if
p(x, y) is defined. In this case the edge is labelled by p(x, y) . If p is a
routing on G, we use the notation R(G, p) for the route graph determined
by p . (We occasionally omit the G and p if they are clear from context.)

A routing p is a partial routing if p(x, y) iss undefined for some nodes
x =A y; otherwise p is a total routing . Note that if p is a total routing then
R(G, p) is a complete graph on the nodes of V.

Let F be a set of nodes and edges called the set of faults. F can be par-
titioned into the set of node faults, F,, and the set of edge faults, F E . We
define V/F to be V - F,,, E/F to be E - FE - J (a, b) E E I a E F,, or b c F, J,
and G/F= (V/F, E/F) . G/F is called the surviving graph .
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An object (path, subgraph, etc .) avoids F if no element of F is contained
in that object . Thus, a path avoids F if no node or edge on the path is in F .
A routing avoids F if each of its routes does. An edge of a route graph
avoids F if the sequence (path) which is its label does .

For a given set of faults F, let p/F be the subrouting of p consisting of
those routes that avoid F; i .e ., (p/F)(x, y) = p(x, y) if p(x, y) avoids F,
otherwise (p/F)(x, y) is undefined. If R = (V, dom(p)) is a route graph and
F is a set of faults, the surviving route graph is R/F=(V/F, dom(p/F)) .
Thus, two nodes are joined by an edge in the surviving route graph exactly
if the route between them avoids F .

We now briefly review some standard definitions from graph theory . We
refer the reader to (Berge, 1976) for more details . A graph G is connected if
there exists a path in G between any pair of nodes in G ; a graph G is (t + 1)
node connected if there are t + 1 node disjoint paths between any pair of
nodes in G . Given nodes u and v in G, the distance between u and v in G,
denoted dG(u, v), is the shortest path in G between u and v . The diameter of
G, written DIAM(G), is the maximum of dG (u, v) for every pair of nodes u,
v in G .

3. THE DIAMETER OF THE SURVIVING ROUTE CUBE

Let C„ = (V,,, E„) be the n-dimensional cube . We represent nodes of C„
as words of length n on the alphabet {0, 1 } . If x is a node, its ith coor-
dinate is denoted x ; . Edges exist only between nodes that differ on exactly
one coordinate. Thus we represent edges as words of length n on the
alphabet {0, 1, * } with exactly one occurrence of * in the coordinate where
the two nodes joined by this edge differ .

Networks in the form of n-dimensional cubes display surprisingly good
performance. Theorem 1 states that the surviving route graph that results
from any minimal length routing on C„ and fewer than n faults has
diameter at most 3. Theorem 2 defines a specific minimal length routing
and asserts that the diameter of the n-dimensional cube with this routing
is 2 .

THEOREM 1 . Let p be a minimal length routing on C,, . If I F1 < n, then
DIAM(R(C,,, p)/F) < 3 .

THEOREM 2 . Let ),J x, y) be the (minimal length) routing on the n-dimen-
sional cube that proceeds from x to y by moving along the coordinates on
which they differ one at a time from left to right . Then if JFJ < n,

DIAM(R(C , , . n)/F) < 2 .
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For

	

example,

	

). 3(011, 110) = (011, 111, 110)

	

and

	

x, 3(110, 011) _
(110, 010, 011) . Note that A,,(x, y) =A )"(y, x), in general .
We first develop some machinery to prove these theorems . Define the

weight of a node or an edge to be the sum of its coordinates where * carries
the value ' . Let I x I denote the weight of x. Thus 1111011 =4 and
1 * 1011 = 3 .5. By dropping the ith coordinate, any n-dimensional object
can be projected along the ith coordinate onto an (n -1)-dimensional
object. Let P . be the operator for projecting along the ith coordinate . Note
that an edge may project to a node . Thus Pz(11101) = 1101 = P 2(1 *101) .
We write x < y when < holds on each coordinate. We write x < y when
x < y and < hold on some coordinate. We say x and y are maximally far
apart when =A holds on each coordinate . If x and y are nodes, let C(x, y) be
the subgraph consisting of nodes and edges z satisfying the condition, if
x ; = y ; then z; = y ; . We call C(x, y) the subcube generated by x and y . Infor-
mally it consists of the graph induced by all nodes in minimal length paths
between x and y .

