
Distributed Data Flow Language for Multi-Party Protocols

Krzysztof Ostrowski
Cornell University

Ithaca, NY 14853, USA
krzys@cs.cornell.edu

Ken Birman
Cornell University

Ithaca, NY 14853, USA
ken@cs.cornell.edu

Danny Dolev
Hebrew University

Jerusalem, 91904, Israel
dolev@cs.huji.ac.il

ABSTRACT
This paper1 presents a novel object-oriented approach to modeling
the semantics of distributed multi-party protocols such as leader
election, distributed locks or reliable multicast, and a programming
language that supports it. The approach extends our live distributed
objects (LO) model with the new concept of a distributed flow (DF),
a stream of events that flow concurrently at multiple locations. DFs
correspond to local variables, private fields,and method parameters
in Java-like languages; they’re means by which one stores and com-
municates state. Protocol instances correspond to Java objects; they
consume and output flows; their internal states are encapsulated as
internal flows, and their internal logic is represented as operations
on flows. Our language provides a new type of concern separation:
the semantic structure of protocols is decoupled from implementa-
tion details such as construction and maintenance of overlays, trees,
and other structures used for scalability. These can be generated by
the compiler or at deployment time. This can be done differently in
different parts of the network, to match the local environment.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Distributed Programming; D.1.5 [Programming Techniques]: Ob-
ject-Oriented Programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

General Terms
Design, Languages, Reliability, Theory

Keywords
Data Flow, Multi-Party Protocol, Distributed Object, Aggregation

1. INTRODUCTION
The premise of this work is that distributed multi-party protocols

(DMPs) such as virtual synchrony (VS), two-phase commit (2PC),
and Paxos are becoming increasingly important and are used per-
vasively, and that growing popularity of cloud and edge computing
will require that developers be able to design their own DMPs.

1Supported, in part, by grants from AFRL, NSF, Intel, and Cisco.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLOS ’09, October 11, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-844-5/09/10 ...$10.00.

Our goal is to provide a simple, expressive DMP definition lan-
guage that allows developers to express semantics concisely, using
high-level constructs, and such that the flow of state and decisions
can be readily understood from the code, not obfuscated by internal
details such as sending individual network messages from A to B.

Programming DMPs is hard, but it could be simplified with tools
that promote a separation of concerns. Developers should be able to
specify the semantics and logical control flow without having to ex-
plicitly handle physical aspects, such as failures, timeouts, network
topology, and organizing nodes into trees, rings, or other scalable
structures. The latter can and should be treated as orthogonal, much
as compiler optimizations in C are orthogonal to code semantics.
To enable this, we need a set of programming abstractions that are
powerful enough to model common DMPs, but leave enough flexi-
bility for the compiler to generate scalable code. This inherent ten-
sion between expressiveness and compiler flexibility has been the
main factor that shaped our approach and our design decisions, and
that distinguishes this work from the existing protocol languages.

Before going further, let’s comment on some of the points made
earlier. First, we stated that DMPs are getting increasingly impor-
tant and used pervasively. In the past, DMPs have been used mostly
in data centers (DCs), financial institutions or military settings, e.g,
to replicate services and data, for load-balancing or fault-tolerance,
or to coordinate configuration changes and synchronize access to
services [5]. In these senarios, DMPs run among servers in DCs,
whereas the larger Web has remained predominantly client-server;
home user’s machines don’t communicate with one-another. In
prior work [23], we argued that this trend is bound to change. Home
computers, equipped with ever-increasing amounts of memory and
multi-core CPUs, are getting faster, whereas web content providers
stumble over scalability as their users bases expand. Many types of
dynamic, interactive, short-lived content (collaborative work, inter-
actions in virtual worlds) are hard to cache and index and can be
hard to scale by adding more servers. It’s only natural to off-load
servers by pushing data out of data centers, and towards the clients.
Technologies based on this idea already exist. In our live distri-
buted objects (LO) platform [1], visual elements on an interactive
web page – chat windows, video streams, and shared documents
– can be individually powered by DMPs; their contents don’t re-
side on servers; they are replicated among the clients in a peer-to-
peer fashion. The DMP that runs among the clients ensures that all
replicas stay in sync2. The creators of Smalltalk [16] used similar
approach as a basis of their Croquet [27] platform; 3D objects in
their virtual space are replicated with a variant of 2PC . Darkstar
[28] and a few other [7] projects also fall into this category. Each
leads to a pervasive deployment of the associated DMPs.

