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Abstract

Due to the trends toward cheaper and more powerful processors and
conmmnmnications, we are witnessing the increase m distnibuted process-
ing 1 many computer applications Pattern recogmtion and decision
maknig will most hkely follow tlus trend. especially o wmannfactur-
g (large number of mspection devices. autonowous robots ete ) and
in military (arrays of semsors. satellites etc). In this paper we are
dealing with the problem of aclueving conmuon decision (conseusus)
among multi-agents (Processors) making thar mdependent decisions
su the presence of fanlts. For example. how to aclueve global control
(1.e. shut down) of array of robots m manufacturing. assunnug all
robots can make their own decisions. are connected to each other. but
failures 1 robots and/or commnmuncation lines can oceur?

The man contnbutions of the paper are’ (a) novel algonthw for
aclueviug conscnsus amony multi-agents w a faulty environment. and
(b) overview of the state of the art in tlus field that has been stud-
ied m the Computer Science commuuty  The algonthus we present
are deternunistic and cau be easily nnplemented in Lardware. They

gnarantee reaching cousensus winle sendmg smgle bit messages The

algorithms can be prpelined for better total thronghput

1 Introduction

With the proliferation of computer technology and the trends to-
ward better, low-priced communication, and smaller, more pow-
erful and cheaper processors, we are witnessing incrcase in dis-
tributed processing in many computer applications. Pattern
recognition and decision making will most likely follow the same
trend. One way of exploiting this new technology is in using par-
allel processing in solving pattern recognition problems. Another
is the use of many independent systems that use pattern recogni-
tion and decision making (like inspection devices, monitors, robots
etc.) that are connected in a large distributed systems. While the
above solutions offer many advantages like modularity, superfluity,
accessibility. etc., special care has to be devoted to the algorithms
to ensure efficient and proper performance. The questions of fault
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tolerance, agreeing upon common data. and coordination of ac-
tivities naturally arise in these applications.

In order to motivate the reader, let us analyze the following hy-
pothetical case: We have independent agents R; that are capable
in making independent decisions (example of robots in manufac-
turing floor. military warning systems etc.). There are also control
centers C; that are connectedto R: and among themselves. A sub-
set of the system must agree on common decision for the system
to function properly (all robots to shut off, warning to be issued
etc.). How can we ensure that the consensus is reached even in
the presence of failures in some R;, C';, and/or noisy communica-
tions. This problem has been studied in the Computer Science
community and is known as Distributed Consensus, or Byzantine
Agreement. The importance of it resides in overcoming the uncer-
tainty that faults introduce. This can be achievedif all the reliable
members of the system agree upon the content of messages being
sent (or the state of elements) in the system, especially of those
corresponding to the faulty parts of the system. even where the
faulty parts cannot be uniquely identified. Typical faults can be
failure to send or relay proper information to some of the agents,
or failure to receive information being sent. It may include a crash
of elements, etc.

In this paper we will give a brief overview of the current state of
the art in Distributed Consensus and also present new approach to
the consensus algorithms [BD]. We will concentrate on a simple
model and a binary decision value in order to exhibit the algo-
rithms. These algorithms are derived having technological imple-
mentation in mind, i.e. they can easily be built and incorporated
in existing systems. The implementation algorithm requires the
participating elements (to which we refer as agents or processors )
to occasionally send single bit messages. All previous algorithms,
excluding those in [BD], required sending messages of large size.
The proposed family of algorithms in our paper are deterministic,
require sending single bit messages, and can be implemented in
hardware. Several instances of the algorithm can be pipelined,
one following the other in an on-line fashion.

In the literature various models and several variation on the ba-
sic consensus problem appear. The basic and simple case studied
in this paper can be served as a guideline to both the difficulties
and capabilities of such an approach. The algorithms presented
here are applicable in organizing complex pattern recognition sys-
tems that will soon be emerging in industry and military applica-
tions.



