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Abstract. A component revolution is underway, bringing developers improved 
productivity and opportunities for code reuse. However, whereas existing tools 
work well for builders of desktop applications and client-server structured sys-
tems, support for other styles of distributed computing has lagged. In this paper, 
we propose a new programming paradigm and a platform, in which instances of 
distributed protocols are modeled as “live distributed objects”. Live objects can 
represent both protocols and higher-level components. They look and feel much 
like ordinary objects, but can maintain shared state and synchronization across 
multiple machines within a network. Live objects can be composed in a type-
safe manner to build sophisticated distributed applications using a simple, intui-
tive drag and drop interface, very often without writing any code or having to 
understand the intricacies of the underlying distributed algorithms. 

1   Motivation 

It has become common to build applications in a component-oriented manner, com-
posing reusable building blocks by binding strongly-typed interfaces. At runtime, an 
underlying object-oriented managed environment, such as Java/J2EE or .NET pro-
vides further checking and support. The paradigm has numerous benefits: it promotes 
clean, modular architectures, facilitates extensions, enables collaborative development 
and code reuse, and by making contracts between components explicit and their code 
more isolated, reduces the risk of bugs resulting from badly documented or implicit 
assumptions such as cross-component behavior or side effects. 

Unfortunately, distributed systems developers are only able to exploit these tools in 
limited ways, typically wedded to client-server programming styles. Moreover, the 
most widely used technologies can be awkward and inflexible. For example, a devel-
oper uses different methods to access a system depending on whether it is hosted on a 
single remote server [6], cloned for load-balancing on a cluster [37], or using state ma-
chine replication [52]. Yet even as the available tools have standardized on these lim-
ited options, the research community is creating a wave of powerful new technologies 
that includes peer-to-peer and gossip protocols, multicast with various levels of consis-
tency, ordering and timing, Byzantine state replication, distributed hash tables, creden-
tial management services, naming services, content distribution networks, etc.  

Our goal is to break through this barrier by treating protocols as components in the 
same sense as in .NET or COM. We propose a technology in which application com-
ponents and protocols are unified within a single object-oriented paradigm. Our “live 
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distributed objects” represent running instances of distributed protocols, but they have 
types and support composition, much like “ordinary” objects. While ours is certainly 
not the first approach to unify distributed protocols with object-oriented environ-
ments, we innovate in ways that make the solution uniquely powerful: 

• We leverage the type system without being language-specific. Our platform offers 
mechanisms such as reflection and dynamic type checking, previously seen only in 
systems closely tied to an underlying language, such as Smalltalk, Java, ML or IOA. 
In our interactive GUI, type-checking prevents users from dropping objects in inap-
propriately. Down the road, we’ll use type checking to ensure that replicated applica-
tion objects use a protocol with sufficiently strong properties. 

• It can be incrementally deployed, and supports legacy applications, including Ex-
cel spreadsheets, Oracle databases, and web services. For example, we can import data 
from a database, multicast it, and export it back into a set of desktop spreadsheets.  

• Our object-oriented embedding can support any distributed protocol as a reus-
able component. Existing systems are protocol-agnostic only in the limited sense that 
users can choose among several different protocols to implement communication. For 
us, protocols are objects; a small shift in perspective with broad implications. 

• The approach extends from the UI to the hardware level, whereas prior systems 
focused on one class of application objects, e.g. shared data structures or UI compo-
nents1. Jini has a vision similar to ours, but is tightly bound to the client-server para-
digm, whereas our model is focused on distributed multi-party protocols.  

• We support composition of behavioral protocol types. Prior composition toolkits 
either lacked types, or used a limited form of typing, where the protocol type was the 
type of the implementing class, and composition was achieved via inheritance.  

• Our model is replication-centric. Although many live objects don’t replicate 
state, the handling of replication and scalability sets our solution apart from prior 
ones. We’re able to support various replication (multicast) models, and to express this 
in a type system.  

• Our system may be the first drag and drop tool for type-safe protocol composi-
tion. Drag and drop mechanisms are easy to use and yet can support sophisticated 
applications.  For many applications, no new code is needed at all.  Prior systems (in-
cluding some from which we took inspiration, such as Ensemble [33], BAST [20], x-
Kernel [45], and I/O automata [36]) were programmer-intensive.  

Although the current system is quite usable, live objects raise a number of ques-
tions, only some of which have been addressed. The technology requires a scalable 
multicast layer capable of supporting very large groups, and in which a single node can 
join large numbers of object-groups. In work reported elsewhere, we describe Quick-
silver, a high-performance, scalable communication layer that achieves these goals 
[46,47,48]. We’re also collaborating with a group at INRIA/IRISA on a gossip-based 
infrastructure compatible with live objects; we expect this to be useful for discovering 
and tracking system configuration information. Looking further out, we’re extending 
Quicksilver to support a range of reliability models (expressed in a new protocol script-
ing language [47]), and are implementing a new security architecture based on reflec-
tion. We also have ideas for WAN and mobile applications, debugging, performance 
tuning, system management, and object state persistence. However, all of these ques-
tions lie beyond the scope of the present paper.  

                                                           
1 Demos of this functionality and a prototype of our platform are available on our website [34].  
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2   Prior Work 

While we believe our work to be innovative in the ways just described, we’re not the 
first to integrate the object-oriented and distributed programming models. 

There are many language abstractions for distributed protocols, including remote 
objects [25, 32], fault-tolerant objects [37], multicast objects [29], asynchronous col-
lections [17], tuple spaces [10, 58], and replicated objects driven by multicast [38, 56] 
or two-phase commit [53]. None matches the requirements described above. First, 
these abstractions are all specialized to support specific protocols. For example, asyn-
chronous collections cannot easily be used to express two-phase commit or leader elec-
tion. Second, most lack the notion of a distributed type, and in those that do, this notion 
is shallow, e.g. the type of a multicast object [29] is determined by the type of transmit-
ted events, and the type of an asynchronous collection [17] is the type of the imple-
menting class. The former definition can’t convey information about subtle behaviors 
of protocols such as virtual synchrony [5], while the latter severely restricts reusability. 
Finally, most lack support for composition. 

The idea of defining object types in terms of their behaviors is not new [55]. CSP 
[24] and π-calculus [41] were some of the first protocol specifications, and these early 
process calculi serve as a basis for recent specification efforts, such as BPEL [3], 
SSDL [49], and WSCL [4]. As recently noted [19], the weakness of process calculi, 
and specifications based on them, is that they can’t express the semantics of replication 
or the behavior of protocols such as consensus in a clean way. For example, while 
BPEL is clearly strong enough to express business processes, the language defines 
protocols in terms of sets of participants fixed at the outset, and can’t model dynamic 
join or leave events. It would be very hard to express replication properties, such as 
“once any group member does X, eventually all operational members do too” [12].  

On the other hand, while state-based approaches such as I/O automata [36], CFSM 
[7], interface automata [1], and others [18] are very expressive, they combine func-
tional descriptions of protocol behaviors with the specifics of their implementations 
expressed through state transitions. This is useful in correctness proofs, but it may be 
a weakness in the context of a type system. Two protocols implemented using differ-
ent data structures and states can exhibit the same external behavior, e.g. “messages 
are totally ordered and delivered atomically with respect to failures”. We believe that 
protocols that behave equivalently should be considered to have the same distributed 
type; state transition representations can easily obscure such relationships [27].  

Live objects support an extensible style of formal behavioral specifications for 
group and multicast protocols [2, 12, 22, 26]. As one composes protocols, a construc-
tive distributed type system is obtained. The type checking mechanism is itself com-
ponentized, and can be extended by developers. 

The idea of building protocols from simpler components dates to the x-Kernel [45] 
and to systems like Ensemble [33], which constructed replication protocols from mi-
croprotocols. Among such systems, BAST [20] is closest to ours in terms of the di-
versity of protocols it can express, but lacks a behavioral notion of a protocol type: 
protocol types in BAST are determined by the types of the implementing classes, and 
composition is achieved by inheritance. The creators of BAST observed that in retro-
spect, inheritance wasn’t the right mechanism for this task. We’ve drawn lessons from 
these experiences and created a model in which inheritance isn’t used at all: we treat 
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protocols as black boxes and connect them with typed event channels in a visual de-
signer. Our protocol objects interact via events, much as in Smalltalk [21]. 

