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Abstract— Many distributed systems may be limited in
their performance by the number of transactions they are
able to support per unit of time. In order to achieve fault
tolerance and to boost a system’s performance, active state
machine replication is frequently used. It employs total
ordering service to keep the state of replicas synchronized.
In this paper, we present an architecture that enables a
drastic increase in the number of ordered transactions in
a cluster, using off-the-shelf network equipment. Perfor-
mance supporting nearly one million ordered transactions
per second has been achieved, which substantiates our
claim.

I. I NTRODUCTION

In distributed computing, developing software has
been traditionally considered to be the main goal.
Since most of participating components in a dis-
tributed system are software modules, it is usually
assumed that the number of “transactions” such a
system could generate and handle is limited mainly
by the CPU resources.

A recent technological trend implies introducing
hardware elements into distributed systems. Imple-
menting parts of a distributed system in hardware
immediately imposes performance requirements on
its software parts. An example of a system that
combines hardware and software elements is a high-
capacity Storage Area Network, combining a clus-
ter of PC’s, Disk Controllers and interconnected
switches that can benefit from high-speed total
order.

This paper shows how messageordering can be
guaranteed in a distributed setting, along with a
significant increase in the number of “transactions”
produced and processed. The proposed architecture
uses off-the-shelf technology with minor software
adaptations.

1Anker is also with Radlan Computer Communications, Israel.

Message ordering is a fundamental building block
in distributed systems. “Total Order” is one of the
basic message delivery order guarantees, allowing
distributed applications to use the state-machine
replication model to achieve fault tolerance and data
replication. Extensive analysis of algorithms provid-
ing total ordering of messages can be found in [1].
One of the most popular approaches to achieve total
order implies using a sequencer that assigns order
to all messages invoked. This scheme, however, is
limited by the capability of the sequencer to order
messages, e.g., by CPU power. The goal of the
methodology presented in this paper is to achieve
a hardware-based sequencer while using standard
off-the-shelf network components. The specific ar-
chitecture proposed uses two commodity Ethernet
switches. The switches are edge devices that support
legacy-layer-2 features, 802.1q VLANs and inter
VLAN routing, which are connected via a Gigabit
Ethernet link and a cluster of dual homed PCs (two
NICs per PC) that are connected to both switches.
One of the switches functions as thevirtual se-
quencerfor the cluster. Since the commodity switch
supports wirespeed on its Gigabit link, we can
achieve a near wirespeed traffic of a totally ordered
stream of messages.

In this paper, we describe the architecture, its as-
sumptions and the adjustments made to the software
of the PCs. Performance results presented show that
a near wirespeed traffic of totally ordered messages
is now a reality. The proposed architecture can
be adjusted to various high-speed networks, among
them InfiniBand [2] and Fiber-Channel [3], which
do not support multicast with ordering guarantees.
In addition, our approach includes a highly efficient
optimistic delivery technique which can be utilized
in various environments, e.g. replicated databases,
as shown in [4].



II. CONTRIBUTION

In this work, the following contributions have
been made:
• We proposed a new cost-effective approach that

uses only off-the-shelf hardware products. The
approach is not limited to CSMA/CD networks
and can be applied to other networks as well.

• The approach has been implemented and eval-
uated within a real network.

• We managed to remove significant overhead
from middleware that implements active state
machine replication. It is known that repli-
cation usually provides good performance for
read requests, but incurs a significant overhead
on write requests [5]. We reduced the message
latency and increased the throughput of the
system that can now perform ordering of more
than a million messages per second.

III. T HE RATIONALE

Storage Area Network (SAN) is an area where
message ordering is applicable and used to over-
come possible inconsistency in case of failures [6].
However, during stable periods total ordering is not
used due to its high latency. In this work we suggest
a novel architecture which reduces the latency and
significantly enlarges the number of ordered mes-
sages. Below, we discuss an application that was
encountered during development of a SAN device
and can benefit from the proposed wire-speed total
order.