The paper is organized as follows: Section 2 contains the basic
definitions and a short description of some of the primary known
results. In Section 3 we present a description of our basic algo-
rithm. Its generalizations and possible implementations are given
in Section 4. Concluding remarks are included in Section 5.
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The Consensus Problem

The consensus problem is the key property in coordinating multi-
agent system, though in many cases this is not the sole goal of the
system. Studying this agreement enables us to isolate the main
difficulties in coordinating a system in a faulty environment.

Given a distributed system of n agents, py,...,ps . where each
one has an initial binary value v: (v, & {0,1}): let t be the upper
bound on the number of agents that might become faulty dur-
ing the algorithm. We are looking for an algorithm that at its

completion the following two conditions hold:

e validity - All the nonfaulty (correct) agents agree on the same
binary value.

o consistency - If the initial value was the same for all the
correct agents, then this value will be the final decision value.

This problem is called the Consensus Problem. It is a variant of
the known Byzantine General Problem [PSL], in which the agents
are required to agree on a binary value of one of them called the
general. One can easily generalize the above problem to one in
which we are concerned with the input values of only a subset of
the agents. All these problems were asked in various models. In
this paper we concentrate on the very basic and simple model:

o The system is completely synchronized.

¢ The communication is via a complete and rehable network,
i.c., each agent can send a message to every other agent and

messages arrive unaltered and on tune.

o The agents are deterministic, and no randomized operations
are allowed.

e The faulty agents can be malicious. They might collude in
order to prevent reaching the agreement.

Note that an actual system may differ from the above suggested
model. Agents are not malicious, but overcoming this kind of
faulty behavior implies overcoming any possible fault. Most of
the basic lower bounds still hold for even a much simpler type of
fault. For simplicity communication errors are ignored. though
one can associate faulty communication lines with faulty agents
that are adjacent to these lines.

The synchronization of the system is described by rounds. In
cach round an agent performs three operations. It sends mes-
sages, receives messages, and performs internal computation. In
the last round of the algorithm, after the internal computation is
completed, the agent must decide.

Three complexity measures determine the efficiency of a solu-
tion:

1. The ratio between n and ¢.

o

The maximal number of rounds required in the worst case,
denoted by 7.

3. The maximum size in bits of a single message, denoted by m.

967

Traditionally researchers use the total number of messages (or
bits). being sent during the algorithm, instead of the third pa-
rameter. We believe that in order to explore the right trade-off
among the parameters, the size of each message is a better mea-
sure.

To demonstrate the saddle issues in reaching agreement or con-
Agents 'y, Cs, and (3

have to communicate their individual binary values to every agent.

sensus consider the following example.

They either send 1 or nothing. Thus, not sending means having a
0. All agents know beforehand when they are scheduled to com-
municate. One can think in terms of control centers issuing a
possible “shut-off" to all robots. All control centers and robots
should reach the same final decision. Consider the scenario in
which C; has a 1. and succeeds to send it to everybody, Cy has a
0 and do not send anything, but €2 has a 1 and due to a failure
it can send it to exactly half of the agents. In this scenario half of
the agents will decide 1 and half will decide 0. Moreover, having
additional round in which everybody sends its majority to every-
body else will not help. as long as C» will be able to communicate
with exactly half of the agents.

The above example clarifies why a simple majority voting will
not enable us to reach consensus when faults exist. Reaching
consensus requires processes to communicate in several rounds,
notifying each other on values being received. The main obstacle
resides in the uncertainty when the number of votes is almost
equal. The next idea one will come with is using thresholds, but
again similar scenarios can be applied around those thresholds.
In later sections we will show how our algorithm overcomes the
problems reflected by the above example.

2.1 Known Results

In this subsection we list the main known results on the consensus
and byzantine agreements.

There are three known lower bounds for the complexity mea-
sures listed in the previous section,

1. n > 3t+1[PSL].
2. r>t+1I[DS].

3. m > 1 (obvious).

Other lower bounds relates the total number of messages to
n and t [DR]. but are left out of this paper. The known upper
bounds optimize two of the parameters but “pay” in the third one:

1. The Full Information algorithm uses n > 3t 4+ 1 agents and
r = t+1 rounds, but therc are messages of size m = O(n') =
O(t') [PSL,BDDS].