Jini [58], the widely used Java-based platform in which clients access services by 
dynamically loading proxy code, is highly relevant prior work. The strongest contrast 
is that Jini has a pervasive client-server bias, making it very hard to express object 
replication, particularly in applications that use strong consistency or (at the other 
extreme) peer-to-peer protocols. 

This client-server bias is visible in many ways.  First, Jini lacks a rigorous notion 
of a group [43], and it is hard to implement consistency across a set of group mem-
bers, state replication within the group, coordination, leader-election, etc. Jini's 
lookup, join, and discovery specifications lack membership views (needed to assign 
tasks to group members) and synchronized state transfer (used to initialize new group 
members). Moreover, Jini doesn’t guarantee consistent failure detection. Thus, while 
services in Jini can be grouped, the mechanism lacks expressive power to facilitate 
building systems that use stronger forms of replication. Additionally, abstractions 
such as notification and transactional protocols can’t be directly modeled as objects in 
Jini. Finally, Jini lacks distributed types and protocol composition mechanisms. 

Live objects are replication-centric, with a strong notion of protocol types and 
composition. This makes live objects particularly appropriate for building applications 
in which users collaborate, share content, or engage in other kinds of peer-to-peer 
behaviors, (obviously we can also support traditional non-replicated and client-server 
behaviors). Complex protocols can be modeled as objects, in a manner that separates 
behavior of the protocol from its implementation.  

Many of these same issues distinguish our work from WS-* standards. Elsewhere 
[48], we discuss issues that arise if one tries to use WS-Notification or WS-Eventing 
to implement live objects. We concluded that the relevant WS-* standards are tightly 
bound to specific protocol implementations; as written, they cannot accommodate 
commercially important protocols such as peer-to-peer video streaming, BitTorrent, 
or Byzantine replication. We’ve proposed an extended WS-based eventing standard 
matched to the work described here, and able to overcome this problem [48].  

JXTA [57] is probably the most sophisticated existing collaboration technology for 
peer-to-peer systems, but it doesn’t support stronger replication and consistency mod-
els. While JXTA does have notions such as a group and a membership view, members 
can have inconsistent views. Researchers have struggled to layer reliable multicast on 
these mechanisms [35]. Groupware toolkits, such as Croquet [53], Groove [39], and 
group communication [5] toolkits all support replication, and some support strong 
forms of consistency. However, unlike Jini, JXTA and our work, none of these is po-
sitioned as a general-purpose interoperability platform.  

3   Model 

3.1   Objects and Their Interactions 

A live distributed object (or live object) is an instance of a distributed protocol: pro-
gramming logic executed by a set of components that may reside on different nodes 
and communicate by sending messages over the network. For flexibility, we won’t 
assume that the machines running the protocol “know” about one-another or that they 
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share any common state. Thus, a live object could be a Byzantine fault-tolerant repli-
cated state machine, but it could also be an entity with purely local state, one that uses 
gossip to share data, or an IP multicast channel.  

Live objects have behavioral types. Suppose that object A logs messages on the 
nodes where it runs, using a reliable, totally ordered multicast to ensure consistency 
between replicas. Object B might offer the same functionality, but be implemented 
differently, perhaps using a gossip protocol. As long as A and B offer the same inter-
faces and equivalent properties (consistency, reliability, etc), we consider A and B to 
be implementations of the same type. The concept of behavioral equivalence is the 
key here; we define it more carefully in section 3.2.  

When node Y executes live object X, we’ll say that a proxy of live object X is run-
ning on Y. Thus, a live object is executed by the group of its proxies (Figure 1). A 
proxy is a functional part of the object running on a node. When two objects have 
proxies on overlapping sets of nodes, their respective proxies may interact. We can 
think of the live objects as interacting through their proxies.  

A reference to a live object X is a complete set of instructions for constructing and 
configuring a proxy of X on a node. Thus, when node Y wants to access live object X, 
node Y uses a reference to X as a recipe with which it can create a new proxy for X 
that will run locally on Y. The proxy then executes the protocol associated with X. 
For example, it might seek out other proxies for X, transfer the current distributed 
state from them, and connect itself to a multicast channel to receive updates. Unlike 
proxies, which can have state, references are just passive, stateless, portable recipes. 

The instructions in a reference must be complete, but need not be self-contained. 
Some of their parts can be stored inside online repositories, from which they need to 
be downloaded. These repositories are themselves live objects, referenced by the ob-
jects that use them. Thus, given a reference, a node can dereference it without prior 
“knowledge” of the protocol. An exception is thrown if dereferencing fails (for exam-
ple, if a repository containing a part of the reference is unavailable). 

We model proxies in a manner reminiscent of I/O automata. A proxy runs in a vir-
tual context consisting of a set of endpoints: strongly-typed bidirectional event chan-
nels, through which the proxy can communicate with other software on the same node 
(Figure 1). Unlike in I/O automata, a proxy can use external resources, such as local 
network connections, clocks, or the CPU. These interactions are not expressed in our  
 

proxy1 proxy2

node1 node2

proxy3
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live
object

proxy
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Fig. 1. To access a live object (protocol), a node starts a proxy: a software component that runs the 
protocol on the node, and may communicate with proxies on other nodes by sending messages 
over the network. On a given node, proxies for different objects communicate via endpoints: 
strongly-typed, bidirectional event channels. 
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model and they are not limited in any way. However, interactions of a live object’s 
proxy with any other component of the distributed system must be channeled through 
the proxy’s endpoints.  

All proxies of the same live object run that live object’s code. Unlike in state ma-
chines [37, 52], we need not assume that proxies run in synchrony, in a deterministic 
manner, or that their internal states are identical. We do assume that each proxy of a 
live object X interacts with other components of the distributed system using the same 
set of endpoints, which must be specified as part of X’s type. To avoid ambiguity, we 
sometimes use the term instance of endpoint E at proxy P to explicitly refer to a run-
ning event channel E, physically connected to and used by P. 

Because our model is designed to facilitate component integration, we shall adopt a 
somewhat radical perspective, in which the entire system, all applications and infra-
structure are composed of live objects. Accordingly, endpoints of a live object’s proxy 
will be connected to endpoints exposed by proxies of other live objects running on the 
same node (Figure 2). When proxies of two different objects X and Y are connected 
through their endpoints on a certain node Z, we’ll say that X and Y are connected on Z. 

Example (a). Consider a distributed collaboration tool that uses reliable multicast to 
propagate updates between users (Figure 2). Let a be an application object in this sys-
tem that represents a collaboratively edited document. Proxies of a have a graphical 
user interface, through which users can see the document and submit updates. Updates 
are disseminated to other users over a reliable multicast protocol, so that everyone can 
see the same contents. The system is designed in a modular way, so instead of linking 
the UI code with a proprietary multicast library, the document object a defines a typed 
endpoint reliable_channel_client, with which its proxies can submit updates to a reli-
able multicast protocol (event send) and receive updates submitted by other proxies 
and propagated using multicast (event receive). Multicasting can then be implemented 
by a separate object r, which has a matching endpoint reliable channel. Proxies of a 
and r on all nodes are connected through their matching endpoints.                              

membership
object (m)

replicated
state

machine
object (s)

application
object (a)

m1 m2

m3 m4

r1 r2

u1 u2

s1 s2

a1 a2

reliable
multicast
object (r)

unreliable
multicast
object (u)

p1 p2 persistent
storage
object (p)  

Fig. 2. Applications in our model are composed of interconnected live objects. Objects are 
“connected” if endpoints of a pair of their proxies are connected. Connected objects can affect 
one-another by having their proxies exchange events through endpoints. A single object can be 
connected to multiple other objects. Here, a reliable multicast object r is simultaneously con-
nected to an unreliable multicast object u, a membership object m, and an application object a. 
The same object can be accessed by different machines in different ways. For example, m is 
used in two contexts: by the multicast object r, and by replicas of a membership service. The 
latter employs a replicated state machine s, which persists its state through a storage object p. 
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Similarly, object r may be structured in a modular way: rather than being a single 
monolithic protocol, r could internally use object u for dissemination and object m for 
membership tracking [12]. Additional endpoints unreliable channel and member-
ship would serve as contracts between r and its internal parts u and m.  

