Exploiting LAN Broadcast for High Availability Communication
Services

Yair Amir, Danny Dolev, Shlomo Kramer, Dalia Malki

The Hebrew University of Jerusalem, Israel

Abstract

This paper describes Lansis, a transport layer pack-
age for Local Area Neiworks (LANs). Lansis sup-
poris a variely of reliable multicast services, The main
novelty is in the efficient implementation using broad-
cast. The basis of Lansis is automatic mainienance of
dynamic membership. The membership algorithm 1s
symmetrical, operates within the regular flow of mes-
sages, and overcomes pariilions and re~merging,

1 Introduction

This paper provides an overview of Lansis, a com-
munication sub-system for high availability. Lansis is
developed as part of the High Availability project at
the Hebrew University of Jerusalem.

Lansis is a transport layer package for Local Area
Networks (LANs). Lansis supports a variety of reliable
message passing services using broadcast hardware.
Messages are being addressed (multicast) to several
destinations within the network. Lansis is responsi-
ble for the delivery of messages at all the designated
destinations. I receives messages from the network,
handles all recovery and consistency requirements, and
delivers messages for processing at each machine.

The main difficulty facing the designer of a dis-
tributed -application is the consistency of the infor-
mation disseminated, and the control over the dissem-
ination of that information, Experiments show that
current broadcast protocols are not sufficient for reli-
able information dissemination; at an average to high
load on a LAN, many messages do nat arrive to all tar-
gets. Thus, the designer of a distributed system would
wish for a transport layer that provides a guaranteed
delivery—and—consistency of messages sent to multiple
targets. Having such a layer, most distributed ap-
plications become much easier to implement and to
maintain.

The Lansis protocol exploits the network broadcast
capability for disseminating messages to multiple des-

tinations via a single transmission (if a multicast ca-
pability is supported, as in {10], Lansis can exploit it
to address only the participating machines). There
are various multicast protocols that utilize broadcast
hardware, such as UDP ([18}), and the IP extended
multicast protocol ([10]). However, they provide best-
effort delivery only, and are not completely reliable.

Lansis provides reliable communication and mem-
bership services in the presence of arbitrary communi-
cation delays, of message losses and of processor fail-
ures and joins. However, faults do not alter the mes-
sage contents. Furthermore, messages are uniquely
identified through a pair < sender, counter > . This
requires that processors that come up are able to avoid
repeating previous message identifiers. As Melliar
Smith et al. noted ([15]), this may be implemented
by using an incarnation number as part of the mes-
sage identifier; The last incarnation number is saved
on a nonvolatile storage. '

One of the leading projects in this area is the ISIS
system [4]. ISIS provides services for constructing dis-
tributed applications in a heterogeneous network of
Unix machines, The services are provided for enhanc-
ing both performance and availability of applications
in a distributed environment. ISIS provides reliable
communication for process-groups and various group
control operations. It supports a programming style
called wirtual synchrony for replicated services: The
events in the system are delivered to all the compo-
nents in a consistent order, allowing them to undergo
the same changes as if the events are synchronous
([7, 6]). Our service definitions are greatly influenced
by the ISIS experience and the virtual synchrony con-
cept. '

Lansis offers the following set of services:

1. Membership: maintains the membership of pro-
CEssors,

2. Basic multicast: guarantees delivery of the mes-
sage at all the active sites. This service delivers

-~ 36 —

the message immediately to the upper level.

3. Causal multicast: guarantees that delivery order
preserves causality (defined precisely below).

4. Agreed multicast: delivers messages in the same
order at all sites. There are various protocols for
achieving the agreed order, some not involving
additional messages ([14, 17]), others involving a
central coordinator ([8, 5]). We developed a sym-
metrical algorithm that achieves this (see [2}).

5. Safe multicast: delivers a message after all the
active processors have acknowledged its recep-
tion.

These services resemble the ISIS approach, how-
ever the design and implementation differ. The main
benefit of the Lansis approach is that it operates over
nonreliable communication channels and makes an ef-
ficient use of the network broadcast capability.