We define a pair of nodes x and y to be safe with respect to a set offaults
F iff every minimal length path from x to y avoids F. A sequence of nodes
x, , . . ., x k is safe with respect to F if each consecutive pair of nodes in the
sequence is safe with respect to F.

LEMMA 1 . C(x, y) avoids F iff the sequence x, y is safe with respect to F .

Proof. No minimal length path from x to y can leave C(x, y) .

Proof of Theorem 1 . By Lemma 1, it follows that if x, y is safe with
respect to F, then there will be an edge from x to y in R(C", p)/F for every
minimal length routing p . Lemma 2 below says that if IFI < n, then for any
pair of nodes x, y in C"/F, there are nodes u, v such that x, u, v, y is safe
with respect to F. This means that x, u, v, y forms a path of length 3 in
R(C,,, p)/F for every minimal length routing p . Thus Theorem 1 follows
immediately from Lemma 2, which we now state and prove .

LEMMA 2. If JFl <n, then for any pair of nodes x and y in C"/F there are
nodes u and v such that the sequence x, u, v, y is safe with respect to F.

Proof. We proceed by induction on n, carrying along the extra induc-
tion hypothesis that if n > 1 and if nodes x and y are maximally far apart,
then nodes u and v, with x =A u and u 0 v, can be chosen such that x, u, v, y
is safe with respect to F, u is in C(x, v) and v is in C(u, y). Note that if
x = 0" and y = In, then the last condition is equivalent to x < u < v < y.
The arguments for n = 1 and n = 2 are straightforward and left to the

reader. Assume the induction hypothesis for dimension n - 1 with n > 2.
Let x and y be nodes in C"/F. There are two cases .
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Case (a) . The nodes x and y have the same value on some coordinate .
Without loss of generality x, = y, = 1 . If every element of F has a 1 in its
first coordinate, then the sequence x, 0P,(x), 0P,(y), y is safe. Otherwise,
the safe sequence can be constructed entirely in C(iO" - ', 1") (the subgraph
consisting of the nodes and edges with a 1 in the first coordinate) by the
induction hypothesis, since at least one element of F is avoided by this
subgraph.

Case (b). The nodes x and y are maximally far apart. Without loss of
generality x = 0" and y = 1". Case (b) has two subcases.

Case (bl ) . There is an i and an element f of F such that Pi(f)
is in

	

{0"- ' 1" - '}

	

Without

	

loss

	

of generality

	

i= 1.

	

Let
F= P, (F) - 10"', 1" - ' I . Then IF' J < n -1 . Thus, by the induction
hypothesis there is a sequence 0" - ' < u < v s 1" - ' that is safe with respect
to F. Suppose V<1"-1. Since C(0" - ', u) (resp . C(u, V), C(v, 1" - ')) avoids
F by Lemma 1, it is easy to check that C(0", Ou) (resp. C(Ou, lv),
C(lv, 1")) avoids F. Thus 0" < Ou < 1v < 1" is safe with respect to F. And if
v = 1" - ', then it is again easy to see that 0" < Ou < lu < 1" is safe with
respect to F.