2We encourage the reader to watch videos on the Live Distributed
Objects project website [1] to build intuition behind our approach.

The second premise of our work is that programmers will want
to create their own DMPs. Distributed computing forces them to
choose between reliability, scalability, performance and persistence,
and different applications require a different balance. For example,
the version of reliable multicast DMP used for database replication
in a financial institution would require a consensus semantics, but
would not need to scale to thousands of nodes, whereas the variant
of reliable multicast used to synchronize players in an online multi-
player game (MMORPG), or clients watching a streaming movie,
would require excellent scalability at the cost of weaker semantics.
In other work [23], we pointed out that even for a seemingly simple
task such as collaborative editing, there exists a surprising variety
of different approaches that rely on different ways of locking, rec-
onciliation, and flavors of multicast, often fine-tuned to the partic-
ular application domain. The analogy to Java and .NET collections
seems appropriate: even though many applications don’t need cus-
tom collections and can be built using the small set of built-in ones,
such as lists, arrays, and hash tables, those who build high-perfor-
mance or scalable systems often design their own custom collec-
tions optimized for their specific applications. Compared to collec-
tions, DMPs and their tradeoffs are even more complex and diverse.

Designing DMPs in Java-like languages is hard; popular toolkits
like Ensemble [13], Spread [2], and Appia [22] have 25,000+ lines
of code. Systems such as MACE [17] can reduce the programming
burden, but programmers still have to reason at the level of states,
transitions, and network messages sent between pairs of nodes; this
may be easy for loosely-coupled systems such as distributed hash
tables (DHTs), but it can be hard for DMPs. One way to simplify
the process is by composing pre-existing reusable protocol layers
in DMP composition toolkits such as Ensemble, Spread, Appia, or
BAST [11]. This approach is convenient, but there are limitations.
First, to achieve a high degree of flexibility, one needs a large num-
ber of thin and simple protocol layers: Ensemble has 50. Even then,
flexibility is limited, for only certain combinations of layers make
sense. Flexibility in these systems generally amounts to including
(or not) certain functional layers, e.g., ordering. To use a different
ordering scheme, one generally has to write a custom layer in Java,
which requires familiarity with the given DMP composition toolkit
and its API. Finally, while the DMP toolkits can separate functional
layers from one-another, their functionality is often tightly coupled
to implementation; e.g., a layer that handles recovery, ordering, or
stability may be hard-wired to aggregate its information in a partic-
ular manner, such as by using a leader or all-to-all communication,
and may be unable to easily switch to gossip, trees, or token rings.
The latter is also a weakness of MACE and other systems that force
programmers to work at the level of state transitions and network
messages; code that builds distributed structures gets intermingled
with and inseparable from core semantics and logical control flow.

In this paper, we advocate a different approach: we propose a few
simple generic abstractions that can be easily composed to express
semantics as diverse as distributed agreement and leader election,
that can be stacked hierarchically to express scalable hierarchical
protocols, and that can themselves be implemented in a variety of
ways, such as by using token rings, trees, gossip, or IP multicast.
Protocols in our language are compact and easy to reason about, yet
at the same time they leave the runtime a high degree of flexibility
in mapping language constructs to an executable code.

Our approach is based on four fundamental concepts: distributed
data flows (DFs) as a way to model state and semantics, distributed
monotonic aggregation (MA) as a means of coordinating DMP par-
ticipants, the use of set arithmetics (SA) to model batched process-
ing, and the use of recursion in the language to express hierarchi-
cal distributed structures maintained for scalability. Due to limited

time

location (node)
x1 x2 x3

node x1 node x2 node x3

t0

t1

t2

t3

t4

software that
runs on node x1

components
B1, B2, and B3

implement the
functionality
of object B

events
(asynchronous
method calls
from object A
into object B)

event e4 occurs
at time t3

at node x1

distributed
data flow

(set of events)

interface exposed
by object B

e6

e4 e5

e3

e2

e1

e6

e4 e5

e3

e2

e1

B2

A2

B3

A3

B1

A1

components A1, A2, A3 implement the
functionality of object A (proxies of A)

software on node x3

object (layer) A

Figure 1: A distributed data flow (DF) is defined as a set of events
exchanged between two protocol layers. Each DF is distributed
in space (the events can appear on different nodes), and in time
(new events flow over time). Each protocol layer involves a set
of components (such as A1, A2, A3) across a set of nodes; each
group of such components is called a live distributed object (LO).
Elements of the group are called proxies. Here, layer A is an LO
that consists of three proxies A1, A2, and A3. One can think of
each LO (each protocol layer) as transforming some set of input
flows into some set of output flows (for more detail, consult [25]).