Melliar-Smith et al: suggest in [14, 15] a novel pro-
tocol for reliable broadcast communication over physi-
cal LANs, the Trans protocol. Similar ideas appear in
the Psync protocol ([17}). These protocols use a com-
bined system of ACKs and NACKs to detect message
losses and recover them. Melliar-Smith et al. pro-
vide the Total protocol for total ordering of messages
over Trans ([14]), and show how to maintain agreed
membership using this total order ([15]). Lansis is
motivated by these ideas and provides all the services
over a single broadcast domain. However, it differs
from the membership and message-ordering services
they provide.

Lansis contains a new membership algorithm that
handles processor crashes and joining, network parti-
tions and merges (see [1]). Our approach never allows
blocking but rarely extracts live (but not active) pro-
cessors unjustfully. This is the price paid for main-
taining the membership in consensus among all the
active processors and never blocking. The dynamic
membership enables the simple and efficient solutions
of the rest of the control services, such as the agreed-
multicast.

2 Rationale: Utilizing Broadcast

Distributed systems are becoming common in most
computing environments today. A commonly used
configuration for closely related machines is to reside
on a single LAN or on multiple LANs interconnected
via transparent gateways and bridges. The fast evo-
lution of distributed systems gave way to a “broad-
cast fright,” namely the fear of relying on broad-
cast information in the system. Indeed, a scalable

distributed system should never attempt to main-
tain globally replicated information. Various systems
use various kinds of muléicast services, which are
mostly implemented via point-to-point dissemination
of messages to all the destinations. This technique
fails to utilize the strongest characteristics of exist-
ing communication hardware: all local communication
is done through an ezclusive broadcast media (Eth-
ernet, FDDI, etc.). The use of point-to-point multi-
cast incurs an enormous overrate of messages when
the underlying communication system has broadcast
capabilities. Furthermore, imposing a logical point-to-
point connection renders these systems non-scalable,
since the n? interconnectivity grows rapidly.

This leads us to believe that the only reason-
able communication structure is hierarchical, one
that carefully utilizes closely related clusters (such as
LANSs) where possible. The Lansis system is the basic
building block for LANs: it makes an efficient use of
the broadcast capability for providing reliable, trans-
port layer services.

The benefit of utilizing broadcast in a LAN is enor-
mous: All the desired properties of point-to-point pro-
tocols (reliability, flow control, connection service) and
more are provided in our multicast protocols, with su-
perior performance. The ‘Lansis performance’ section
provides performance details.

In supporting the broadcast domain services, we
certainly do not advocate nondiscriminatory use of
broadcast for all purposes. Broadcasting bears a price
in interrupts to non-interested processors and in proto-
col complexity (if a multicast capability is supported,
as in [10], Lansis can exploit it to address only the
participating machines). The goal of this project is
to provide services built around broadcast services, as
well as guidelines on when and how to use them.

Lansis is a transport layer that supports reliable
multicast. At the transport layer, there should be no
long term guarantee for message delivery, and it is
not possible to log messages onto secondary storage.
Therefore, Lansis is responsible for (a) the delivery of
messages to all the currently active and connected pro-
cessors, and (b) to report accurately about the system
state and success of delivery to the user.

3 Lansis: Distributed Services in a BD

Lansis operates within a single broadcast domain
(BD). A BD is best suited for a single LAN, or several
LANSs transparently connected via bridges, as seen be-
low. However, Lansis can encompass diverse topolo-
gies if desired, though the cost and performance are

.37.

likely to suffer. ?
The Lansis package consists of three logical layers:

1. Membership.

9. Multicast services.

3. Session and name service.?

We define the current configuration sei (CCS) that
changes dynamically and counsists of the active proces-
sors. The basis layer of Lansis, membership, automat-
ically maintains the CCS in consensus among all the
members of CCS.

The Membership section below sheds some intu-
ition on the membership algorithm. The full details
of the algorithm and proof of its correctness are found
in [1]. '

The next layer on top of the dynamic membership
is responsible for reliable delivery of messages within
the CCS. It delivers both regular messages and special
configuration change messages to the upper level.

Lansis supports various primitives for coordinating
the delivery of multicast messages in different proces-
sors (see below).