2. The Linear Size Message algorithm, where m = O(n) = O(t)

(almost optimal), uses minimal numbern > 3t+1, of agents,
but takes r = 2t rounds {BDDS].

3. The Square algorithm with m < n andr =t +1, butn >
2t> — 3t + 2 [DRS].

Recently three families of algorithms
[Co,BDDS,BD]. Every family matches one of
and gives a trade-off between the other two.

presented
the lower bounds

were

2.2 Our Results

The basic version of our algorithm requires n = (2t + 1){t + 1)

t + 1 rounds and uses only 1-bit messages.

agents. but only r
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the maximum message size by a factor of n. An interesting prop-
erty of this algorithm is that each agent sends a value only once.
We call this algorithm the Beep Once algorithm (to be presented
in Section 3).

From this algorithm we derive the following family of algorithms
{to be presented in Section 4), parameterized by k:

The Beep algorithms: For every k, 1 < k < oo, the = exists an

algorithm with single bit messages. (& determines tiie trade-off
between the number of rounds and the ratio of correct to faulty

agents). The number of agents is,
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and the number of rounds is,
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Asymptotically, the result is,

1
Vicignncegt 3T 0t 2 T An > 580 1) = r < (146t

Obscrve that a‘n]ost C"Cry ﬂlgori!l]lr\ can bC Sin]ulﬂtcd b) a
single-bit algorithm by using many more rounds and encoding
messages by bits and time. Our algorithms use the same number
of rounds and still require sending only single bits.

3 The Beep Once algorithm

In this algorithm the number of agents is n = (2t + 1)(t + 1). It

requires r = t + 1 rounds and uses only 1-bit messages.

The algorithm: Partition the n agents into t + 1 disjoint sets,
each of cardinality 2t + 1. Denote these sets by 5, 52,..., 54,
There are t + 1 rounds in the algorithm, in round number 1 only
agents from set §; send messages. In the algorithm, whenever a
message that is supposed to be sent does not arrive, the receiver
assumes 1t has received a default value, 0.

e 1= 1: Every agent in §; sends its initial value to every agent
in §».

¢ 1 <t< t+ 1: Each agent p £ 5, receives 2t + 1 bits. Agent
p sends the majority value of all these 2¢ 4+ 1 values to all the
agents In Siy;.

e 1 =t+ 1: The agents in 541 send the majority value of the
2t + 1 values they have received from S: to all the n agents.

¢ Decision: The decision value for every agent is the majority
value of the 2t + 1 bits it receives from the agents in Sy4;.

Proof of correctness: In each set §;, there are 2t + 1 agents, at
least t + 1 of them are correct. If these t + 1 agents send to S;y;
(or to everybody in case 1 t 4+ 1) the same value, this will be
the majority value of all the correct agents in the set S;4; (or the
decision value).

In such a case, the correct agents in S;4, also forward the
same value. This process continues until decision is made on this
value. In particular, the consistency condition holds, because all
the correct agents have the same initial value and this will be the
decision value.

There are t + 1 disjoint sets and at most t faulty agents, which
implies the existence of a set S: that does not contain any fault.
Therefore. all the correct agents from S:4; (or everybody when
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1 = t + 1) received the same 2t + 1 bits and evaluate the same

majority value. By the previous argument this will be the decision

value and the \'alidit)‘ condition holds.

Let us return now to the example of Section 2. Recall that
agents C;,(2.Cy have to communicate their individual binary
values to all the agents. In case of a single fault, as in that ex-
ample. it is enough to choose a set of three additional agents. say
Ry, R-, Ry, such that the three C.'s will send their values to the
three R:'s. Each one of them will take a majority value and send
its majority to every other agent. Every agent will take the ma-
jority of the values it receives from the HV, ‘s as the decision value.
One can easily sce that no matter whether the fault occurs among
the C;'s or among the R;'s, all agents do reach a consensus. Thus,
by asking a subset to take a majority we prevent C» fooling us
again and again, and thus overcoming the problems we had in the
example of Section 2.