space, this paper discusses only aggregation and batching. The DF
concept, and the underlying theory for how strong reliability prop-
erties can be expressed through monotonic aggregation, have been
discussed in our past work [25], and a brief discussion of recursion
can be found in our tech report [24]. The latter includes a language
grammar and more protocol examples (omitted here for brevity).

2. LANGUAGE
Each program in our language implements a DMP (for an exam-

ple of a distributed locking code, see Figure 2). A running instance
of such program is an instance of a DMP running on a set of nodes
across the network; we refer to the latter as a live distributed object
(LO), or simply an object [23]. A single instance of a software com-
ponent that encapsulates a DMP stack and runs on a single node is
called a proxy. Each object comprises of a set of proxies, and spans
a portion of the network. Its proxies interact with the application
instances on the nodes on which it runs. The object can be thought
of as a medium over which those application instances on different
nodes communicate with one-another and coordinate their actions.

We also use the term object (LO) to refer to individual functional
layers within an instance of a complex DMP. For example, a reli-
able multicast object may consist of an unreliable multicast object
composed with a loss recovery object, and the latter may internally
use membership and transport objects. In general, the term object
can refer to any set of software components that run across a set of
networked nodes, are functionally related, and expose similar APIs.

The API exposed by each LO proxy is modeled as a set of event
queues (EQ); each event represents a single method call, a response
to such call, or a callback. Each proxy of the LO exposes the same
set of EQs. Each EQ transfers a single type of events, in one direc-
tion. For example, each proxy of a reliable multicast object would
expose two EQs: one for send calls, the other for receive callbacks.

The set of events that appear on some set of EQs is called a dis-
tributed data flow (DF); we assume that all these EQs carry events
of the same type and in the same direction: into the object (method
calls), out of the object (callbacks), or internally in the object (e.g.,
events stored in owner EQs within the proxies of lock on Figure 3).
Accordingly, one can classify DFs as input, output, or internal with
respect to the object. For example, a reliable multicast object would
have a single input flow send and a single output flow receive. The
send flow would consist of all invocations of the send method ex-
posed by instances of the DMP stack. Note that a DF includes calls
that may occur at different nodes and at different times; in general,
a DF is distributed in both of these dimensions (Figure 1).

Within the model introduced above, one can think of each object
(each running DMP instance, and each functional layer within such
instance) as a distributed function that transforms some set of input
DFs into a set of output DFs; e.g., an instance of a reliable multicast
DMP can be thought of as a distributed function that transforms the
send input DF into the receive DF. We think of this function as dis-
tributed because the transformation doesn’t happen synchronously,
and it does not occur at a single location: a single send event may
trigger a set of receive events at other nodes running the DMP. This
last factor explains why LO and DF are defined as distributed: they
need to be such for us to be able to capture a distributed semantics.

The functional nature of our model motivates the syntax: a DMP
is expressed in a way similar to an ordinary function, with its name
followed by a list of input DFs in parentheses, a colon, and a list of
output DFs; e.g., the locking protocol (lock on Figure 2) transforms
an input DF named wants into an output DF named holds (line 01).
The types of events in the DFs are denoted similarly to the types of
arguments in C; in lock, both the input and output DFs are Boolean.
Each event flowing into lock represents a single request to acquire
(when the event is carrying a true value) or release the lock (when
the even is carrying a false value) by the local application instance
that has generated the event. The receipt of such event prompts the
proxy of lock at which the event arrives to coordinate with proxies
of lock on other machines, to determine the course of action. When
a decision is made, proxies of lock relay it to their local application
instances by issuing event wants; again, the true value in such event
means that the lock is granted, and false confirms it’s been revoked.
The reason why different classes of requests (such as acquiring and
releasing locks) are carried by events in the same flow (e.g., wants)
is that this enables us to express decisions in output flows in a func-
tional manner, as expressions computed over values in input flows.