Case (b2) . For each i, P i(F) does not include either 0" - ' or 1" - ' .
Let f be a minimal weight element of F. Without loss of generality assume
f, = 1 so that P, (f) has minimal weight in P, (F) . Let F = P, (F- {f 1) . If
F is empty, then (since the projection of a nonempty set is nonempty)
F= {f) . Consequently, since f, = 1, 0" < OF' - ' < 1" is safe with respect to
F. Suppose that F is not empty. Then I F' J < n - 1, so by the induction
hypothesis there exists at least one sequence safe with respect to F of the
form 0"- ' < a < b ~< 1" - ' . Among all such sequences there must be one
0" - ' < u < v,< 1" - ' with Jul maximal. We claim that 0" < Ou < Ov < 1" is
safe with respect to F. It is clearly safe with respect to F- {f } : since
C(0"- ', u) (resp . C(u, V), C(v, 1" - ')) avoids F', then C(0", Ou) (resp .
C(Ou, Ov), C(Ov, 1")) must avoid F- {f } . Thus it suffices to show that 0",
Ou, Ov, 1" is safe with respect to {f } . Since f, = 1, clearly 0", Ou, Ov is safe
with respect to { f } . Thus it suffices to show that fo C(Ov, 1") . But if
fc C(Ov, 1"), we must have I P,(f) I > I vI (and, in particular, we have that
v < 1" - ' ) . Since f was chosen with minimal weight and f, = 1, it follows
that 1P,(f') > 1P,(f)I > lvi for all f' e F. Thus C(0" - ', v) avoids F, so
On-1<V<1"-1 ( .1" - ') must be safe with respect to F. Since lvi > Jul,
this contradicts the choice of u . (Recall we chose u with maximal
weight.)

Proof of Theorem 2 . We proceed by induction on n. The case n = 1 is
trivial . For n > 1 there are two cases .
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Case (a) . The nodes x and y agree on coordinate i. Without loss of
generality x; = y ; = 1 . If every element of F has 1 in the ith coordinate, then
x, x, . . . x;_,OY,+1 y", y is a path in R(C n , A)/F. Otherwise, let
F= P.({ f c F L f = 1 } ) . Since I FI < n -1, we can apply our induction
hypothesis to P;(C n ) . Thus, there is a path of length one or two from P i(x)
to P i(y) in R(P,(C n ), An ,)&F . If the path is of length one, then (x, y) is an
edge in R(C,,, 2„)/F, since all faults not in F have either 0 or * in the ith
coordinate . And if P;(x), u, P i(y) is a path of length two in
R(P,(C n ), 2,,_ 1 )/F, then it is easy to see that x, u 1 . . . u,_, lu +, . . . u n _ I , Y
is a path in R(Cn , ) )/F.

Case (b) . The nodes x and y are maximally far apart . Without loss of
generality, x = 0" and y = 1 " . The paths in Cn formed by concatenating
),,(0", 0'l" - ') and ),,(0'1n-', 1") for 1 < i < n are node disjoint so one of
them must avoid F because I Fl < n . I

Remarks. 1 . We have shown that when IFl < n and p is a minimal
length routing on Cn , the diameter of R(Cn , p)/F is no greater than 3 .
However it does not require JFl = n - 1 to force the diameter to be 3. If we
choose p so that p(0", lx) always goes through 10" - ' and p(0y, 1"),
y :A 0" - ', always goes through 01"_ 1 , and choose F= { 10n - ', O1" - ' }, it is
easy to check that the diameter of R(C n , p)/F is 3. A similar example can
be obtained by placing * in the first coordinates of either or both elements
of F.

2 . We call a routing bidirectional if the route from x to y is the same
as the route from y to x (i .e., p(x, y) = p(y, x)) for all x and y; otherwise, it
is called unidirectional . We have allowed routings that are not bidirectional .
Theorem 1 clearly still holds if we restrict to bidirectional routings, but
there is no bidirectional analog of Theorem 2 . To see this, consider any
minimal length bidirectional routing p on the square C 2 . ( There are not
very many.) Note that p(OO, 11) and p(01, 10), the routes to opposite cor-
ners of the square, must have an edge in common . If F consists of this
single faulty edge, then the distance between its endpoints in R(C 2 , p)/F
must be 3 . For n >, 3, it is still an open question if there exists a bidirec-
tional analog of Theorem 2 . It would also be interesting to know whether
there is a bidirectional analog to Theorem 2 if F consists only of node
faults. (Note that the counterexample given above for C 2, does not hold for
node faults.) Again this remains an open question.