Configuration-change messages are delivered within
the regular flow of messages. Lansis guarantees to de-
liver configuration-change events in a consistent order
with messages at all sites. More formally, each proces-
sor receives the same set of messages between every
pair of configuration-change events. Birman et al. de-
scribe this concept in [3, 7] as virtual synchrony: It al-
lows distributed applications to observe all the events
in the system in a single order. In this way, it creates
the illusion of synchronous events. Caveat emptor: in
case of a network partitioning, each partition sees a
different, non-intersecting set of configuration-change
events and messages.

The upper layer is the session layer. It provides the
interface for multiple user processes on each processor.
Note that only a single Lansis process executes on each
processor. The name-service at this layer allows ad-
dressing of messages to processes-sets, which can be
any subset of the active processes. Process sets are
formed dynamically by processes that ‘join’ them. A
process that joins a set receives all further messages
sent for this set.

ntuitively, we think of a broadcast domain (BD) as a logical
broadcast LAN, which provides reliable and diverse broadcast
operations. Every message posted to Lansis by one of the pro-
cessors is seen by all the processors unless it is missed. This
can be emulated over general topologies, but is best suited for
LANs.

2The session and name service are not part of the transport
layer, but are provided for the Lansis users.

Maulticast Services

The underlying communication system model of
Lansis is completely asynchronous and assumes ar-
bitrary communication delays and losses. Therefore,
messages arrive at different times and order to dis-
tinct processors. In order to coordinate the delivery
of messages at different sites, Lansis provides various
multicast services enabling the user to correlate deliv-
ery event with other events.

The additional multicast atoms do not incur extra-
neous message passing, but bear a cost in the latency
of the transport protocol. The various services can
be ranked by the delaying they inflict on the proto-
col. We define the index of synchrony as the num-
ber of processors that must acknowledge reception of
the message before the protocol delivers the message
to the upper level. Figure 1 presents the Lansis ser-
vices and their indices of synchrony. Note that n is
a variable that marks the varying size of the current
configuration set.

Index
Service-Type of
Synchrony
SAFE n
AGREED n/2+1
CAUS AL 1
BASIC 1

Figure 1: Services Hierarchy

Basic

The basic multicast is the elementary service. It guar-
antees delivery of the message at all the active des-
tined sites. This means that the sites that are active
at a time-range around the message-posting time will
receive the message 3.

Every processor that receives a basic message deliv-
ers it immediately to the upper level. Thus, the index
of synchrony of the basic service is 1 (including the
sending processor).

Causal

The causal multicast disseminates messages among all
the destined processors such that causal order of de-
livery is preserved. Motivated by Lamport’s definition

3The range of time is system configurable.

- 38 -

of order of events in a distributed system ([13]), The
causal order of message delivery is defined as the tran-
sitive closure of:

(1) m =5 m' if receivey(m) — send,(m’)

(2) m == m' if sendy(m) — send,(m')

Note that ‘—’ orders events occurring at ¢ sequen-
tially, and therefore the order between them is well
defined. The causal multicast atom guarantees that

if m == m’, then for each processor p that receives
both of them,

delivery,(m) — delivery,(m')

The index of synchrony here is 1 as well.

Agreed

The agreed multicast delivers messages in the same
order at all their overlapping sites. This order is con-
sistent with the causal order. The difference between
the causal-multicast and the agreed-multicast is that
the agreed-multicast orders all the messages. This in-
cludes messages that are sent concurrently, i.e. there
is no causal relation between them. Thus, while the
causal-order is a partial order, the agreed-multicast
needs to concur on a single total order of the messages.
Note that a majority decision does not achieve the
agreed order, since the environment is asynchronous
and exhibits crashes. The agreed multicast is imple-
mented via the ToTo algorithm ({2]). The index of
synchrony in ToTo is § + 1.

Safe

Sometimes the user is concerned that a specific mes-
sage is received by all the destined processors before
taking an action. The safe multicast provides this in-
formation, and delivers the message to the upper level
only when all the processors in the current configu-
ration set have acknowledged reception of the mes-
sage. The safe service does not block despite proces-
sor crashes because of the dynamic membership. The
index of synchrony here is n.

3.1 Lansis over LAN

The principle idea of reliable message delivery in
Lansis is not- new. We are motivated by the Trans
algorithm ([14]) and the Psync algorithm ([17]). For
completeness of this paper, we repeat the basics of the
algorithm here. There are some novel aspects in our
implementation and the flow control handling. How-
ever, the main contribution of this paper is in showing

- 39 -

how to combine these ideas in an aggregate of dis-
tributed services in a dynamic environment.