When compiled, a program in our language yields the executable
code of a single proxy; e.g., code on Figure 2 compiles to a struc-
ture shown on Figure 3. Each input or output flow is translated into
a single EQ within the proxy; these EQs constitute the proxy’s API.
Each internal flow (declared as in line 02 on Figure 2) is translated
into an EQ encapsulated within the proxy; this is used in a manner
similar to a local variable in Java (note the EQ owner on Figure 3).
Program body consists of dependencies that express flows in terms
of other flows. Each dependency is translated to a code that moves
and translates events between EQs (within and across the proxies).
For example, the dependency in line 05 (Figure 2) pulls events from
EQs wants, owner, and id (id is a built-in internal EQ that provides
each proxy with its globally unique identifier), applies operators ∧
and =, and pushes the result into the local holds EQ. Whenever a
new value appears in wants or in owner (id is a constant flow), the
expression is recalculated and a new event appears in the holds EQ.

While similar, our programs differ from Java functions in several
respects. First, the code does not execute just once, producing out-
put synchronously from input; rather, values in input flows are con-
tinuously fed into the dependencies, and these continuously place

01: object lock (bool wants) : bool holds { // intput & output flows
02: int owner; // an internal flow
03: where (wants) // this determines who runs the code in line 04
04: owner := stable_elect(id); // an embedded leader election
05: holds := wants ∧ (owner = id); } // flow dependency

Figure 2: Distributed locking in our language: an object named
lock consumes a Boolean flow wants, and generates a Boolean
flow holds (line 01). An internal flow owner (line 02) stores the
identifier of the node that holds the lock. All nodes that would
like to acquire the lock (line 03) fetch identifiers to the embed-
ded object stable_elect (line 04; for the code consult Figure 4).
The lock is held if local id matches that of the leader (line 05).
The result of election remains stable until the owner leaves [24].

stable_elect

lock

candidate

leader

id

(EQ)

(EQ)

(EQ)

wants
(EQ) (EQ)

holds

owner

connect or

disconnect

proxy of lock

proxy of

stable_elect

event

queue (EQ)

part of a

data flow

dependency

API exposed by the proxy

transformation

operator

(EQ)

=

Figure 3: Dependency in line 04 in Figure 2 embeds proxies
of stable_elect in proxies of lock, binds stable_elect’s input to
flow id, and routes its output into owner. Values in holds are
generated from those in id, wants, and owner (line 05). Values
in wants activate or deactivate the connection to stable_elect.

01: object stable_elect (int candidate) : int leader {
02: int elected := 0;
03: where (fresh elected ∧ elected ≤ candidate) // guard
04: elected := min candidate; // distrib. monotonic aggregation
05: leader := elected; }

Figure 4: A simple version of the leader election protocol. Can-
didates with identifiers larger than the one of the elected leader
(line 03) select among themselves the one with the smallest id
(line 04). Result can change only if the leader leaves [24]. Can-
didates with ids smaller than the leader abstain from election
until existing members quit, causing aggregation to reboot [24].

stable_elect1

elected

candi-

date

leader

st._elect2 st._electn

min
v1

v2

vn

v

v

v

v
v

v

Figure 5: A group of proxies computing aggregation in the pro-
tocol from Figure 4. In each aggregation round, sets of values vi

that appear in flow candidate are aggregated into a single value
v = min1≤i≤n vi (line 04) that emerges at the ring leader node.
The result is disseminated to all proxies. Proxies self-organize
into a token ring with the help of a built-in membership service.

new events in the output flows. Secondly, the order of dependencies
is irrelevant; they all execute concurrently. Finally, the execution is
not always local; sometimes it is coordinated among proxies.