3 . For any pair of nodes x, y in C,,, we can find n midpoints z 1 , . . ., z n

with z, = y such that the n routes from x to y formed by concatenating
An(x, z,) and )L n(z r , y), i = 1, . . ., n, are node disjoint . A proof of the existence
of these midpoints may be obtained by carrying it along as an induction
hypothesis in the proof of Theorem 2 . These node disjoint routes can be
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useful in certain applications . For example, if processor x wants to guaran-
tee that a message gets through to y quickly, it computes z, , . . ., z„ and sends
the message to z, , . . ., z n with instructions to forward it to y . One message
must get through so long as IFl < n .

4 . Theorems 1 and 2 also hold for any n-dimensional rectangular
grid (i .e ., a product of n intervals of the form I, x . . . x In , where I, is of the
form {0, . . ., k, } ) ; the techniques of the proof generalize immediately .

4 . ROUTINGS IN A GENERAL NETWORK

As we showed in the Introduction, if S n is a spoke graph with n nodes
and p is a minimal length routing on S n , then the diameter of R(Sn , p)/F
can be 0(n), even if F consists of a single node . However, there does exist a
non-minimal length routing on the spoke for which the diameter of the
surviving route graph is 2 as long as IFl < 2. In this section we show that
this result generalizes .

THEOREM 3 . If G is t + 1 node connected, then there is a bidirectional
routing p such that if ~Fl < t, then DIAM(R(G, p)/F) < max(2t, 4).

Proof In order to prove the theorem, we will first need the following
lemma.

LEMMA 3 . Let G = (V, E) be t + 1 node connected but not t + 2 node con-
nected, with I VI >, t + 3 . Then there exists a set of nodes M c V with
I MI = t + 1 such that the removal of the nodes in M and all of their adjacent
edges partitions G into non-empty disconnected subgraphs, G 1 , G2 , . . ., G k ,
with k >, 2 . Moreover, if x c G„ i = 1, 2, . . ., k, then there exists t + 1 node
disjoint paths in G; from x to the nodes in M . If (x, m) E E for some m c M,
we can take xm to be the path from x to m .

Proof of Lemma 3 . The fact that we can find M follows immediately
from the fact that G is t + I node connected . Without loss of generality, let
x E G, and choose some y E G2 . Then by the definition of connectivity,
there exist t + 1 node disjoint paths from x to y in G. Since I MI = t + 1, and
the removal of the nodes in M and all of their adjacent edges leaves x and
y in disjoint subgraphs, each of these paths must include exactly one node
of M, with the path from x to each such node staying completely in G, . If
(x, m) EE for some m cM and if the path from x to m in G, which is
obtained by the above construction is not xm, then replacing that path
with xm does not contradict the node disjoint requirement for the paths
from x to M.
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Returning now to the proof of Theorem 3, given G, we can assume
without loss of generality that G is not t + 2 node connected (otherwise we
find a routing on G', which is the result of removing enough edges from G
so that it is not t + 2 node connected) . We must have I VI > t + 2 (otherwise
G could not be t + 1 node connected) . If I VI = t + 2, then G is completely
connected, and we just take p(x, y) to be the edge xy in this case . It is easy
to see that DIAM(R(G, p)/F) < 2 for any set of faults F with I FI < t + 1 in
this case . If I VI > t + 3, we choose M and node disjoint paths from each
node x ~ M to each node m c M as in Lemma 3. We now define a partial
routing p on G by two rules :

1 . If (u, v) E E, then p(u, v) = uv, i.e ., the route from u to v is the edge
between them .

2 . If x ~ M and m e M, then p(x, m) is the path described above .

We note that by using standard techniques from network flow (Even,
1979) such a routing can even be found efficiently, in time 0(1 VI '/' IEl 2 ) .

Rule 1 guarantees that if IFl < 1, then R(G, p)/F is connected and
DIAM(R(G, p)/F) 5 DIAM(G/F) . Note that although DIAM(G/F) could
be 0(I VI), Theorem 3 gives a bound on DIAM(R(G, p)/F) which is
independent of I VI .

IffE F is either a faulty node in G; (resp . M) or a faulty edge with both
endpoints in G; (resp . M), then f is said to be in G i ( resp . M). Iff c F is a
faulty edge which has one end point in M and the other in Gi , then f is said
to be in G i . Let Fi be the set of faults in Gi , i = 1, . . ., k, and F,,, be the set of
faults in M. Note I F, I + --- + I Fk (+ I F,,, I < t.