The problem with existing broadcast protocols that
utilize the broadcast hardware is that they are not
completely reliable. We have identified three causes
of message losses:

1. Hardware faults incurred by the network.

2. Failure to intercept messages from the network at
high transfer rates due to interrupt misses.

3. Software-buffers overflow resulting from the pro-
tocol behavior.

While the first cause is almost marginal and is ex-
pected to become extinct when technology improves,
the last two reasons will remain and even become more
acute when newer, faster networks (such as FDDI) are
used. Therefore, it is up to the software protocols to
handle message losses and control the flow of message
dissemination.

The Lansis Protocol

The Lansis protocol is based on the principle that mes-
sages can be heard by all the participating proces-
sors. Lansis uses a combined systems of piggybacked
positive-ACKs and negative-ACKs in order to guaran-
tee delivery of messages to all the processors.

Every processor transmits messages with increasing
serial numbers, serving as message-ids (e.g. P4 emits
A1, Ay, As, --9). An ACK consists of the last
serial number of the messages delivered from a proces-
sor. ACKs are piggybacked onto broadcast messages.
A fundamental principle of the protocol is that each
ACK need only be sent once. The messages that fol-
low from other processors form a “chain” of ACKs,
which implicitly acknowledge former messages in the
chain, as is the sequence:

Ay, Az, a3B1, B2, Bz, b3C,

Processors on the LAN might experience message
losses. They can recognize it by analyzing the received
message chains. For example, in the following chain, a
receiving processor can recognize that it lost message
B3i

Ay, Ay, a3B,, By, b3Ci,

The receiving processor here emits a negative-ACK
on message Bs, requesting for its retransmission. The

delivered messages are held for backup by all the re-
ceiving processors. In this way, retransmission re-
quests can be honored by any one of the participants.
Obviously, these messages are not kept by the pro-
cessors forever. The ‘Implementation Considerations’
section below explains how to keep the number of mes-
sages for retransmission constant.

If the LAN runs without losses then it determines
a single total order of the messages. Since there are
message losses, and processors receive retransmitted
messages, the original total order is lost. The piggy-
backed information is user for reconstructing the orig-
inal partial order of message passing.

In Lansis, a new message contains ACKs for all the
causally deliverable (non-acked) messages. This is an
important difference between Trans and Lansis, where
the ACKS in Lansis acknowledge the deliverability of
messages rather than their reception. Therefore, they
reflect the user-oriented cause and effect relation di-
rectly. In Trans, on the other hand, the partial or-
der does not correspond to the user order of events
and is obtained by applying the OPD predicate on
the acknowledgements [14]. Furthermore, the deliv-
ery criteria in Lansis is significantly simplified by this
modification.

We think of the causal order as a directed acyclic
graph (DAG): the nodes are the messages, the arcs
connect two messages that are directly dependent in
the causal order. The causal graph contains all the
messages sent in the system. The processors see the
same DAG, although as they progress, it may be “re-
vealed” to them gradually in different orders.

Implementation of Services

The multicast services are provided by delivering mes-
sages that reside in the DAG. They differ by the cri-
teria that determine when to deliver messages from
the DAG to the upper level. These criteria operate on
the DAG structure and they do not involve external
considerations such as time, delay etc.

The delivery criteria are as follows:

1. Basic: Immediate delivery.

2. Causal: When all direct predecessors in the DAG
have been delivered.

3. Agreed: We have developed a novel delivery cri-
terion called ToTo that achieves best case delay
of %+ 1 messages [2]. The ToTo delivery criterion
are beyond the scope of this paper.

- 40 —

4. Safe: When the paths from the message to the
DAG’s leaves contain a message from each pro-
cessor. The safe criterion changes automatically
when the membership changes.

The membership algorithm in Lansis is described
in a separate section below.

Implementatioh Considerations

Since Lansis is a practical system, it also concerns it-
self with the implementation requirements and feasi-
bility of the protocols. The transport protocol needs
to keep the retransmission buffers finite by discarding
messages that were seen by all the processors. Fur-
thermore, it needs to regulate the flow of messages and
adapt it to the speed of the slowest processor. Wait-
ing for NACKs is not good enough. We observed by
experimenting a naive implementation that recovery
from omission is costly and the system may fall into a
cascade of omissions due to this belated response.