Figure 2 illustrates several features of our model. First, a pair of endpoints can be 
connected multiple times: there are multiple connections between different instances of 
the reliable channel endpoint of object r and the reliable_channel_client endpoint of 
a, one connection on each node where a runs. Since objects are distributed, so are the 
control and data flows that connect them. If different proxies of r were to interact with 
proxies of a in an uncoordinated manner, this might be an issue. To prevent this, each 
endpoint has a type, which constrains the patterns of events that can pass through dif-
ferent instances of the endpoint. These types could specify ordering, security, fault-
tolerance or other properties. The live objects runtime won’t permit connections be-
tween a and r, unless their endpoint types declare the needed properties.  

A single object could also define multiple endpoints. One case when this occurs is 
when the protocol involves different roles. For example, the membership object m has 
two endpoints, for clients and for service replicas. The role of the proxy in the proto-
col depends on which endpoint is connected. In this sense, endpoints are like inter-
faces in object-oriented languages, giving access to a subset of the object’s functional-
ity. Another similarity between endpoints and interfaces is that both serve as contracts 
and isolate the object’s implementation details from the applications using it. We also 
use multiple endpoints in object r, proxies of which require two kinds of external 
functionality: an unreliable multicast, and a membership service. Both are obligatory: 
r cannot be activated on a platform unless both endpoints can be connected. 

Earlier, we commented that not all live objects replicate their state. We see the lat-
ter in the case of the persistent store p. Its proxies present the same type of endpoint to 
the state machine s, but each uses a different log file and has its own state. 

Our model promotes reusability by isolating objects from other parts of the system 
via endpoints that represent strongly typed contracts. If an object relies upon external 
functionality, it defines a separate endpoint by which it gains access to that functional-
ity, and specifies any assumptions about the entity it may be connected to by encoding 
them in the endpoint type. This allows substantial flexibility. For example, object u in 
our example could use IP multicast, an overlay, or BitTorrent, and as long as the end-
point that u exposes to r is the same, r should work correctly with all these implemen-
tations. Of course this is conditional upon the fact that the endpoint type describes all 
the relevant assumptions r makes about u, and that u does implement all of the de-
clared properties.  

3.2   Defining Distributed Types 

The preceding section introduced endpoint types, as a way to define contracts between 
objects. We now define them formally and give examples of how typing can be used to 
express reliability, security, fault-tolerance, and real time properties of objects. 

Formally, the type Θ of a live object is a tuple of the form Θ = (E, C, C'). E in this 
definition is a set of named endpoints, E = {(n1, τ1), (n2, τ2), …, (nk, τk)}, where ni is 
the name and τi is the type of the ith endpoint. C and C' represent sets of constraints 
describing security, reliability, and other characteristics of the object (C), and of its 
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environment (C'). C models constraints provided by the object, such as semantics of 
the protocol: guarantees that the object’s code delivers to other objects connected to it. 
C' models constraints required, which are prerequisites for correct operation of the 
object’s code. Constraints can be described in any formalism that captures aspects of 
object and environment behavior in terms of endpoints and event patterns. Rather than 
trying to invent a new, powerful formalism that subsumes all the existing ones, we 
build on the concepts of aspect-oriented programming [28], and we define C to be a 
finite function from some set A of aspects to predicates in the corresponding formal-
isms. For example, constraints C = {(a1, φ1), (a2, φ2), …, (am, φm)} would state that in 
formalism a1 the object’s behavior satisfies formula φ1, and so on. We’ll give exam-
ples of various practically useful formalisms and constraints later in this section. 

Type τ of an endpoint is a tuple of the form τ = (I, O, C, C'). I is a set of incoming 
events that a proxy owning the endpoint can receive from some other proxy, O is a set 
of outgoing events that the proxy can send over this endpoint, and C and C' represent 
constraints provided and required by this endpoint, defined similarly to constraints of 
the object, but expressed in terms of event patterns, not in terms of endpoints (for ex-
ample, an endpoint could have an event of type time, and with a constraint that time 
advances monotonically in successive events). Each of the sets I and O is a collection 
of named events of the form E = {(n1, ε1), (n2, ε2), …, (nk, εk)}, where ni is event name 
and εi is its type. Event types can be value types of the underlying type system, such as 
.NET or Java primitive types and structures, or types described by WSDL [13] etc., but 
not arbitrary object references or addresses in memory. We assume that events are se-
rializable and can be transmitted across the network or process boundaries. References 
to live objects are also serializable, hence they can also be passed inside events. The 
subtyping relation on the event types is inherited from the underlying type system. 

The purpose of creating endpoints is to connect them to other, matching endpoints, 
as described in Section 3.1 and illustrated on Figure 2. Connect is the only operation 
possible on endpoints. We say that endpoint types τ1 and τ2 match, denoted τ1 ∝ τ2, 
when the following two conditions hold. 

1. For each output event n of type ε of either endpoint, its counterpart must have an 
input event with the same name n, and with either type ε, or some supertype of ε. 
This guarantees that all events can be delivered between the two connected proxies. 

2. The provided constraints of each of the endpoints must imply (be no weaker than) 
the required constraints of the other. This ensures that the endpoints mutually sat-
isfy each other’s requirements. 

Formally, for τ1 = (I1, O1, C1, C1') and τ2 = (I2, O2, C2, C2') we define: 

τ1 ∝ τ2 ⇔ O1 →* I2 ∧ O2 →* I1 ∧ C1 ⇒* C2' ∧ C2 ⇒* C1'. (1) 

Relation →* between two sets of named events expresses the fact that events from the 
first can be understood as events from the second. Formally, we express it as follows: 

E →* E' ⇔ ∀ (n, ε)∈E ∃ (n, ε′)∈E' such that ε ≤ ε′. (2) 

Operator “≤” on types always represents the relation of subtyping in this paper.  
Relation ⇒* between two sets of constraints expresses the fact that the constraints 

in the first set are no weaker than constraints in the second. Formally, we write this as: 



 Programming with Live Distributed Objects 471 

C ⇒* C' ⇔ ∀ (a, φ′)∈C′ ∃ (a, φ)∈C such that φ ⇒a φ'. (3) 

Relation ⇒a is simply a logical consequence in formalism a. Intuitively, this defini-
tion states that if C' defines a constraint defined in some formalism, then C must de-
fine a constraint that is no weaker than that, in the same formalism. For example, if C' 
defines some reliability constraint expressed in temporal logic, then C must define an 
equivalent or stronger constraint, also in temporal logic, in order for C ⇒* C' to hold. 

For a pair of endpoint types τ1 and τ2, the former is a subtype of the latter if it can 
be used in any context in which the latter can be used. Since the only possible opera-
tion on an endpoint is connecting it to another, matching one, hence τ1 ≤ τ2 holds iff 
τ1 matches every endpoint that τ2 matches, i.e. τ1 ≤ τ2 iff ∀τ′ (τ2 ∝ τ′) ⇒ (τ1 ∝ τ′), 
which after expanding the definition of “∝” can be formally expressed as follows: 

τ1 ≤ τ2 ⇔ O1 →* O2 ∧ I2 →* I1 ∧ C1 ⇒* C2 ∧ C2′ ⇒* C1′. (4) 

Intuitively, τ1 ≤ τ2 if (a) τ1 defines no more output events and no fewer input events 
than τ2, (b) the types of output events of τ1 are subtypes and the types of input events 
of τ1 are supertypes of the corresponding events of τ2, and (c) the provided con-
straints of τ1 are no weaker and the required constraints of τ1 are no stronger than 
those of τ2.  