One of popular SAN architecturesdepicted on
Figure 2 consists of powerful clients, e.g. main-
frames, connected to storage devices (disks) via the
network. Special switches implement the connection
between the clients and the disks. Those switches
called SAN fabric implement standard protocols for
communication with storage devices. The protocols
allow simultaneous disc access to the same block
via different paths. One of the purposes for such
redundant connectivity is to provide fault-tolerance
and achieve better performance. The standard instal-
lation uses more than one switch in parallel to avoid
a single point of failure.

There is a need for a novel SAN fabric that,
on the one hand, supports the old legacy protocols
and is transparent for both the mainframes and the

Fig. 2. SAN for mainframe

disks, and on the other hand, enhances SAN with
advanced services. An example of such advanced
service is a snapshot2. The common practice is to
replace the SAN fabric with a cluster of PCs, thus
implementing SAN services in software. Each PC
in the cluster is equipped with a number of Host
Based Adapters (HBA).

In order to avoid a single point of failure, each
storage device (e.g., disk, RAID, JBOD) is con-
nected to at least two PCs in the cluster. To imple-
ment the snapshot service, the PCs use a replicated
state. The state machine is shown at Figure1. For
each block on the disks, the state can becopied,
uncopiedor locked. When a snapshot is started, all
the blocks are marked asuncopied, and a room for a
copy of each block is allocated on the disks. When
a write request arrives at a PC, it checks the state
of the block, and if it isuncopied, the PC issues a
“copy-on-write” command to the disk controller. So
that two PCs will not send “copy-on-write” for the
same block, the block state should be synchronized.

An effective way of synchronization is to enforce
an order on the requests, that will guarantee that no
two “copy-on-write” commands for the same block
are executed simultaneously. Each PC sends a lock
request when it is required to write onuncopied
block. When a node receives a lock request to
uncopiedblock b, the node changes the state ofb to

2A snapshot is an instantaneous global picture of a system.
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Fig. 1. The snapshot state machine

locked. The sender of the lock request also performs
“copy-on-write” command. When execution of the
command is completed, the node sends an unlock
request. Each PC keeps the state of each block
locally, and the state is updated only when the
requests are delivered in the final order.

However, total order by itself does not provide
a solution, since a PC could crash during sending
the “copy-on-write” command, making it impossible
to distinguish between the cases when the block
was/was-not copied and overwritten. In order to
overcome this difficulty, journal file system imple-
mented by the disks can be used. When a node fails,
it is possible to use the journal on the disk to know
the last operation.

IV. M ODEL AND ENVIRONMENT

The distributed setting is composed of a set of
computing elements (PCs, CPU based controllers,
etc.) residing on a LAN connected by switches. The
computing elements, referred to as nodes, can be
either transaction initiators (senders), or receivers,
or both.

The nodes are connected via full-duplex links
through commodity switches. We assume that the
switches support IGMP snooping [7]. Support of
traffic shaping is not mandatory, but is highly rec-
ommended. In addition, the switches can option-
ally support jumbo frames, IP-multicast routing and
VLANs.

The communication links are reliable, with a
minimum chance of packet loss. The main source
of packet loss is a buffer overflow rather than a
link error. In SectionVII-B , we discuss the fault
tolerance issues. We assume that the participating
group of nodes is already known. Dynamic group
technology can be used to deal with changes in
group membership, although this case is not con-
sidered in this paper.

V. PROBLEM DEFINITION

The main goal of our study is to provide an
efficient mechanism for total ordering of messages.
This task implies a drastic increase in the number
of messages that can be invoked and handled con-
currently.

When comparing ordering algorithms, it is im-
portant to consider the guarantees provided by each
algorithm. Most algorithms attempt to guarantee the
order required by a replicated database application,
namely, Uniform Total Order (UTO). We present
here the formal definition which appears in [8].

UTO is defined by the following primitives :

• UTO1 - Uniform Agreement : If a pro-
cess (correct or not) has UTO-delivered(m),
then every correct process eventuallyUTO −
delivers(m).

• UTO2 - Termination : If a correct process
sendsm, then every correct process eventually
delivers m according to UTO.

• UTO3 - Uniform Total Order : Let m1 and
m2 be two sent messages. It is important to
note that m1 < m2 if and only if a node
(correct or not) deliversm1 beforem2. Total
order ensures that the relation “<” is acyclic.