We now complete the proof that DIAM(R(G, p)/F) <, max(2t, 4) by a
case analysis .

Case 1 . For some i c 11, 2, . . ., k}, ~Fi I = 0. Without loss of generality,
assume that IF, I = 0. Since G, is not empty, there exists a node z c G, such
that there is an edge in R/F from z to every non-faulty node in M.
Therefore, there exists a path of length 2 in R/F between any two non-
faulty nodes of M via z . Any x ~ M must be adjacent in R/F to some non-
faulty m c M since IFl < IMO . This immediately gives a bound of 4 between
any two nodes which are neither in M nor in G, .

Case 2 . 1 Fi I ~A 0, for all i c { 1, . . ., k } . Let P = x o . . . x,, be some minimum
length path in R/F between x = x o and y = x,, . We bound the length of P
by counting nodes in M which either appear on P or are adjacent to inter-
nal nodes of P. Thus, for x i c P, let (x i ) _ {nonfaulty nodes in M to which
x i has an edge in R/F} u ({x i } n M) .

Let x i be a node of P which is not in M, and assume that x i c Gj . There
are paths in R/F from x i to at least t + 1 - (IFF I + I F,,, I) non-faulty
nodes of M. Since k > 2 by hypothesis, IF, 1, IF2 I >t, and
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IF1 I+ -- • +IFk I +IFMI =t, we must have (IF;i+IFM I),t-1, and
so

	

I (x, )I > 2 . Let P r .,; be the partial path x ix, + , • • • xx .

	

Let
S(P, . ;)= (x,) u . . . u (x1 ) . We prove the 2t bound by showing that
IS(Po ..i)I % ri/21+ 1 by induction on i.

Since I (x o ) I > 2, the claim holds for i = 0, 1, 2 . Assume the claim holds
up to i - 1 for i > 2 . The bound is obtained by the following counting
argument. There are two cases, x i c M and x i ~M. If x i c M, then x, 0 (x,)

for j < i - 2, for otherwise Po.,xiP ( ,+,)_h is a shorter path from x toy than
is P. Thus,

IS(Po. .1)I % IS(Po. .i-a)I +1 >,r(i-2)/21+2=ri/21+1 .

If x i ~ M, then (x i ) n (x1 ) = 0 for j < i - 3 . Otherwise, the existence of some
m with m c- (x i ) n (x,) implies that Po..,mP;+, . .h is shorter than P. Since for
x i 0 M we have I (x i ) I >, 2, then

IS(P0_i)I %IS(Po ..i-3)1+2>,r(i-3)/21 +3,ri/21+1 .

Since P= xo x, • • • x,, it follows that IS(P)I,> rh/21 + 1 . Since
IMI ,< t + 1, we must have rh/21,< t . Consequently, h < 2t and I PI .< 2t .

5 . MISSING NODES AND MISSING LINKS

In this section we return to minimal length routings and obtain bounds
for the diameter of a surviving route graph in terms of the number of faulty
edges and the degrees of the faulty nodes . We first consider the case where
there are only edge faults . In an earlier version of this paper, we showed
that if F consists only of edge faults and G/F is connected, then for any
minimal length routing p, the diameter of R(G, p)/F is S 31F1 + 1 . We con-
jectured that this bound could be improved to 1IFI + 1, a result which was
recently proved by Feldman ( t985) .

THEOREM 4 (Feldman, 1985). If F consists only of edges, G/F is
connected, and p is any minimal length routing of G, then
DIAM(R(G, p)/F) < 2IFI + 1 .

This result is essentially optimal, as the following theorem shows .

THEOREM 5 . For each t there is a graph G„ a minimal length routing p t

of G„ and a set F, of t edges that does not disconnect G, such that
DIAM(R(G„ p,)/F,)=2t+1 .