Lansis employs a novel method for controlling the
flow of messages. This method attempts to avoid
‘buffer-spill’ as much as possible in order to prevent
message losses, and then slows down when losses oc-
cur. Define a network sliding window as consisting of
all the received messages that are not acknowledged by
all the processors yet. Each processor computes this
window from its local DAG. Note that this window
contains messages from all the processors, unlike syn-
chronous protocols like TCP/IP which maintain only
their sent-out messages. The network sliding window
determines an adaptive delay for transmission by the
window size, ranging from the minimal delay at small
sizes and slowing up to infinite delay {blocked from
sending new messages) when the window exceeds a
maximal size. The system does not block indefinitely
though. If the window is stuck for a certain period
of time, the membership algorithm interferes and re-
moves faulty processors from the configuration. This
releases the sliding-window block and the flow of mes-
sages resumes. '

Performance of Lansis

This section gives preliminary performance results of
Lansis over a LAN.

Our first, non-optimized prototype of Lansis on top
of UDP broadcast sockets over a 10 Mbit Ethernet ex-
hibits encouraging performance results. For example,
it achieves a throughput of 160 1K-messages per sec-
ond in an Ethernet network of ten Sun-4 workstations.
This throughput is achieved in the most requiring con-
ditions, when all the participants emit messages con-

[S——

currently and receive all the messages. In comparison,
the transmission rate via TCP/IP in one direction be-
tween two parties in this network is about 350K/sec.
Thus, the performance of Lansis for the communica-
tion of three or more machines is superior to utilizing
point to point protocols for the same purpose. Lansis
exhibits only a slow degradation in performance as the
number of participating machines increases.

Lansis is a useful tool when used carefully. It is im-
portant to remember that it bears a cost in the extra-
neous communication and interrupts when messages
are carried over to non-interested destinations; and in
the complexity and space overhead of the transport
layer.

4 The Membership in Lansis

Each processor holds a privaté view of the current
configuration that contains all the processors it has es-
tablished connections with. This view is denoted C'CS,
the Current Configuration Set. Note that this is not
a user-defined processor-set, but represents the up-to-
date knowledge of active processors in the system. All
the processors in the current configuration set must
agree on its membership. When a processor comes up,’
it forms a singleton CCS. The CCS undergoes changes
during operation: processors dynamically go up and
down, and the CCS reflects these changes through a
series of configuration changes.

The problem of maintaining processor-set member-
ship in the face of processor faults and joins is de-
scribed in [9]. As noted by others ([12, 11, 14]), solving
the membership problem in an asynchronous environ-
ment when faults may be present is impossible. Lan-
sis contains a new membership protocol that handles
any form of detachment and re-connection of proces-
sors, based on causally ordered messages. This ex-
tends the membership protocol of Mishra et al. ([16}).
Our approach never allows blocking but rarely ex-
tracts live (but not active) processors unjustly. This
is ‘the price paid for maintaining the membership in
consensus among all the active processors and never
blocking. This overcomes the main shortcoming of the
Total algorithm which may block with small probabil-
ity in face of faults ([14]). The dynamic membership
enables simple and efficient solutions for the rest of
the control services, such as the agreed-multicast.

The Lansis membership protocol achieves the fol-
lowing properties:

o Handles partitions and merges correctly.

s Allows regular flow of messages while membership
changes are handled.

e Guarantees that members of the same configura-
tions receive the same set of messages between
every pair of configuration changes.

4.1 Faults Handling

The faults algorithm handles departure of proces-
sors from the set of active ones. Recognizing faulty
processors is important for two reasons: First, this
knowledge is valuable for the upper level applications.
Second, it prevents indefinite waiting for responses
from failed processors. More specifically, the deliv-
ery of Lansis agreed and safe message might block if
the DAG does not contain messages from faulty pro-
cessors. To prevent a deadlock, the faults should be
detected and considered. The object of the algorithm
is to achieve consensus among the set of active and
connected processors about the failed processors.