• UTO4 - Integrity : For any messagem, every
correct process deliversm at most once, and
only if m was previously broadcasted.

In addition to the above definition, our system
guarantees FIFO for each process.

• FIFO Order : If m1 was sent beforem2 by
the same process, then each process delivers
m1 beforem2.

Before a UTO is agreed on, a Preliminary Order
(PO) is “proposed” by each of the processes. If the
PO is identical for all correct (non-faulty) processes,
it is called Total Order (TO). PO and TO should
either be confirmed or changed by the UTO later.



VI. I MPLEMENTATION

As noted above, our implementation of Total
Ordering follows the methodology based on a
sequencer-based ordering. However, we implement
this sequencer using off-the-shelf hardware which
is comprised of two Ethernet switches and two
Network Interface Cards (NICs) per node. For the
simplicity of presentation, we assume that all the
nodes are directly connected to the two switches.
However, our algorithm can work in an arbitrary
network topology, as long as the topology maintains
a simple constraint: all the paths between the set of
NICs for transmission (TX) and the set of NICs for
reception (RX) share (intersect in) at least one link
(see SectionIX for scalability discussion).

We assume that all the network components pre-
serve FIFO order of messages. This implies that,
once a packet gets queued in some device, it will
be transmitted according to its FIFO order in the
queue. It is noteworthy that if QoS is not enabled
on a switch, the switch technology ensures that all
the frames received on a network interface of the
switch and egressing via the same arbitrary outgoing
link, are transmitted in the order they had arrived;
i.e., they preserve the FIFO property. We verified
this assumption and found that most switches in-
deed comply with it, the reason being that the
performance of TCP depends on it. Similarly to
TCP, our algorithm makes use of this feature for
performance optimization, but does not require it
for the algorithm correctness.

In our implementation, multicast is used in order
to efficiently send messages to the nodes’ group.
Our goal is to cause all these messages to be
received in the same order by the set of nodes
that desire to get them (the receivers group). To
achieve this, we dedicate a single link between the
two switches on which the multicast traffic flows.
Figure 3 shows the general network configuration
of both the network (the switches) and the attached
nodes. The methodology of the network is such that
all the nodes transmit frames via a single NIC (TX
NIC connected to the “left” switch in the figure) and
receive multicast traffic only via the other NIC (RX
NIC connected to the “right” switch in the figure).
This ensures that received multicast traffic traverses
the link between the switches. Sinceall multicast
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traffic traverses a single link, thus all the traffic
is transmitted to the nodes in the same order via
the second switch. As the switches and the links
preserve the FIFO order, this in turn implies that all
the messages are received in the same order by all
the nodes.

In a general network setting, there is a chance,
albeit a small one, that a message omission may
occur due to an error on the link or a buffer overflow
(e.g. in the NIC, OS or in the switch). In a collision-
free environment (like full-duplex switched envi-
ronment), a link error is very rare. In addition,
buffer overflow can be controlled using a flow
control mechanism. Thus, the hardware mechanism
enhanced with the proposed flow control (described
in the next section), ensures, with high probability,
the same order for all received messages. Ways
to handle message omission when faults occur are
discussed in SectionVII-B .

A. Providing UTO

The preliminary ordering of the hardware con-
figuration is not enough to ensure UTO because
messages may get lost or nodes may fail. To
address this issue, our protocol uses asimple
positive acknowledgment (ACK) scheme (similar
to the TCP/IP protocol) to ensure that the PO is
identical at all the receivers. Each receiver node
UTO-delivers (see SectionV) a message to the
application only after it has collected ACKs from
each receiver node in the system. In order to reduce



the number of circulating auxiliary control messages
in the system, the ACKs are aggregated according
to a configurable threshold parameter. If the system
settings are such that each sender node is also a
receiver, the ACK messages can be piggybacked on
regular data messages.

For the sake of reliability, the sender node needs
to hold messages for some period of time. This
implies that sender nodes need to collect ACK
messages, even though they do not deliver messages
to the application. The ACK messages are used by
a flow control mechanism (termed aslocal flow
control in [9]) in order to maintain the transmission
window. Each sender node is allowed to send the
next data message only if the number of messages
which were originatedlocally and are still unac-
knowledged by all the receiver nodes is less than
a defined threshold value (the transmission window
size). Since the ACKs are aggregated, the number
of messages that could be sent each time may vary.