The universal mechanism for coordinated execution in our model
is monotonic aggregation (MA), expressed as in line 04 (Figure 4),
by applying an operator such as min, max, sum, ∪, or ∩ (and others)
to a single argument. This type of dependency causes values from a
given EQ (candidate EQ in this case), from group of proxies, to be
aggregated using the respective operator (here min), and the result
disseminated back to all proxies and placed in the target EQ (here,
we place the result in elected EQs). This is illustrated on Figure 5.
By default, aggregation has certain important properties that make
it possible to build strong semantics. The MA concept is discussed
at length in our past work [25]. Due to limited space, here we limit
ourselves to pointing out that MA could be translated to a simple to-
ken ring that self-organizes using an external membership service,
but it can also be translated into a scalable, hierarchical architecture
[25]. MA is a very simple, lightweight and scalable abstraction that
can be composed to express a great variety of complex DMPs with
strong semantics such as atomic delivery or consensus. Correctness
arguments for lock and stable_elect are given in a tech report [24].

Like most languages, ours also supports a conditional execution.
The where clause locally activates the embedded code whenever a
true value flows in the EQ corresponding to the condition in paren-
theses, and deactivates it when false flows in it; e.g., code in line 04
(Figure 2) is active only during times when the last value that was
placed in the local wants EQ is true; otherwise, line 04 is disabled
on the particular proxy. For an aggregation, being disabled means
that the proxy doesn’t contribute values to aggregation; this will be
the case whenever (fresh elected ∧ elected ≤ candidate) evaluates
to false in line 03 on Figure 4 (expression fresh elected is true when
the proxy knows that it has the latest aggregated value of elected; in
token ring protocols this is easy to determine; for details, see [24]).
Unlike in Java or C, our conditional statement does not choose be-
tween two execution paths, but rather expands or shrinks the set of
proxies that participate in the given part of distributed computation.

The last important feature used in the lock example is the refer-
ence to stable_elect in line 04 (Figure 2). This type of dependency
embeds proxies of the referenced protocol (stable_elect) in proxies
of the DMP being defined (lock), as shown on Figure 3. Each EQ
for an input or output DF of the embedded proxy of stable_elect is
now also an internal EQ in the proxy of lock. Events from EQs cor-
responding to flows passed as arguments (id) and results (owner) of
the assignment are pushed back and forth between EQs to establish
communication between the proxies (consult Figure 3). Internals of
the embedded proxy of stable_elect are obscured to lock. Hence,
this pattern implements the OO encapsulation principle.

In the examples discussed so far, all flows were carrying simple
scalar Boolean and integer values. To express batched processing,
we equipped our language with support for set arithmetic similar to
that in SETL [26]. The most common use of this feature is to ex-
press within a single event a set of identifiers of network messages
for which a certain property holds; e.g., in the stabilize protocol on
Figure 6, each value in the received DF represents a set of ids of
messages that are being reported as locally received. By encoding
a set of identifiers within a single set value, the application using
stabilize (in this case, the “application” is a reliable multicast object
that uses stabilize to determine when it can safely deliver its mes-
sages) can report a number of application events (message receipts)
within a single operation (a single event flow). Furthermore, receiv-
ing information in this compressed form, stabilize can also process
events in parallel: when it calculates a set intersection of values re-
ceived by different proxies (line 04), stabilize can identify multiple

01: object stabilize ({int} received) : {int} stable {
02: {int} received_by_all := ∅;
03: where (fresh received_by_all ∧ received_by_all ⊆ received)
04: received_by_all := ∩ received;
05: stable := received_by_all; }

Figure 6: Code that determines which packets are stable, i.e.,
received by everyone in the system; this computation is an es-
sential component of many reliable multicast protocols.

mc2

unreliable net

id=1

id=2

id=3

id=5

id=9

packets
received
earlier

packets
arriving
at time

t2

(lost)

(lost)

packets
with id
4,6,7,8
got lost

mc1 id=1

id=3

id=6

id=7

id=8

(lost)

(lost)

id=5

id=4

(lost)

packet
with id 2
got lost
earlier

{1..3,5,9}

appears in
received

at time t1

appears in
received at

time t2

1

5

3

4

2

6

packet
with id 9
got lost

now

{1,3..8}

received
(EQ)stabilize1 stabilize2

Figure 7: Batched processing with set arithmetic in stabilize:
(1) before time t1, node 1 received messages with ids 1 and 3,
and is caching them in its local proxy mc1 of the multicast ob-
ject; message with id = 2 never arrived; (2) at time t1, a batch
of packets with ids from 4 to 8 is received; (3) proxy mc1 now
reports its status to the local proxy of stabilize; an event with
a single set value {1, 3..8} flows at that node at time t1 and is
placed in the received EQ in stabilize; (4..6) a similar scenario
on node 2 results in {1..3, 5, 9} being put into the received EQ.

network messages as “stable” in a single aggregation round. This is
done by intersecting the respective set values (a message is “stable”
if it’s been received everywhere in the group; the interpretation of
everywhere in our model has been discussed in our past work [25]).
In our simulations [25], token ring aggregation at a few rounds/s
made commit and abort decisions for thousands of transactions/s
by using set arithmetic. We’ve also used this approach successfully
in our hand-coded high-performance scalable multicast platforms.