Subtyping for live object types is defined in a similar manner. Type Θ1 is a sub-
type of Θ2, denoted Θ1 ≤ Θ2, when Θ1 can replace Θ2. Since the only thing that one 
can do with a live object is connect it to another object through its endpoints, this 
boils down to whether Θ1 defines all the endpoints that Θ2 defines, and whether the 
types of these endpoints are no less specific, and whether Θ1 guarantees no less and 
expects no more than Θ2. Formally, for two types Θ1 = (E1, C1, C1′) and Θ2 = (E2, 
C2, C2′), we define: 

Θ1 ≤ Θ2 ⇔ E1 ≤* E2 ∧ C1 ⇒* C2 ∧ C2′ ⇒* C1′. (5) 

Relation ≤* between sets of named endpoints used above is defined as follows: 

E ≤* E'  ⇔ ∀ (n, τ′)∈E′ ∃ (n, τ)∈E such that τ ≤ τ′. (6) 

The use of types in our platform is limited to checking whether the declared object 
contracts are compatible, to ensure that the use of objects corresponds to the devel-
oper’s intentions. The live objects platform performs the following checks at runtime: 

1. When a reference to an object of type Θ is passed as a value of a parameter that is 
expected to be a reference to an object of type Θ', the platform verifies that Θ ≤ 
Θ'. 

2. When an endpoint of type τ is to be connected to an endpoint of type τ', either pro-
grammatically or during the construction of composite objects described in Section 
4.2, the platform verifies that the two endpoints are compatible i.e. that τ ∝ τ'. 

We believe that in practice, this limited form of type safety is sufficient for most uses. 
For provable security, the runtime could be made to verify that live object’s code im-
plements the declared type prior to execution. Techniques such as proof-carrying code 
[44] and domain-specific languages with limited expressive power could facilitate this. 
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3.3   Constraint Formalisms 

We conclude this section with a discussion of different formalisms that can be used to 
express the constraints in the definition of objects and endpoints. The issue is subtle 
because on the one hand, a type system won’t be very helpful if it has nothing to 
check, but on the other hand, there are a great variety of ways to specify protocol 
properties. It isn’t much of an exaggeration to suggest that every protocol of interest 
brings its own descriptive formalism to the table! As noted earlier, many prior sys-
tems have effectively selected a single formalism, perhaps by defining types through 
inheritance. Yet when we consider protocols that might include time-critical multi-
cast, IPTV, atomic broadcast, Byzantine agreement, transactions, secure key replica-
tion, and many others, it becomes clear that no existing formalism could possibly cov-
er the full range of options. 

A further issue is the incompleteness of many specifications, in a purely formal 
sense. For example, one popular formalism is temporal logic [22,12]. Here, we as-
sume a global time and a set of locations, and a function that maps from time to 
events that occur at those locations. In the context of endpoint constraints, we can 
think of instances of the endpoint as locations, and the endpoint’s incoming and out-
going events, and explicit connect/disconnect events, as the events of the temporal 
logic. Constraints would be expressed as formulas over these events, identifying the 
legal event sequences within the (infinite) set of possible system histories. 

Example (b). Consider the reliable channel endpoint, exposed by the reliable chan-
nel r in the example in Section 3.1. The endpoint’s type might define one incoming 
event send(m) and one outgoing event receive(m), parameterized by message body 
m. Constraints provided by the channel object r might include a temporal logic for-
mula stating that if event receive(m) is delivered by r through some of the instances 
of the endpoint sooner than receive(m′), then for any other instance of the endpoint, if 
both events are delivered, they are delivered in the same sequence.                             

Example (b) illustrates a safety property of a type for which temporal logic is espe-
cially convenient. Chockler et. al. use temporal logic to specify a range of reliable 
multicast protocols in [12]. However, the FLP impossibility result establishes that 
these protocols cannot guarantee liveness in traditional networks. Thus, while we can 
express a liveness constraint in such a logic, no protocol could achieve it – in effect, 
such a protocol type would be useless in real systems! 

Temporal logic is just one of many useful formalisms. In our work on a security 
architecture, still underway, we’re looking into using a variant of the BAN logic [9] to 
define security properties provided by live objects or expected from their environ-
ment. Real-time and performance guarantees are conveniently expressed as probabil-
istic guarantees on event occurrences, e.g. in terms of predicates such as “at least p % 
of the time, receive(m) occurs at all endpoint instances at most t seconds following 
send(m),” or “at least p % of the time, receive(m) occurs at all different endpoint 
instances in a time window of at most t seconds”. 

Yet another useful formalism would be a version of temporal logic that talks about 
the number of instances of different endpoints in time. For example, constraints of the 
sort “at most one instance of the publisher endpoint may be connected at any given 
time” could describe single-writer semantics or similar assumptions made by the  
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protocol designer. Constraints of this sort could also express fault-tolerance properties, 
e.g. define the minimum number of proxies to maintain a certain replication level etc.  

In general, with formalisms like those listed above, type-checking might involve a 
theorem prover, and hence may not always be practical. In practice, however, the ma-
jority of object and endpoint types would choose from a relatively small set of stan-
dard constraints, such as best-effort, virtually-synchronous, transactional, or atomic 
dissemination, total ordering of events etc. Predicates that represent common con-
straints could be indexed, and stored as macros in a standard library of such predi-
cates, and the object and endpoint types would simply list such macros. The runtime 
would perform type-checking by comparing such lists, and using cached known facts, 
such as that a virtually synchronous channel is also best-effort reliable etc. By taking 
advantage of late binding and reflection, features of .NET and of most Java platforms, 
it is easy to make these mechanisms extensible in a “plug and play” manner. This will 
allow developers to introduce additional formalisms down the road. 

3.4   Group Types 

Readers familiar with group communication [5,11] may be concerned that although our 
model is fundamentally about creating and working with groups of entities (live object 
proxies), the type system itself lacks a rigorous notion of a group. This actually makes 
our model simpler and more generic, without preventing us from expressing group 
properties. For example, to model a virtually synchronous group, we can define a pair 
of endpoints channel and membership, and specify constraints on the occurrences of 
events on the two endpoints, as in group communication specifications [12]. Within 
groups of endpoints, one can use temporal logic formulas with operators such as eve-
rywhere and everywhere within a membership view, much as in [2,12,22]. To bind to 
such a group an object would define two matching endpoints. This approach has the 
advantage of generality: we can potentially express a range of group semantics.  

4   Language Embeddings and Support for Composition 

4.1   Language Embeddings 

Our model has a good fit with modern object-oriented programming languages. There 
are two aspects of this embedding. On one hand, live object code can be written in a 
language like Java and C# (we will demonstrate this in Section 4.2). On the other 
hand, live objects, proxies, endpoints, and connections between them are first-class 
entities that can be used within C# or Java code. Their distributed types build upon 
and extend the set of non-distributed types in the underlying managed environment. In 
this section, we’ll discuss each of the new programming language entities we intro-
duce: references to live objects, references to proxies, references to endpoint in-
stances, and references to connections between endpoints. An example of their use is 
shown in Code 1. We will conclude this section with a discussion of two more ad-
vanced mechanisms, template object references and casting operator extensions. 



474 K. Ostrowski et al. 

Code 1. An example piece of code in a language similar to C#, but with a simplified syntax for 
legibility. Here, “ReceiveObject” is a handler of an incoming event of a live object proxy. The 
event is parameterized by a live object reference “ref_object”. If the reference is to a shared 
folder, the code launches a new proxy to connect to the folder’s protocol and attaches a handler 
to event “AddedElement” generated by this protocol, in order to monitor this folder’s contents. 

01 void ReceiveObject(ref<liveobject> ref_object) // code of an event handler
02  {
03 if (referenced_type(ref_object) is SharedFolder)
04    {
05 ref<SharedFolder> ref_folder := (ref<SharedFolder>) ref_object;
06      SharedFolder folder := dereference(ref_folder); // creates a proxy
07 external<FolderClient> folder_ep := endpoint
08 internal<FolderClient> my_ep := new_endpoint<FolderClient>();
09      my_ep.AddedElement += ...; 
10 connection my_connection := connect(folder_ep, my_ep);
11 // some code to store the newly created proxy and endpoint connection references
12    }
13  }

 

A. References to Live Objects. Operations that can be performed on these references 
include reflection (inspecting the referenced object’s type), casting, and dereferencing 
(the example uses are shown in Code 1, in lines 03, 05, and 06 accordingly). Derefer-
encing results in the local runtime launching a new proxy of the referenced object 
(recall from Section 3.1 that references include complete instructions for how to do 
this). The proxy starts executing immediately, but its endpoints are disconnected A 
reference to the new proxy is returned to the caller (in our example it is assigned to a 
local variable folder). This reference controls the proxy’s lifetime. When it is dis-
carded and garbage collected, the runtime disconnects all of the proxy’s endpoints and 
terminates it. To prevent this from happening, in our example code we must store the 
proxy reference before exiting (we would do so in line 11). 