In order to increase the performance for small
messages, a variation of a Nagle algorithm [10] is
used as described in SectionVI-B.1. Since the main
source of message losses is buffer overflow, careful
tuning of the flow control mechanism combined
with ACKs aggregation can reduce the risk of
losing messages. For our particular configurations,
we identified the appropriate combination of the
window size and the number of aggregated ACKs to
achieve maximum throughput. The specific imple-
mentation of the flow control mechanism presented
in this paper allows overall performance to converge
with the receiving limit of the PCI bus.

B. Optimizations for Achieving High Performance

Various applications may be characterized by
different message sizes and packet generation rates.
For example, one application may be in a SAN
environment in which it is reasonable to assume
that the traffic can be characterized by a very large
amount of small messages (where the messages
carry meta-data, i.e. a lock request). Another ap-
plication can be a “Computer Supported Cooper-
ative Work” (CSCW) CAD/CAM, in which data
messages may be large. In view of these modern
applications, the need to achieve high performance
is obvious. Below, a description is presented of the

mechanisms and techniques we have implemented
and measured in order to reach that goal.

1) Packet Aggregation Algorithm:It was stated
by [11] that at high loads, the message packing
is the most influential factor for total ordering
protocols. We use an approach similar to that in
the Nagle algorithm [10], in order to cope with a
large amount of small packets. Only the messages
whose transmission is deferred by flow control are
aggregated in buffers. The most reasonable size of
each buffer is the size of an MTU. When the flow
control mechanism shifts the sliding window byn
messages, up ton “large” messages will be sent.

2) Jumbo frames:The standard frame size in
Gigabit Ethernet is∼1512 bytes. The size of the
jumbo frame is∼ 9000 bytes. Numerous studies
show MTU size has an impact on the overall
performance, such as [12], which reports increased
performance for jumbo frames. The main reasons
for the performance improvement include:

• lower number of interrupts (when moving the
same amount of data) and

• less meta-data overhead (headers).
In order to fully benefit from the use of jumbo
frames, all components of the system should be
configured to support it; otherwise, fragmentation
occurs. Since we control all the components in
the proposed system, we avoid this problem. Per-
formance results prove that jumbo frames allow
to obtain better throughput. For example, in the
configuration of two senders and three receivers we
achieve a maximum throughput of 722Mb/s.

C. Multicast Implementation Issues

As mentioned above, every node is dual-homed,
i.e. is connected to the network with two NICs.
In the IP multicast architecture, a packet accepted
on some interface must be received on the same
interface from which the node sends unicast traffic
towards the source of the multicast packet. This con-
dition is called the Reverse-Path-Forwarding (RPF)
test, which is performed in order to detect and
overcome transient multicast routing loops in the
Internet. However, this poses a problem for our
network settings, since we intend to receive the
multicast traffic from the RX NIC while we are
transmitting it from the TX NIC. There are several
options for overcoming this difficulty, including:



• disabling the RPF test on the particular node;
• ensuring that the source address of the multi-

cast packets has the same subnet portion as the
NIC on which it is received (i.e., the RX NIC
in our case).

We used the second approach and modified the RX
flow in the NIC driver, so that it spoofs the source
IP address of the packet. Another issue related to
the usage of IP multicast in our settings is that
self-delivery of multicast packet is usually done via
internal loopback. Packets that are sent by the local
host and are supposed to be received by it, are
usually delivered immediately by the operating sys-
tem. We disabled this feature, so that ALL delivered
packets are received via the RX NIC and thus all
the packets pass through the same delivery process
(thus ensuring that total order is maintained).

VII. FAULT TOLERANCE AND FAILURE

DETECTION

Faults may occur at various levels of packet han-
dling. Over the years, a variety of techniques have
been proposed for building fault-tolerant systems.
The techniques used in our implementation can
currently handle some types of faults. Below, we
discuss fault-tolerance techniques that are applicable
to our system.