3. RELATED WORK
Most of the existing protocol-modeling languages are based on

the finite state machine (FSM) model: every protocol participant (a
proxy in our terminology) is represented as a finite automaton, with
transitions triggered by timeouts, the receipt of network messages,
or application requests. A programmer defines all states and transi-
tions, and the compiler translates the high-level FSM specification
to executable code, automating aspects such as socket operations,
serialization, logging, and verification. MACE [17] and nesC [12]
are prominent examples of this approach in the context of loosely-
coupled distributed systems. Most of the prior work in this category
targeted point-to-point protocols such as TCP (for the list, see [24]).

Besides translation to code, FSM has also been used for program
analysis: high-level specifications in Promela [14] and TLA [19]
can be translated to FSMs for model checking. TLA is sufficiently
expressive to accurately capture strong semantics such as distribu-
ted consensus. SOA and WS-* standards for describing peer-to-
peer interactions, such as WSCL [3], are also founded on FSM.

Researchers argued [17] that FSM-based languages are natural to
work with: the FSM logic resembles a well-written Java code while
being more concise. However, MACE-like systems have been used
mostly for loosely-coupled systems, such as DHTs or overlays. Ex-
pressing DMPs such as reliable multicast or agreement via states,
transitions and point-to-point messages can be difficult [6, 13, 15].
Also, as noted earlier, core semantics (making decisions, reconfigu-
ration, and state recovery) is mixed with code that builds distributed
structures for dissemination or aggregation. For the sort of concern
separation we postulated, a higher-level language is needed.

P2 [20] is a higher-level model: it replaces explicit point-to-point
communication with rules in Datalog that create dependencies be-
tween local variables at different nodes; point-to-point communica-
tion is then generated automatically. This results in compact code,
but operating at this level, without tools such as consistent aggre-
gations or membership that are built into our language, it would
be hard or impossible to achieve stronger semantics; indeed, P2
has been used primarily with overlays, DHTs, and routing. The
same is true for languages based on process calculi; they cannot
express strong semantics [10]. In contrast to all these approaches,
our language supports aggregation, recursion, batched processing,
and essential object-oriented (OO) features, such as encapsulation.

There’s been much research on embedding group-like distribu-
ted abstractions in higher-level languages such as ML [18] and Java
[8]; surveys can be found elsewhere [4, 23]. Unlike our language,
these weren’t designed to construct protocols, but rather to embed
entire existing protocols in strongly typed or OO languages. BAST
[11] goes further, in that it supports extensibility by inheritance, but
BAST protocols are coded in Java, much as in other DMP toolkits:
Spread [2], Ensemble [13], and Appia [22]. The reasons why we
prefer a dedicated language have been articulated earlier.

Our DF semantics is functional in spirit; in this sense, our work is
inspired by I/O automata (IOA) [21]. However, IOA is a specifica-
tion language, and doesn’t yield executable code. In comparison to
IOA, our work is also less focused on individual endpoints and their
state, and more on data flows. This creates flexibility that can be
exploited to achieve the concern separation we postulated: we can
deploy the same protocol over different aggregation, dissemination,
batching mechanisms, or differently constructed hierarchies.

Data flows in the sense of asynchronous, massively parallel, pipe-
lined processing, have a long tradition in areas such as VLSI/DBMS,
and aggregation has been extensively studied in the context of sen-
sor networks; a discussion of the relevant prior work can be found
elsewhere [24], [25]. The key difference is that data flows in those
systems are not distributed in the same sense as in our model: they
are point-to-point event streams, transformations on them are local,
and they lack the sort of strong semantics needed to express DMPs.

Many specific solutions we employed have been inspired by prior
research: set arithmetics in SETL [26], event-driven computing in
SEDA [29] and rule-based computing in Rête [9], to name a few.