The faults algorithm is initiated every time the
communication with any processor breaks. Each pro-
cessor identifies failures separately. A processor that
identifies a communication-break with another proces-
sor emits a special message called an FA message
declaring this processor faulty. The specific method
for detecting communication-breaks is implementation
dependent and irrelevant to the faults algorithm. For
example, in the Lansis environment, each processor
expects to hear from other processors in its member-
ship set regularly. Failing this, it attempts to contact
the suspected failed processor through a channel re-
served for this purpose. If this fails too, it decides

.that this processor is faulty.

The faults algorithm operates within the regular
flow of Lansis messages. The algorithm relies on Lan-
sis’ ability to reliably deliver messages. Since the spe-
cial FA message represent configuration changes in the
system, they must be delivered in a consistent order at
all the processors. The main difficulty is to reach an
agreement on the identity of the last messages received
from failed processors.

In order to achieve this agreement, the delivery of
FA messages is delayed until all the remaining live pro-
cessors agree on all the failures. Neglecting this, there
may be scenarios where some processors deliver the
last message of a failing processor before the configu-
ration change, while it is delayed on other processors.

4.2 Joining

A full membership algorithm must allow for pro-
cessors to join the membership set dynamically. Typ-
ically, this problem has been solved for the case that
a single processor joins an existing membership set
(e.g. [15, 16, 9, 7]). However, in reality processors

- 41 -

might temporarily detach. When they reconnect, they
are oblivious to the detachment and continue sending
regular messages. Another difficulty arises from par-
titions and reconnections of the network. In this case,
there are two seis of processors that need to be joined
together. Finally, even without any mishaps, our sys-
tem starts-up spontaneously. Each processor comes
up as a singleton-set, and then two or more merge
into larger sets.

Thus, in a practical membership algorithm, there is
po joining-side and accepting-side. It must handle the
joining of two or more sets of any size. The algorithm
must operate correctly in face of faults occurring dur-
ing the joining process.

The join algorithm is trigerred when a processor
detects a “foreign” message in the broadcast domain.
Every active membership publishes its current state
through an Attempt Join (AJ) message.

The join algorithm works in two logical stages:

stage 1 The purpose of the first stage is to collect as
many foreign join-attempt (AJ) messages, with-
out committing. A timer is set to bound the ex-
ecution of this stage. Let us denote J the set of
all the collected processors at the end of stage 1.

stage 2 In the second stage, the processor is com-
mitted to the join set J. It emits a special JOIN
.message containing J. The processor is allowed
to shift to a new join set only when it is “safe”,
i.e. when one of the required members of J sent
a different suggestion, not contained in J.. This
assures that this member will never concur on J,
and the new suggestion can be safely incorporated
into J. When all the processors in J agree on it,
J 1s accepted.

Faults occurring during the join procedure are han-
dled in a similar way to the above faults algorithm.
However, since not all the joining processors belong
to the same membership set, the join procedure must
dynamically determine which faulis occur in the ‘pre-
vious’ setting, and which occur effectively afier the
joln.

The dynamic membership of Lansis allows parti-
tioned operation. Assume there are 50 workstations
in the computer science department that execute a
distributed application. If the network is partitioned
into two halves, such that each half contains exactly
25 workstations, each half will gradually remove all
the processors in the other half out of its membership,
and continue operation normally. When the network
reconnects, the membership algorithm will re-join the

partitions, providing the upper level with the exact
point in the processing when the re-join occurs. It is
up to the high level application designer to implement
a consistent re-joining of the data and the applica-
tion.

5 Conclusions

Most transport-layer packages today provide point
to point communication, or non-reliable multicast. We
have shown how to generalize methods employed by
these layers to support multicast primitives. The ef-
ficient implementation is facilitated through the use
of broadcast. Qur preliminary implementation over a
heterogeneous network of Sun-4 and Sun-3 machines
shows promising results. Over more than three ma-
chines, performance is already better than standard
point to point protocols.

The Lansis protocol is based on the ideas appearing
in [14, 17]. We have successfully made these ideas work
in practice. One of the practical difficulties when mul-
tiple machines emit messages independently is that
the system might get flooded with messages. We have

" developed a distributed flow control mechanism - net-

work sliding window - that automatically adapts the
message transmission rate to the slowest machine in
the network. Experiments with this mechanism show
that in most cases, it succeeds in avoiding the over-
whelming of (slow) machines with messages. Thus,
it prevents message loss and recovery almost entirely.
The mechanism is stable and forces the machines into
regulated message transmission.