A. Failure Detectors

Failures can be caused by different sources: a
switch failure, a physical link disconnection, a fail-
ure of a process and a crash of a node running
the process. All these failures can be identified by
failure detectors. The easiest event to reveal is a
failure of a physical link or of a switch, which can
be detected by the hardware. Network equipment
sends a SNMP trap that notifies about the failure
and is generated by software that operates network
components. For example, when a switch discovers
that a link to its peer is down, it usually sends a
SNMP message to a node. Upon receiving such a
message, the node informs all the nodes about the
configuration change.

A process crash failure is detected by the node’s
operating system. We propose to use TCP/IP con-
nections to propagate this information to other
nodes, using Congress [13] implementation. When
a process fails, the operating system closes the

process’s connections on its node. The peers of its
TCP/IP connections recognize this as an indication
of the process crash and notify other nodes. To
enhance the reliability of this mechanism, it is
possible either to reduce the TCP KEEPALIVE
timer or to issue heartbeat messages above the TCP
connections, in order to facilitate a faster TCP fail-
ure detection. It is important to note that Congress
maintains a tree of TCP/IP connections, but not a
full mesh among the groups of nodes mentioned.

Those failure detector mechanisms, however, are
still not robust enough: for instance, a SNMP trap
message can be lost. A more reliable mechanism
is an application-level “heartbeat” which usually
works in connectionless mode and monitors the
“liveness” of a set of peers. If the mechanism
suspects that a monitored process has failed, e.g.,
when it does not send a heartbeat message for a
long time, the node’s failure is declared and the
other nodes are notified.

B. Fault Tolerance

Typically, leader-based message ordering systems
like Isis [14] suggest how to handle faults. Our
approach is compatible with these systems and
can be used as the main module in their ordering
protocols. When a failure is detected, the proposed
system returns to a known software-based ordering
scheme that is slower than our protocol. When the
system is stabilized, our ordering scheme can be
resumed. Below, we outline the main aspects of this
transition.

For example, Isis implementsvirtual syn-
chrony[15] approach that informally guarantees that
processes moving from viewv to a new viewv′

deliver the same set of messages inv. A recent
work [16] proposes a way to implement virtual
synchrony during most of the time within one
round. It relies on an existing membership ser-
vice which delivers two kinds of messages, i.e.
start_membership_change and view. A client-
server architecture is suggested where the member-
ship service is the server and the participating nodes
are the clients. The work also suggests how to merge
message dissemination service with the member-
ship service in order to achieve virtual synchrony.
In brief, when the membership service suspects a
process, it sendsstart_membership_change noti-



fications to all the processes, and they then reli-
ably exchange information about their state. When
the membership service converges to an agreed
membership view, it sends the new viewv′ to the
processes. The group members use this viewv′ and
the state data received from other processes listed in
v′ in order to decide which set of messages should
be delivered in the previous viewv.

An alternative approach is Paxos [17]. Our virtual
sequencer may serve as the leader in Paxos. When
a process receives messagem from the virtual
sequencer, it sends theannounce message to all
the processes. Theannounce message containsm’s
id and the corresponding PO number. When a
process receives equalannounce messages from the
majority of processes, it sendsprecommit message.
When the majority ofprecommit messages are col-
lected and all the preceding messages are delivered,
the process is able to deliver messagem and send
decision message to all processes, which resembles
Paxos algorithm [17]3.

A similar approach to the abovementioned proto-
col was presented by Pedone et al. [18]. The authors
define a weak ordering oracle as an oracle that
orders messages that are broadcast, but is allowed to
make mistakes (i.e., the broadcast messages might
be delivered out of order). The paper shows that
total-order broadcast can be achieved using a weak
ordering oracle. The approach is based on the algo-
rithm proposed in [19]. In [18], another algorithm
is also proposed that solves total order broadcast in
two communication steps, assumingf < n

3
. This

algorithm is based on the randomized consensus
algorithm proposed in [20]. It should be noted that
this solution requires collecting ACKs only from
n−f processes. Our virtual sequencer may serve as
the weak ordering oracle for the algorithm proposed
by Pedone et al. [18].