Whereas a proxy must have a reference to it to remain active, a reference to a live 
object is just a pointer to a recipe for constructing a proxy for that object, and can be 
discarded at any time. An important property of object references is that they are seri-
alizable, and may be passed across the network or process boundaries between prox-
ies of the same or even different live objects, as well as stored on in a file etc. The 
reference can be dereferenced anywhere in the network, always producing a function-
ally equivalent proxy – assuming, of course, that the node on which this occurs is ca-
pable of running the proxy. In an ideal world, the environmental constraints would 
permit us to determine whether a proxy actually can be instantiated in a given setting, 
but the world is obviously not ideal. Determining whether a live object can be derefe-
renced in a given setting, without actually doing so, is probably not possible.  

The types of live object references are based on the types of live objects, which we 
will define formally below. To avoid ambiguity, if Θ is a live object type, and x is a 
reference to an object of type Θ, we will write ref<Θ> to refer to the type of entity x.  

The semantics of casting live object references is similar to that for regular objects. 
Recall that if a regular reference of type IFoo points to an object that implement IBar, 
we can cast the reference to IBar even if IFoo is not a subtype of IBar, and while as a 
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result the type of the reference will change, the actual referenced object will not. In a 
similar manner, casting a live object reference of type ref<Θ> to some ref<Θ′> pro-
duces a reference that has a different type, and yet dereferencing either of these refer-
ences, the original one or the one obtained by casting, result in the local runtime creat-
ing the same proxy, running the same code, with the same endpoints. A reference can 
be cast to ref<Θ> for as long as the actual type of the live object is a subtype of Θ. 

B. References to Proxies. The type of a proxy reference is simply the type of the 
object it runs, i.e. if the object is of type Θ, references to its proxies are of type Θ. 
Proxy references can be type cast just like live object references. One difference be-
tween the two constructs is that proxy references are local and can’t be serialized, 
sent, or stored. Another difference is that they have the notion of a lifetime, and can 
be disposed or garbage collected. Discarding a proxy reference destroys the locally 
running proxy, as explained earlier, and is like assigning null to a regular object refer-
ence in a language like Java. The live object is not actually destroyed, since other 
proxies may still be running, but if all proxy references are discarded (and proxies 
destroyed), the protocol ceases to run, as if it were automatically garbage collected.  

Besides disposing, the only operation that can be performed on a proxy reference is 
accessing the proxy endpoints for the purpose of connecting to the proxy. An example 
of this is seen in line 07, where we request the proxy of the shared folder object to 
return a reference to its local instance of the endpoint named “folder”.  

C. References to Endpoint Instances. There are two types of references to endpoint 
instances, external and internal. An external endpoint reference is obtained by enu-
merating endpoints of a proxy through the proxy reference, as shown in line 07. The 
only operation that can be performed with an external reference is to connect it to a 
single other, matching endpoint (line 10). After connecting successfully, the runtime 
returns a connection reference that controls the connection’s lifetime. If this reference 
is disposed, the two connected endpoints are disconnected, and the proxies that own 
both endpoints are notified by sending explicit disconnect events. 

An internal endpoint reference is returned when a new endpoint is programmati-
cally created using operator new (line 08). This is typically done in the constructor 
code of a proxy. Each proxy must create an instance of each of the object’s endpoints 
in order to be able to communicate with its environment. The proxy stores the internal 
references of each of its endpoints for private use, and provides external references to 
the external code per request, when its endpoints are being enumerated. Internal refer-
ences are also created when a proxy needs to dynamically create a new endpoint, e.g. 
to interact with a proxy of some subordinate object that it has dynamically  
instantiated. 

An internal reference is a subtype of an external reference. Besides connecting it to 
other endpoints, it also provides a “portal” through which a proxy that created it can 
send or receive events to other connected proxies. Sending is done simply by method 
calls, and receiving by registering event callbacks (line 09). 

An important difference between external and internal endpoint references is that 
the former could be serialized, passed across the network and process boundaries, and 
then connected to a matching endpoint in the target location. The runtime can imple-
ment this e.g. by establishing a TCP connection to pass events back and forth between 
proxies communicating this way. This is possible because events are serializable.  
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Internal endpoint references are not serializable. This is crucial, for it provides iso-
lation. Since any interaction between objects must pass through endpoints, and events 
exchanged over endpoints must be serializable, this ensures that an internal endpoint 
reference created by a proxy cannot be passed to other objects or even to other proxies 
of the same object. Only the proxy that created an endpoint has access to its portal 
functionality of an endpoint, and can send or receive events with it.  

D. References to Connections. Connection references control the lifetime of connec-
tions. Besides disposing, the only functionality they offer is to register callbacks, to be 
invoked upon disconnection. These references are not strongly typed. They may be 
created either programmatically (as in line 10 in Code 1), or by the runtime during the 
construction of a composite proxy. The latter is discussed in detail in Section 4.2.  

E. Template Object References. Template references are similar to generics in C# or 
templates in C++. Templates are parameterized descriptions of proxies; when derefer-
encing them, their parameters must be assigned values. Template types do not support 
subtyping, i.e. references of template types cannot be cast or assigned to references of 
other types. The only operation allowed on such references is conversion to non-
template references by assigning their parameters, as described in Section 4.2. 

Template object references can be parameterized by other types and by values. The 
types used as parameters can be object, endpoint, or event types. Values used as pa-
rameters must be of serializable types, just like events, but otherwise can be anything, 
including string and int values, live object references, external endpoint references etc. 

Example (c). A channel object template can be parameterized by the type of mes-
sages that can be transmitted over the channel. Hence, one can e.g. define a template 
of a reliable multicast stream and instantiate it to a reliable multicast stream of video 
frames. Similarly, one can define a template dissemination protocol based on IP mul-
ticast, parameterized with the actual IP multicast address to use. A template shared 
folder containing live objects could be parameterized by the type of objects that can 
be stored in the folder and the reference to the replication object it uses internally.     

F. Casting Operator Extensions. This is a programmable reflection mechanism. 
Recall that in C# and C++, one can often cast values to types they don’t derive from. 
For example, one can assign an integer value to a floating-point type. Conversion 
code is then automatically generated by the runtime, and injected into this assignment. 
One can define custom casting operators for the runtime to use in such situations. Our 
model also supports this feature. If an external endpoint or an object reference is cast 
to a mismatching reference type, the runtime can try to generate a suitable wrapper.  

Example (d). Consider an application designed to use encrypted communication. The 
application has a user interface object u exposing a channel endpoint, which it would 
like to connect to a matching endpoint of an encrypted channel object. But, suppose 
that the application has a reference to a channel object c that is not encrypted, and that 
exposes a channel endpoint of type lacking the required security constraints. When 
the application tries to connect the endpoints of u and c, normally the operation would 
fail with a type mismatch exception. However, if the channel endpoint of c can be 
made compatible with the endpoint of u by injecting encryption code into the connec-
tion, the compiler or the runtime might generate such wrapper code instead. Notice 
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that proxies for this wrapper would run on all nodes where the channel proxy runs, 
and hence could implement fairly sophisticated functionality. In particular, they could 
implement an algorithm for secure group key replication. In effect, we are able to 
wrap the entire distributed object: an elegant example of the power of the model.       

The same can be done for object references. While casting a reference, the runtime 
may return a description of a composite reference that consists of the old proxy code, 
plus the extra wrapper, to run side by side (we discuss composite references in Sec-
tion 4.2). In addition to encryption or decryption, this technique could be used to auto-
matically inject buffering code, code that translates between push and pull interface, 
code that persists or orders events, automatically converts event data types, and so on. 

Currently, our platform uses casting only to address certain kinds of binary incom-
patibilities, as explained in Section 5.2. In future work, we plan to extend the platform 
to support more sophisticated uses of casting, e.g. as in the example above, and define 
rules for choosing casting operators when more that one is available. 