Fischer, Lynch and Paterson ([12], and later Dolev,
Dwork and Stockmeyer, {11]) have shown that with-
out some sort of synchronization no agreement is pos-
sible. Our membership algorithm circumvents these
results by introducing a dynamic local group upon
which agreement is based. It is true that in some ex-
treme cases, processors may wrongly decide that an-
other processor has failed, but when this is found out,
the system recovers. The most important novel aspect
of the membership algorithm is its ability to join par-
titions. To the best of our knowledge all of the existing
membership algorithms (e.g. [15, 16, 9, 7]) handle the
joining of single processors only. This feature is crucial
since partitions do occur. For example, when the net-
work includes bridging elements partitions are likely
to occur. ‘

References

[11 Y. Amir, D. Dolev, S. Kramer, and D. Malki.

Membership algorithms in broadcast domains.

Technical Report CS92-10, Dept. of Comp. Sci.,

" the Hebrew University of Jerusalem, 1992.

2] Y. Amir, D. Dolev, S. Kramer, and D. Malki.
Total ordering of messages in broadcast domains.
Technical Report CS92-9, Dept. of Comp. Sci.,
the Hebrew University of Jerusalem, 1992.

[3] K. Birman, R. Cooper, and B. Gleeson. Program-
ming with process groups: Group and multicast
semantics. TR 91-1185, dept. of Computer Sci-
ence, Cornell University, Jan 1991.

[4] K. Birman, R. Cooper, T. A.
Joseph, K. Marzullo, M. Makpangou, K. Kane,
F. Schmuck, and M. Wood. The ISIS System
Manual. Dept of Computer Science, Cornell Uni-
versity, Sep 90.

[6] K. Birman and T. Joseph. Realiable communi-
cation in the presence of failures. ACM Trans.
Comput. Syst., 5(1):47-76, February 1987.

[6] K. Birman and T. Joseph. Exploiting virtual syn-
chrony in distributed systems. In Aan. Symp.
Operating Systems Principles, number 11, pages
123-138. ACM, Nov 87.

[7] K. Birman, A. Schiper, and P. Stephenson.
Lightweight causal and atomic group multicast.
TR 91-1192, dept. of comp. sci., Conrell Univer-
sity, 91. revised version of ‘fast causal multicast’.

[8] J. M. Chang and N. Maxemchuck. Realiable
broadcast protocols. ACM Trans. Comput. Syst.,
2(3):251-273, August 1984,

[9] F. Cristian. Reaching agreement on processor
group membership in synchronous distributed
systems. Research Report RJ 5964, 1BM Al-
maden Research Center, Mar. 1988.

[10] S. E. Deering. Host extensions for ip multicast- .

ing. RFC 1112, SRI Network Information Center,
Auguast 1989.

[11] D. Dolev, C. Dwork, and L. Stockmeyer. On the
minimal synchrony needed for distributed consen-
sus. J. ACM, 34(1):77-97, Jan. 1987.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one
faulty processor. J. ACM, 32(2):374-382, 1985.

[13] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Comm. ACM,
21(7):558-565, July 78.

- 43 -

[14] P. M. Melliar-Smith, L. E. Moser, and
V. Agrawala. Broadcast protocols for distributed
systems. IEEE Trans. Parallel & Distributed
Syst., (1), Jan 1990.

[15] P. M. Melliar-Smith, L. E. Moser, and
V. Agrawala. Membership algorithms for asyn-
chronous distributed systems. In Intl. Conf. Dis-
tributed Computing Sysiems, May 91.

[16] S. Mishra, L. L. Peterson, and R. D. Schlichting.
A membership protocol based on partial order.
In proc. of the intl. working conf. on Dependable
Computing for Crilical Applications, Feb 1991.

[17} L. L. Peterson, N. C. Buchholz, and R. D.
Schlichting. Preserving and using context in-
formation in interprocess communication. ACM
Trans. Comput. Syst., 7(3):217-246, August 89.

{18] J. B. Postel. User datagram protocol. RFC 768,
SRI Network Information Center, August 1980.

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