Proof. The required graph G, is obtained by the obvious generalization
from the graph G, shown in Fig. 4, where the edges marked with an x
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through them are in F, and p goes through a faulty edge whenever possible
(for example, p(A, G) = ABG). /

The spoke example of the Introduction shows that we cannot expect
such good behavior from node faults, since even one node fault fin a graph
G can cause the diameter of R(G, p)l { f } to be O(I VI), for every minimal
length routing p . But this bad behavior can only come about if the node f
has high out-degree.

DEFINITION . For a node a, define I a II to be the degree of a; i .e ., the
number of edges with endpoint a. For an edge e, define IIe1I = 2. Finally,
define II FII = Y-1 . F Iff II .

In (Dolev et al., 1984) we showed that if F consists only of node faults
and G/F is connected, then the diameter of R(G, p)/F,< I F11 for every
minimal length routing p . We conjectured that in fact
R(G, p)/F, IIFII - IFI + 1 . This conjecture was also proved by Feldman.

THEOREM 6 (Feldman, 1985) . If F consists only of nodes, G/F is connec-
ted, and p is any minimal length routing of G, then
DIAM(R(G, p)/F) < IIFII - JFI + 1 .

Again this result is essentially optimal, since we have

THEOREM 7 . For all d,, . . ., dk , there exists a graph G, a minimal length
routing p on G, and a set of node faults F= { f , . . .,J } which does not dis-
connect G such that the degree of f is d;, i= 1, . . ., k, and
DIAM(R(G, p)/F)= IIFII - IFI + 1 .

Proof. Given d l , . . ., d k , we first construct graphs G,_., G k such that G,
has a central node f of degree d ;, and 2d; nodes on the "circumference,"
x;,, . . ., x, (2d) . We then obtain G by joining x u2d) and x(+ ,), by an edge, for
1 < i < k, as shown in Fig . 5 . We choose the minimal length routing p that
takes a path through fl , . . ., fk whenever possible . We leave it to the reader
to check that G and p have the required properties. I

Not surprisingly, the bounds of Theorems 4 and 6 can be combined to
get
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THEOREM 8 . (Feldman, 1985) . If G/F is connected, and p is any
minimal length routing of G, then DIAM(R(G, p)/F)= IIFIJ -IF, I + 1 .

We can also combine the constructions of Theorems 5 and 7 to show
that this result is optimal . We leave details to the reader .

The last issue we consider in this section is connectivity . The examples of
Theorems 5 and 7 of graphs with a given diameter were graphs of low con-
nectivity . The reader may wonder if we could have also constructed similar
examples with high connectivity . The answer is yes, as the following
theorem shows . Once we have an example of a graph where a certain num-
ber of edge faults and vertex faults cause the resulting surviving route
graph to have a given diameter, we can construct a graph with arbitrarily
high connectivity with the same property .

THEOREM 9 . Given a minimal length routing p on a graph G, a set F of
faults that does not disconnect G, and any desired node connectivity k, there
is a graph G* = (V*, E*) containing G as a subgraph and a minimal length
routing p* on G* containing p as a subrouting such that G* is at least k con-
nected and DIAM(R(G*, p*)/F) is at least as large as DIAM(R(G, p)/F) .

Proof. Let G = (V, E), p, and F be as in the statement of the theorem .
Roughly speaking, G* consists of G together with k copies of G/F, with
corresponding nodes on G and each of the copies joined to form complete
graphs on k + 1 nodes. However, in each of the copies, we place two extra
nodes on each of the edges of G/F. The result is that the distance between x
and y in the copy is three times that between x and y in G. This means that
it is always "faster" to travel in G than to travel in a copy.

More formally, let G* = (V*, E*), where V* = V u {xyi I x= y c V/F or
(x, y) E E/F, 0 < i <, k}and E* consists of all the edges of E as well as :

1 . If xyi, xyj c V* and i 0j, then (xyi, xyj) E E*.

2 . If xxi, xyi c V* and x =A y, then (xxi, xyi) E E* .
3 . If xyi, yxi c- V* and x =A y, then (xyi, yxi) E E* .