4.2   Construction and Composition 

As noted in Section 4.1, a live object exists if references to it exist, and it runs if any 
proxies constructed from these references are active. Creating new objects thus boils 
down to creating references, which are then passed around and dereferenced to create  
 
Code 2. An example live object reference, based on a shared document template, parameterized 
by a reliable communication channel. The channel is composed of a dissemination object and a 
reliability object, connected to each other via their “UnreliableChannel” endpoints, much like r 
and u in Figure 2. The “ReliableChannel” endpoint of the reliability object is exposed by the 
channel. The dissemination object reference is to be found as an object named “MyChannel”, of 
type “Channel”, in an online repository (“Id” and “Channel” are predefined types). The refer-
ence to the repository is to be found, as an object named “QuickSilver”, of type “Folder”, i.e. 
containing channels, in another online repository, the “registry” object (see Section 0). 

 

01 parameterized object // an object based on a parameterized template
02 using template primitive object 3
03 {
04 parameter "Channel" :
05 composite object // a complex object built from multiple component objects
06 {
07 component "DisseminationObject" :
08 external object "MyChannel" as Channel
09 from external object "QuickSilver" as Folder<Id, Channel>
10 from primitive object 2 // the registry ect
11 component "ReliabilityObject" :
12 // specification of some loss recovery object, omitted for brevity
13 connection // an internal connection between a pair of component endpoints 
14 endpoint "UnreliableChannel" of "DisseminationObject" 
15 endpoint "UnreliableChannel" of "ReliabilityObject"
16 export // endpoints of the components to be exposed by the composite object
17 endpoint "ReliableChannel"   of "ReliabilityObject" 
18 }
19 }
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running applications. Object references are hierarchical: references to complex objects 
are constructed from references to simpler objects, plus logic to “glue” them together. 
The construction can use four patterns, for constructing composite, external, param-
eterized, and primitive objects. We shall now discuss these, illustrating them with an 
example object reference that uses each of these patterns, shown in Code 2. 

A. Composite References. A composite object consists of multiple internal objects, 
running side by side. When such an object is instantiated, the proxies of the internal 
objects run on the same nodes (like objects r and u in Figure 2). A composite proxy 
thus consists of multiple embedded proxies, one for each of the internal objects. A 
composite reference contains embedded references for each of the internal proxies, 
plus the logic that glues them together. In the example reference shown in lines 05 to 
18 in Code 2, there is a separate section “component name : reference” for each of 
the embedded objects, specifying its internal name and reference. This is followed by 
a section of the form “connection endpoint1 endpoint2”, for each internal connection. 
Finally, for every endpoint of some embedded internal object that is to be exposed by 
the composite object as its own, there is a separate section “export endpoint”.  

When a proxy is constructed from a composite reference, the references to any in-
ternal proxies and connections are kept by the composite proxy, and discarded when 
the composite proxy is disposed of (Figure 3). The lifetimes of all internal proxies are 
thus connected to the lifetime of the composite. Embedded objects and their proxies 
thus play the role analogous to member fields of a regular object. 

B. External References. An external reference is one that has not been embedded 
and must be downloaded from somewhere. It is of the form “external object name as 
type from reference”, where reference is a reference to the live object that represents 
some online repository containing live object references, and name is the name of the 
object, the reference to which is to be retrieved from this repository. The type Θ of the 
retrieved object is expected to be a subtype of type, and the type of the external refer-
ence is ref<type>. One example of such a reference is shown in lines 08 to 10, and 
another (embedded in the first one) in lines 09 to 10.  

The repository could be any object of type Θ ≤ folder, where type folder is a built-
in type of objects with a simple dictionary-like interface. Objects of this type have an 
endpoint with input event get(n) and with output events item(n, r) and missing(n). 
To retrieve an external reference, the runtime creates a repository object proxy from 
the embedded reference, runs it, connects to its folder endpoint, submits the get event, 
and awaits response. Once the response arrives, the repository proxy can be discarded. 

The “as type” clause allows the runtime to statically determine the type of the ref-
erence without having to engage in any protocol. In case of composite, parameterized, 
or primitive references, the runtime can derive the type right from the description. The 
“as type” clause can still be used in the other categories of references as an explicit 
type cast, in case it is necessary e.g. to hide some of the object’s endpoints. 

The types in the reference (such as Channel in line 08 or Folder<Id, Channel> in 
line 09) could either refer to the standard, built-in types, or they could be described  
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explicitly using a language based on the formalisms in Section 3.2. To keep our ex-
ample simple, we assume that all types are built-in, and we refer to them by names.  

C. Parameterized References. These references are based on template objects intro-
duced in Section 4.1. They include a section “using template reference”, where  
reference is an embedded template object reference, and a list of assignments to pa-
rameter values, each in a separate section of the form “parameter name : argument”, 
where the argument could be a type description or a primitive value, e.g. an embed-
ded object reference. For example, the reference in Code 2 is parameterized with a 
single parameter, Channel. The type of the parameter needn’t be explicitly specified, 
for it is determined by the template. In our example, the template expects a live object 
reference to a reliable communication channel. The specific reference used here to 
instantiate this template is the composite reference in lines 05 to 18. 

D. Primitive References. The types of references mentioned so far provide a means 
for recursively constructing complex objects from simple ones, but the recursion 
needs to terminate somewhere. Hence, the runtime provides a certain number of built-
in protocols that can be selected by a known 128-bit identifier (lines 02 and 10 in 
Code 2). Of course even a 128-bit namespace is finite, and many implementations of 
the live objects runtime could exist, each offering different built-in protocols. To 
avoid chaos, we reserve primitive references only for objects that either cannot be 
referenced using other methods, or where doing so would be too inefficient. We will 
discuss two such objects: the library template and the registry object. 

reliability object dissemination object

composite

internal proxies

exposed endpoint references to
internal proxies
and connection
maintained
automatically
by the runtime

composite object

1 1

0..0..

 

Fig. 3. A live object class diagram for the composite object in Code 2 (left) and the structure of 
the composite proxy (right). When constructing a composite proxy, the runtime automatically 
constructs all the internal proxies and the internal connections between them, and stores their 
references in the composite proxy. Embedded proxies and connections are destroyed together 
with the composite proxy. The latter can expose some of the internal endpoints as its own. 

Code 3. An example live object reference for a custom protocol, implemented in a library that 
can be downloaded from http://www.mystuff.com/mylibrary.dll. Objects running this protocol 
are of type “MyType1”, and can be found in the library under name “MyProtocol1”. The li-
brary template provides the folder abstraction introduced in Section 0. 

01 external object "MyProtocol1" as MyType1 // my own, custom implementation
02 from parameterized object // an instance of the library template
03 using template primitive object 1 // an id of a built-in library template
04 {
05 parameter "URL" : http://www.mystuff.com/mylibrary.dll
06 }
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Fig. 4. An example of a hybrid multicast object m, constructed from two local protocols x, y 
that disseminate data in two different regions of the network, e.g. two LANs, combined using a 
tunnel object t that acts as a repeater and replicates messages between the two LANs. Different 
proxies of the composite object m, running on different nodes, are configured differently, e.g. 
some use an embedded proxy of object x, while others use an embedded proxy of object y. 

Code 4. A portable reference to the “hybrid” object m from Figure 4 built using the registry. 

01 external object "MyChannel" as Channel
02 from external object "MyPlatform" as Folder<Id, Channel>
03 from primitive object 2 // the registry

 

Code 5. An example of a “proper” use of the registry, to specify a locally configured multicast 
platform, which could then be used by external references like the one in Code 4. Here, the 
local instance of the communication platform is configured with the address of a node that con-
trols a region of the Internet, from which other objects can be bootstrapped. 

01 parameterized object
02 using template external object "MyPlatform" as Folder<Id, Channel>
03 from parameterized object // from a binary downloaded from the url below
04 using template primitive object 1 // the library template
05 { parameter "URL" : http://www.mystuff.com/mylibrary.dll }
06  { parameter "LocalController" : tcp://192.168.0.100:60000 }

 

D.1 Library. A library is an object of type folder, representing a binary containing 
executable code, from which one can retrieve references to live objects implemented 
by the binary. The library template is parameterized by URL of the location where the 
binary is located (see Code 3, lines 02 to 06). The binary can be in any of the known 
formats that allow the runtime to locate proxy code, object and type definitions in it, 
either via reflection, or by using an attached manifest (we show one example of this in 
Section 5.2). After a proxy of a library is created, the proxy downloads the binary and 
loads it. When an object reference retrieved from a library is dereferenced, the library 
locates the corresponding constructor in the binary, and invokes it to create the proxy.  