4 The
rithms

Beep Family of algo-

This section presents a gencraliz.\tion of the Beep Once algorithm
and very simple hardware implementation of it. An explicit algo-
rithm for every k, is given in the first subsection. In the second
subsection a pscudo pascal program is presented based on the
algorithms of the first subsection. The complete hardware imple-
mentation can be easily derived from that presentation. In the
third subsection an implementation of the Beep Once algorithm
is given. This implementation is simpler, but do require the ratio
of O(t?) between correct to faulty, which is the limitation of the
Beep Once algorithm.

4.1 The description of the algorithm

In order to present the algorithm a virtual tree is used. The tree
is recursively described, but the algorithm itself will be explicit.
Each node in the tree represents a set of agents. Assume that
n = 448+H1/E 4 f(8=1/kF and denote the tree by T(n.t,k). For
simplicity assume that ¢t = ¢¥ for some integer s.

e Incase k = 1 partition the n agents into ¢t + 1 disjoint sets of
almost equal cardinality (the cardinalities of every two sets
differ at most by 1). The root of the tree is the set of all n
agents and the children are these t + 1 sets.

e In case k > 1 the agents are partitioned into t!/* disjoint
sets of equal cardinality. Define n’ and t' according to the
following expression,

k-2

-

' k-2 k-1
n =4t+1t 7 = +(t—x_)

The root of this tree is the set of all n agents and each child of
the root is a T'(n',t',k — 1) tree associated with one of these
disjoint sets. The above formula proves that the relations
betweenn',t’ and k—1 are preserved. In Figure 1, an example
of such a tree for k = 3 is given.

Unfolding the recursion one can see that for each agent there is
a corresponding path in the trec. The agent belongs to every set
that is represented by the nodes of its corresponding path. The
set represented by the root consists of all the agents.

The trec is assumed to be ordered from left to right. The treeis
post order numbered and from now on we refer to cach node in the



tree by its post order number. The root of the tree is numbered
by 0.

For a given tree, the following definitions and notations are
used in specifying the rules of the algorithm:

e Left: The set of all the nodes in the tree that do not have a
left sibling.

e Right: The set of all the nodes that do not have a right
sibling.
e Start: The nodes that neither them nor any one of their

ancestors have a left sibling (the left edge of the tree).

e Next(z): A function from the nodes of the tree into the nodes
of the tree.

— « = 0 {the root): Ncrt(O) = the left most children of

the root.
—~ z & Right: Next{z) = the right sibling of «.

— z € Right: Nezt(x) = the parent of z.

¢ Preuv(z): A function from the nodes of the tree into the nodes
of the tree.

— z = 0 (the root): Undefined.

— z € Left: Prev(z) = the left sibling of «.

— z € Start: Prev(z) = 0, the root.

-z & Left/\r Z Start: Prev(x) = Prev(y) where y is

the parent of z. That is the left sibling of the closest
ancestor that has a left sibling.

The algorithm: The number of rounds, denoted by r, is the same
as the number of nodes in the tree. In each round:, 0 < < r,
the agents follow the following rules:

o Who send messages? The agents that belong to the set rep-
resented by node number 1.

o Whom to send messages to? To the agents in the set repre-
sented by node number Next(z).

o What to send?

1. If 1 = 0, send your initial value.

&

. If node 1 is a leaf, send the majority of the values that
you got from Preuv(t).

3. Otherwise, node 1 is neither the root nor a leaf. The set
represented by Prev(1) consists of m = 4ti/k ppa-D/k
nodes, for some j that is a function of the level of node
1 in the tree.

a) In case the majority value from Prev(1) was sup-
J .
ported by at least m — i/ agents, send this value.

(b) Otherwise, send the majority of the values you
received from your right most child.

Decision: The majority of the values you received from the right
most child of the root.

Note that every agent in node 1 receives messages from all
agents in Prev(i), because either 1 = Nexzt(Prev(i)) or 1 is a
predecessor of Next(Prev(i)). Thus the algorithm is well defined.