4 . If x, xyi c V*, then (x, xyi) E E* .
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Note that corresponding to the edge (x, y) in G/F, we have the path xxi,
xyi, yxi, yyi in G*. Using this observation, we can show that given any two
nodes of the form xyi and uvi in V*, there is a path in G* between these
nodes that stays on the "ith level" ; i.e ., all nodes on the path are of the
form wzi. It easily follows that G* is k + 1 node connected . Figure 6 is an
example of the construction of G* when G is the triangle ABC, F consists
of the edge BC, and k = 2 .

Let p* be a minimal length routing on G* which extends p . For x in V
define New(x) _ {xyi xyi c V* } . If x and y are nodes in G/F such that
d,/,(x, y) > 1, a c New(x) and b c New(y), then it is easy to check that

(i) do /F-(a, b) = dGIF(x, y) + 2 .
(ii) do *1F(x, b)=dG1F(x, y)+ 1 .

(iii) do*/F(x, y) = dGIF(x, y) .

(This is where we need the extra nodes added in the copies of G/F to
ensure that it is always faster to travel through G.)

Using the properties of p* described above, it now follows by a
straightforward induction on i that if a E New(x) u {x} and
b E New(y) u {y}, and dR(c*,p•),F(a, b) = i, then dR(c, p)1F(x, y) < i. The
theorem immediately follows . I

6 . OPEN PROBLEMS

Although we have obtained a number of results, many open problems
remain in this area. We list a few of them here :

1 . We have obtained much better bounds than the general bounds
for completely connected graphs and for the n-dimensional cube . Are there
other classes of networks with equally good bounds? (Some results along
these lines have been proved in Broder et al., 1984 .)
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2. Can the upper bound of Theorem 3 be improved? In case t < 2 we
can show that any graph G has a routing p with DIAM(R(G, p)/F) S 3 .
For case t = 1, the square shows that this result is best possible for bidirec-
tional routing. We conjecture that the results for the n-dimensional cube
generalize ; that is, for any graph G there is a bidirectional routing p such
that if IFI is less than the connectivity of G, we have DIAM(R(G, p)/F) < 3
and a unidirectional routing p' such that (again if Fl is less than the
connectivity of G) DIAM(R(G, p')/F) <, 2.

3. The proofs of Theorems 4 and 6 do not use the connectivity of G
but only the fact that G/F is connected . However, the connectivity of G is
heavily used in Theorem 3 . Can results along the lines of Theorem 3 be
proved for graphs whose connectivity is less than t + 1?

4. A routing p is consistent (prefix consistent, suffix consistent) if
every subpath (resp . prefix, suffix) of a route is also a route . Consistent
routings are of interest, since they are the ones that arise in practice (for
example, the routings constructed by the algorithm used in the Highly
Available Systems project are consistent) . The routings A,, of Theorem 2 are
consistent, but the routing constructed in the proof of Theorem 3 is not
necessarily even suffix consistent . What are the corresponding bounds for
consistent, prefix consistent, and suffix consistent routings?

5. What happens to the diameter of the surviving route graph if the
routing is a random routing?

6. What, if anything, can one say about routings that are almost
minimal length?

7. We have assumed that the graphs representing communication
networks have undirected edges . We can also consider what happens if we
have directed communication networks. This corresponds to having one-
way communication links . What are the analogs of our results for directed
graphs? We remark that we can construct an example of a directed graph
G and a minimal length routing p on G such that the diameter of R(G, p)/F
is 0(n) even if F consists of only one faulty edge, so that Theorem 6 does
not hold if G is a directed graph . (The example has much the same flavor of
the spoke example given in the Introduction .)

Define hell for a directed edge e with source node a to be hall and define
Jell = 2 for an undirected edge e . As before, I F11 = Y_fE F llf 11- We conjecture
that if p is a minimal length routing and G/F is connected, then

DIAM(R(G, p)/F), IFII - 1 FvI + 1 .

Note that this is a generalization of Theorem 8 .
In practice graphs where every node has degree s 3 frequently arise . If
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this conjecture is true, then if G is such a graph and p is a minimal length
routing, then DIAM(R(G, p)/F) 5 2 IFJ + 1 for any collection F of node
and edge faults that do not disconnect G.
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