D.2 Registry. The registry object is again a live object of type folder, i.e. a mapping 
of names to object references. The registry references are stored locally on each node, 
can be edited by the user, and in general, the mapping on each node may be different. 
Proxies respond to requests by returning the locally stored references.  
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The registry enables construction of complex heterogeneous objects that can use 
different internal objects in different parts of the network, as follows 

Example (e). Consider a multicast protocol constructed in the following manner: 
there are two LANs, each running a local IP multicast based protocol to locally dis-
seminate messages: local multicast objects x and y (Figure 4). A pair of dedicated 
machines on these LANs also run proxies of a tunneling object t, connected to proxies 
of x and y. Object t acts as a “repeater”, i.e. it copies messages between x and y, so 
that proxies running both of these protocols receive the same messages. Now, con-
sider an application object a, deployed on nodes in both LANs, and having some of its 
proxies connected to x, and some to y. From the point of view of object a, the entire 
infrastructure consisting of x, y, and t could be thought of as a single, composite mul-
ticast object m. Object m is heterogeneous in the sense that its proxies on different 
machines have a different internal structure: some have an embedded object x and 
some are using y. Logically, however, m is a single protocol and we’d like to be able 
to fully express it in our model. The problem stems from the fact that on one hand, 
references to m must be complete descriptions of the protocol, so they should have 
references to x and y embedded, yet on the other hand, references containing local 
configuration details are not portable. The registry object solves this problem by in-
troducing a level of indirection (Code 4).                                                                      

The reader might be concerned that the portability of live objects is threatened by 
use of the registry. References that involve registry now rely on all nodes having 
properly configured registry entries. For this reason, we use the registry sparingly, just 
to bootstrap the basic infrastructure. Objects placed in the registry would represent the 
entire products, e.g. “the communication infrastructure developed by company XYZ”, 
and would expose the folder abstraction introduce earlier, whereby specific infra-
structure objects can be loaded. An example of such proper use is shown in Code 5. 

5   System 

5.1   Embedding Live Objects into the Operating System Via Drag and Drop 

Our implementation of the live object runtime runs on Microsoft Windows2 with 
.NET Framework 2.0. The system has two major components: an embedding of live 
objects into Windows drag and drop technologies, discussed here, and embedding of 
the new language constructs into .NET, discussed in Section 5.2.  

Our drag and drop embedding is visually similar to Croquet [53] and Kansas [54], 
and mimics that employed in Windows Forms, tools such as Visual Studio (or similar 
ones for Java), and in the Object Linking and Embedding (OLE) [8], XAML [40], and 
ActiveX standards used in Microsoft Windows to support creation of compound doc-
uments with embedded images, spreadsheets, drawings etc. The primary goal is to en-
able non-programmers to create live collaborative applications, live documents, and 
business applications that have complex, hierarchical structures and non-trivial internal 
logic, just by dragging visual components and content created by others from toolbars, 
folders, and other documents, into new documents or design sheets.  
                                                           
2 Porting our system from C#/.NET to Mono, to run under Linux, or building a Java/J2EE ver-

sion of the runtime, shouldn’t be a problem, but we haven’t yet undertaken this task. 
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Our hope is that a developer who understands how to create a web page, and un-
derstands how to use databases and spreadsheets as part of their professional activi-
ties, would use live objects to glue together these kinds of components, sensors cap-
turing real-world data, and other kinds of information to create content-rich applica-
tions, which can then be shared by emailing them to friends, placing them in a shared 
repository, or embedding them into standard productivity applications. 

Live object references are much like other kinds of visual components that can be 
dragged and dropped. References are serialized into XML, and stored in files with a 
“.liveobject” extension. These “.liveobject” files can easily be moved about. Thus, 
when we talk about emailing a live application, one can understand this to involve 
embedding a serialized object reference into an HTML email. On arrival the object 
can be activated in place. This involves deserializing the reference (potentially run-
ning online repository protocols to retrieve some of its parts), followed by analysis of 
the object’s type. Live objects can also be used directly from the desktop browser 
interface. We configured the Windows shell to interpret actions such as doubleclick 
on “.liveobject” files by passing the XML content of the file to our subsystem, which 
processes it as described above. Note that although our discussion has focused on GUI 
objects, the system also supports services that lack user interfaces.  

We have created a number of live object templates based on reliable multicast pro-
tocols, including 2-dimensional and 3-dimensional desktops, text notes, video streams, 
live maps, and 3-dimensional objects such as airplanes and buildings. These can be 
mashed up to create live applications such as the ones on our web site (Figure 5).  

Although the images in Figure 5 are evocative of multi-user role-playing systems 
such as Second Life, Live Objects differ in important ways. In particular, live objects 
can run directly on the user nodes, in a peer-to-peer fashion. In contrast, systems such 
as Second Life are tightly coupled to the data centers on which the content resides and 
is updated in a centralized manner. In Second Life, the state of the system lives in that 
data center. Live objects keep state replicated among users. When a new proxy joins, 
it must obtain some form of a checkpoint to initialize itself, or starts in a null state. 

As noted earlier, live objects support drag and drop. The runtime initiates a drag by 
creating an XML to represent the dragged object’s reference, and placing it in a clip-
board. When a drop occurs, the reference is passed on to the application handling the 
drop. The application can store it as XML, or it can deserialized it, inspect the type of 
the dropped object, and take the corresponding action based on that. For example, the 
spatial desktop on Figure 5, only supports objects with a 3-dimensional user interface. 
Likewise, the only types of objects that can be dropped onto airplanes are those that 
represent textures or streams of 3-dimensional coordinates. The decision in each case 
is made by the application logic of the object handling the drop. 

Live objects can also be dropped into OLE-compliant containers, such as Microsoft 
Word documents, emails, spreadsheets, or presentations. In this case, an OLE compo-
nent is inserted with an embedded XML of the dragged object’s reference. When the 
OLE component is activated (e.g. when the user opens the document), it invokes the live 
objects runtime to construct a proxy, and attaches to its user interface endpoint (if there 
is one). This way, one can create documents and presentations, in which instead of static 
drawings, the embedded figures can display content powered by any type of a distrib-
uted protocol. Integration with spreadsheets and databases is also possible, although a 
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little trickier because these need to access the data in the object, and must trigger actions 
when a new event occurs.  

As mentioned above, one can drag live objects into other live objects. In effect, the 
state of one object contains a reference to some other live object. This is visible in the 
desktop example on Figure 5. This example illustrates yet another important feature. 
When one object contains a reference to another (as is the case for a desktop contain-
ing references to objects dragged onto it), it can dynamically activate it: dereference, 
and connect to the proxy of the stored object, and interact with the proxy. For exam-
ple, the desktop object automatically activates references to all visual objects placed 
on it, so that when the desktop is displayed, so are all objects, the references of which 
have been dragged onto the desktop.  

airplane
object

space
object

building
object

map
object

text note
object

image
object

desktop
object

 

Fig. 5. Screenshots of our platform running live objects with an attached user interface logic. 
The 3-dimensional space, the area map embedded in this space, as well as each of the airplanes 
and buildings (left) is a separate live object, with its own embedded multicast channel. Simi-
larly, the green desktop, and the text notes and images embedded in it are independent live 
objects. Each of these objects can be viewed and accessed from anywhere on the network, and 
separately embedded in other objects to create various web-style mash-ups, collaborative edi-
tors, online multiplayer games, and so on. Users create these by simply dragging objects into 
one another. Our download site includes a short video demonstrating the ease with which appli-
cations such as these can be created. 