4. CONCLUSIONS
We proposed a new type of a programming language for distribu-

ted computing that abstracts away low-level details such as point-
to-point communication, while retaining sufficient expressiveness
to model complex DMPs such as distributed locking, agreement,
election, or reliable multicast. Focusing on data flows, their func-
tional dependencies, and distributed constructs such as consistent
aggregation, and moving away from endpoint-centric aspects such
as states and transitions, allows us to separate semantics from de-
tails such as methods of aggregation, construction or hierarchy main-
tenance. Our distributed flow concept promotes concise code and
can facilitate formal reasoning about global system behavior.

5. REFERENCES
[1] Live Distributed Objects. http://liveobjects.cs.cornell.edu/.
[2] Y. Amir and J. Stanton. The Spread wide area group

communication system. J. Hopkins Univ. Tech Report, 1998.
[3] A. Banerji et al. Web Services Conversation Language.

http://www.w3.org/TR/wscl10/.
[4] J. Briot, R. Guerraoui, and K. Lohr. Concurrency and

distribution in object-oriented programming. CSUR, 1998.
[5] M. Burrows. The Chubby lock service for loosely-coupled

distributed systems. OSDI, 2006.
[6] G. Chockler, I. Keidar, and W. Vitenberg. Group communi-

cation specifications: A comprehensive study. CSUR, 2001.
[7] S. Douglas, E. Tanin, A. Harwood, and S. Karunasekera.

Enabling massively multiplayer online gaming applications
on a P2P architecture. ICIA, 2005.

[8] P. Eugster, R. Guerraoui, and J. Sventek. Distributed
asynchronous collections: abstractions for publish/subscribe
interaction. ECOOP, 2000.

[9] C. Forgy. On the efficient implementation of production
systems. Ph.D. thesis, CMU, 1979.

[10] R. Fuzzati and U. Nestmann. Much ado about nothing?
http://www.brics.dk/NS/05/3/, 1995.

[11] B. Garbinato and R. Guerraoui. Using the strategy pattern to
compose reliable distributed protocols. COOTS, 1997.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to
networked embedded systems. PLDI, 2003.

[13] J. Hickey, N. Lynch, and R. van Renesse. Specifications and
proofs for Ensemble layers. TACAS, 1999.

[14] G. Holzmann. The model checker spin. TSE, 1997.
[15] D. Karr. Specification, composition, and automated verifica-

tion of layered communication protocols. Ph.D. Thesis.
[16] A. Kay. The early history of smalltalk. HOPL, 1993.
[17] C. Killian, J. Anderson, R. Braud, R. Jhala, and A. Vahdat.

Mace: language support for building distr. systems. PLDI’07.
[18] C. Krumvieda. Distributed ml: Abstractions for efficient and

fault-tolerant prgramming. Cornell Univ. Tech Report, 1993.
[19] L. Lamport. The temporal logic of actions. TOPLAS, 1994.
[20] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and

I. Stoica. Implementing declarative overlays. SOSP, 2005.
[21] N. Lynch and M. Tuttle. Hierarchical correctness proofs for

distributed algorithms. PODC, 1987.
[22] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible

protocol kernel supporting multiple coordinated channels.
ICDCS, 2001.

[23] K. Ostrowski. Live Distributed Objects. Ph.D. Dissertation,
Cornell University, 2008. http://hdl.handle.net/1813/10881.

[24] K. Ostrowski, K. Birman, and D. Dolev. Programming Live
Distributed Objects with Distributed Data Flows. Cornell
Univ. Tech Report, 2009. http://hdl.handle.net/1813/12766.

[25] K. Ostrowski, K. Birman, D. Dolev, and C. Sakoda.
Implementing reliable event streams in large systems via
distributed data flows and recursive delegation. DEBS, 2009.

[26] J. Schwartz, R. Dewar, E. Dubinsky, and E. Schonberg.
Programming with sets: An introduction to setl. 1986.

[27] D. Smith, A. Kay, A. Raab, and D. Reed. Croquet: a
collaboration system architecture. C5, 2003.

[28] J. Strohm. Managing player awareness in Darkstar.
http://www.projectdarkstar.com, 2007.

[29] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for
well-conditioned, scalable internet services. SOSP, 2001.