The proof of correctness is a variation over the one in [BD] and
will be omitted from this Technical Report.
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4.2 The implementation

The following properties of the algorithm facilitate the construc-

tion of a hardware implementation:

1. All the messages are one bit. Therefore, the commmunication
patterns are very simple.

t

The internal computation is very elementary. Each agent
needs only two kinds of gates. A majoritygate with at most n
inputs and one output. A vast majority gate with two output
lines: the first one is the majority value and the second one
is 1 if this value is supported by the threshold determined
by the algorithm. Denote this gates by MAJ and VMAJ,

respectively.

3. The agents that everyone interacts with (send or receive mes-
sages) are determined only by the round number. Therefore,
it is possible to simplify communication by fixing the commu-
nication patterns beforehand. The agent uses the command
SEND(x, S), which means sending the value z to the agents
in the set S. The following notations are used:

o S{p.,1): The set of agents to which agent p sends mes-
sages in round 1.

e R(p,1): The set of agents from which agent p receives
messages in round 1.

e N(p): The set of round numbers in which agent p sends
messages.

e Al{p): The set of round numbers in which agent p uses

a MAJ gate.

e VAM(p): The set of round numbers in which agent p
uses a VA AJ gate.

e I{p): The round numberin which agent p is in a leafin
the tree.

4. The internal memory is very small. Each agent needs a LIFO
queue (last in first out) with k cells each one consists of two
bits, {a possible outcome of a VM AJ gate) and it knows how
to handle the queue by the PUSH and POP commands. In
addition each one has three registers denoted by z,¥,z,, the
initial binary value denoted by init, and the decision value
denoted by decision.

The code for an agent p:

SEND{init, S(p,0));
fori:=1tor —1do
begin
if 1 € M(p) then r := MAJ(R(p,1));
if i € VM(p) then PUSH(VMAJ(R(p,1)));
if s+ € N(p) thenif 1 = l(p)
then SEND(z, S(p,1))

else begin
POP({y,2));
ifz=1
then SEND(y, 5(p, 1))
else SEND(z, S(p,1))
end
end;
decision := T}

Again, we omit the proof. Although the code uses the if com-
mand in the implementation this command is embedded in the
hardware by using the common clock pulses (recall that these in-
put and output commands depend only on the round number).



4.3 The implementation of the Beep
Once Algorithm

The code for the Beep once algerithm is much simpler. Through-
out the algorithm each agent p sends messages in at most one
round, denoted by round(p). Recall that the agents are parti-
tioned into the t + 1 disjoint sets: 5y, 5>... .. S.4+1 and denote by
P the set of all agenis.

Code for an agent p:

If round{p) = 1 then SEND(1nat, 52 )
For1:= 2 to t do
If round{p) = i then SEND(MAJ(S;-1), 51 + 1);
If round(p) = t + 1 then SEND(MAJ(S: Y. P):
Decision := MAJ{S:41);

Observe that in the above code only the AfAJ gate is used.
and no additional internal memory is required. Pipelining this
algorithm is even simpler. because each agent participates in the
algorithm only once.

5 Conclusion

In this paper we gave a brief overview of current state of the art
in robust multi-agent decision making in a faulty environment
(distributed consensus); and also presented a family of novel al-
gorithms to achieve consensus that are deterministic. simple, re-
quire single bit messages. and can be implemented in hardware.
Although these types of algorithms were studied in the CS com-
munity, we feel that they did not receive enough attention by other
communities and especially by the designers of complex pattern
recognition or decision systems.

As the computer technology improves. we will see more and
more distributed systems, where a number of independent and
intelligent agents arc compounded into a system. Faults inevitably
ocecur in such complex systems. In order for such systems to work
properly the issues of reaching common decision {consensus) in
the presence of faults have to be addressed. The work presented
in this paper offers a structural solution to this problem.

Our approach is illustrated on a hypothetical example of a
number of autonomous robots in manufacturing that all have to
“agree” on a common decision determined by the values of some
central controllers. Consequently, our algorithms are easily appli-
cable to other fields like military for example {case of an array
of autonomous sensor-weapon platforms etc.). We hope that this
paper will offer valuable guidelines to designers of such complex,
distributed pattern recognition systems.
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