By now, the reader will realize that in the proposed model, individual nodes might 
end up participating in large numbers of distributed protocol instances. Opening a live 
document of the sort shown on Figure 5 can cause the user’s machine to join hundreds 
of instances of a reliable, totally ordered multicast protocol with state transfer, which 
support the objects embedded in the document. This might lead to scalability con-
cerns. In our prior work we demonstrated that this problem is not a showstopper. Our 
Quicksilver Scalable Multicast (QSM) system [46], can support thousands of overlap-
ping multicast groups, communicating at network speeds with low overhead. 

5.2   Embedding Live Object Language Constructs into .NET Via Reflection 

Extending a platform such as .NET to support the new constructs discussed in Section 
4.1 would require extending the underlying type system and runtime, thus precluding 
incremental deployment. Instead, we leverage the .NET reflection mechanism to im-
plement dynamic type checking. This technique doesn’t require modifications to the 
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.NET CLR, and it can be used for other managed environments, such as Java. The key 
idea is to use ordinary .NET types as “aliases” representing our distributed types. 
Whenever such an alias type is used in a .NET code, the live objects runtime “under-
stands” that what is “meant” by the programmer is actually the distributed type. Ali-
ases are defined by decorating.NET types with attributes, as in Code 6 and Code 7. 

Example (f). Consider a template object type channel for multicast channels, param-
eterized by the .NET type of the messages that can be transmitted. One defines an alias 
type as a .NET interface annotated with ObjectTypeAttribute (Code 6, line 01). 
When a library object (of Section 4.2) loads a new binary, the runtime scans the binary 
for .NET types annotated this way and registers them on its internal list of aliases. 

Code 6. A .NET interface can be associated with a live object type using an “ObjectType” at-
tribute (line 01). The interface may then be used anywhere to represent the represented live 
object type. The live objects runtime uses reflection to parse such annotations in binaries it 
loads and build a library of built-in objects, object types and templates. Object and type tem-
plates are defined by specifying and annotating generic arguments (line 03). 

01 [ObjectTypeAttribute]
02 interface IChannel<
03   [ParameterAttribute(ParameterClass.ValueClass)] MessageType>
04 {
05   [EndpointAttribute("Channel")] EndpointTypes.IDual<
06     Interfaces.IChannel<MessageType>, 
07     Interfaces.IChannelClient<MessageType>>
08   ChannelEndpoint { get; }
09 }

 

Parameters of the represented live object type are modeled as generic parameters of 
the alias. Each generic parameter is annotated with Parameter Attribute (line 03), to 
specify the kind of parameter it represents. The classes of parameters supported by the 
runtime include Value, ValueClass, ObjectClass, EndpointClass, and others we won’t 
discuss here. Value parameters are simply serializable values, including .NET types or 
references to live objects, The others represent the types of values, types of live ob-
jects and types of endpoints. For example, we could define a live object type template 
parameterized by the type of another live object. A practical use of this is a typed 
folder template, i.e. a folder that contains only references to live objects of a certain 
type. For example, an instance of this template could be a folder that contains reliable 
communication channels of a particular type. Another good example is a factory ob-
ject that creates references of a particular type, e.g. an object that configures new reli-
able multicast channels in a multicast platform.  

An alias interface for a live object type is expected to specify only .NET properties, 
each annotated with EndpointAttribute (line 05). Each property defines one named 
endpoint for all live objects of this type. The property can only have a getter (line 08), 
which must return a value of a .NET type that is an alias for some endpoint type. The 
example in Code 6 uses alias EndpointTypes.IDual<Interface1, Interface2>. This 
is an alias template built into the runtime, but parameterized by two .NET interfaces. 
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Code 7. A live object template is defined by decorating a generic class definition (line 01), its 
generic class parameters (line 03), and constructor parameters (line 08) with .NET attributes. 
To specify the template live object’s type, the class must implement an interface that is anno-
tated to represent a live object type (line 04 referencing the definition shown in Code 6). In the 
body of the class, we create endpoints to be exposed by the proxy (created in lines 11-12, ex-
posed in lines 19-25), handle incoming events (line 27) and send events through its endpoints. 

01 [ObjectAttribute("89BF6594F5884B6495F5CD78C5372FC6")]
02 sealed class MyChannel<
03   [ParameterAttribute(ParameterClass.ValueClass)] MessageType>
04 : ObjectTypes.IChannel<MessageType>, // specifies the live object type
05   Interfaces.IChannel // we implement handlers to all incoming events, see line 12
06 {
07 public MyChannel(
08     [Parameter(ParameterClass.Value)] // also a parameter of the template
09     ObjectReference<ObjectTypes.IMembership> membership_reference)
10   {
11 this.myendpoint = new Endpoints.Dual<
12       Interfaces.IChannel, Interfaces.IChannelClient>(this);
13     ... // the rest of the constructor would contain code very similar to that in Code 1
14   }
15 // this is our internal reference to the channel endpoint
16 private Endpoints.Dual<
17     Interfaces.IChannel, Interfaces.IChannelClient> myendpoint;
18
19   EndpointTypes.IDual<
20     Interfaces.IChannel<MessageType>, 
21     Interfaces.IChannelClient<MessageType>>
22   ObjectTypes.IChannel.ChannelEndpoint
23   {
24 get { return myendpoint; } // returns an external endpoint reference
25   }
26 // this is a handler for one of the incoming events of the channel endpoint
27   Interfaces.IChannel.Send(MessageType message) { ... } // details omitted
28   ... // the rest of the alias definition, containing all the other event handlers etc.
29 }

 

The methods defined by these interfaces, again accordingly annotated, are used by the 
runtime to compile the list of this endpoint’s incoming and outgoing events, and simi-
lar annotations can be used to express its constraints. When the alias defined this way 
is used in some context with its generic parameters assigned (lines 05-07), the runtime 
treats it as an alias for the specific endpoint type, with the specific events defined by 
those interfaces.  

Having defined the object’s type, we can define the object itself. This is again done 
via annotations. An example definition of a live object template is shown in Code 7.  

A live object template is defined as a .NET class, the instances of which represent 
the object’s proxies. The class is annotated with ObjectAttribute (line 01) to instruct 
the runtime to build a live object definition from it. This template has two parameters: 
the type parameter representing the type of messages carried by the channel (line 03), 
and a “value” parameter - the reference to the membership object that this channel 
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should use (lines 08-09). To specify the type of the live object, line 03 inherits from 
an alias. This forces our class to implement properties returning the appropriate end-
points (lines 19-25). The actual endpoints are created in the constructor (lines 11-12). 
While creating endpoints, we connect event handlers for incoming events (hooking 
itself up, in line 12, and implementing these handlers, as in line 27).                           

While the use of aliases is convenient as a way of specifying distributed types, alias 
types are, of course, not distributed, and the .NET runtime doesn’t understand subtyp-
ing rules we defined in Section 3.2. The actual type checking is done dynamically. 
When the programmer invokes a method of a .NET alias to request a type cast, or to 
create a connection between endpoints, the runtime uses its internal list of aliases to 
identify the distributed types involved and performs type checking by itself. The 
physical .NET types of aliases are irrelevant. Indeed, if the runtime determines that 
two different .NET types are actually aliases for the same distributed type, it will in-
ject a wrapper code, as demonstrated below. 

Example (g). Suppose that binary Foo.dll defines an object type alias IChannel as in 
Code example 6, and an object template alias MyChannel as in Code example 7. 
Now, suppose that a different, unrelated binary Bar.dll also defines an alias IChannel 
in exactly the same way, as in Code 6, and then uses this alias, e.g. in the definition of 
an application object that could use channels of the corresponding distributed type. If 
both binaries are loaded by the live objects runtime, we will end up with two distinct, 
binary-incompatible .NET aliases IChannel, representing the same distributed type. 
Whenever the programmer makes an assignment between these two types, the runtime 
dynamically creates, compiles, and injects the appropriate wrapper to forward method 
calls between the incompatible interfaces, to make the assignment legal in .NET.       

6   Conclusions 

Our paper described the architecture and implementation of a system supporting live 
distributed objects, a strongly typed, object-oriented platform in which distributed 
protocols are treated as first-class objects. The platform is working and quite versatile, 
but is still a work in progress. Future challenges include implementing our security 
and WAN architectures (designed but not yet operational), providing runtime moni-
toring and debugging tools, and automated self-configuration and tuning. 
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