In our study, we implemented a loss-of-packet
failure handling. The proposed algorithm contains a
built-in method for identifying and retransmitting
a missing packet by introducing a leader node
whose order takes over when a conflict occurs. It

3While in Paxos there is a stage at which the leader collects the
ACK messages from the majority of the processes, in our system it is
enough to collect the majority ofprecommit messages only, since
all the processes send theprecommit messages in multicast to all
group members.

Fig. 4. Network with 3 switches

Fig. 5. State after failure of link between switch A and switch B

is noteworthy that nodes in our system do not wait
for the leader’s ordering in failure-free scenarios.
We simulated message losses and measured the
performance. The results presented in [21] prove
that minor loss rate has a negligible impact on the
performance of the system.

The leader’s order is used only when a conflict
occurs, thus our implementation follows the ap-
proach proposed in [22].

Another type of a failure is a crash of a switch or
disconnection of a link between switches. In order
to solve the problem, we propose to increase the
number of switches, to connect them in a mesh
network and to enable each pair of switches to
serve as the virtual sequencer. The spanning-tree
protocol (STP) [23] is used to prevent loops. A



dedicated IP multicast group is associated with each
virtual sequencer. This solution allows building a
system with f+2 switches, where f is the maximum
number of tolerated switch/link failures.Figure 4
demonstrates a network that is able to tolerate
failure of a switch or of a link between switches.
Figure 5 shows the state of the network, after a
failure of the link between switch A and B.

VIII. P ERFORMANCE

This section presents the results of the experi-
ments performed to evaluate the architecture. The
following configuration was used:

1) Five end hosts: Pentium-III/550MHz, with
256 Mb of RAM and 32 bit 33 MHz PCI
bus. Each machine was equipped also with
two IntelR©Pro/1000MT Gigabit Desktop Net-
work Adapters. The machines ran Debian
GNU/Linux 2.4.25.

2) Switches: Two Dell PowerConnect 6024
switches, populated with Gigabit Ethernet in-
terfaces. These switches are “store and for-
ward” switches (i.e., a packet is transmitted on
an egress port only after it is fully received).

The experiments were run on an isolated clus-
ter of machines. For each sample point on the
graphs below and for each value presented in
the tables, the corresponding experiment was re-
peated over 40 times with about 1 million mes-
sages at each repetition. We present the average
values with confidence intervals of95%. Unless
otherwise specified, the packet size in the experi-
ments was about 1500 bytes (we also experimented
with small packets and with jumbo frames). The
throughput was computed at the receiver side as
packet size×average number of delivered packets

test time
. In order

to simulate an application, we generated a number
of messages at every configurable time interval.
However, in most Operating Systems, and in partic-
ular in Linux 2.4, the accuracy of the timing system
calls is not sufficient to induce the maximal load
on the system. We therefore implemented a traffic
generation scheme that sends as many messages as
possible after each received ACK. Since the ACKs
were aggregated, the size of the opened flow control
window varied each time.

A. Theoretical bounds

It is important to observe that, regardless of
the algorithm used to achieve the Total Order of
messages, there are other system factors that limit
the overall ordering performance. One of the bottle-
necks that we encountered resulted from the PCI bus
performance. In [24] it is shown that the throughput
achieved by PCI bus in the direction from the
memory to the NIC is about 892Mb/s for packets of
1512 bytes size and about 1 Gb/s for jumbo frames.
However, a serious downfall in the PCI bus perfor-
mance was detected in the opposite direction, when
transferring the data from the NIC to the memory.
The throughput of 665Mb/s only for packets of
1512 bytes size and 923Mb/s for jumbo frames
was achieved. Thus, the throughput allowed by PCI
bus imposed an upper bound on the performance
of a receiver node in our experiments. There are
various studies on PCI bus performance, e.g. [25],
which suggest several benchmarks and techniques
for tuning. It will be shown later that our solution
approximates the theoretical and experimental upper
bounds of PCI bus. In future work, we plan to
evaluate our architecture over PCI Express whose
throughput is higher and is thus to yield significantly
better performance.

We first discuss the best throughput results ob-
tained for each configuration. The latency obtained
per result is presented as well. Two types of con-
figurations were used: those where all the nodes
were both senders and receivers (all-to-all config-
urations), and those in which the sets of senders
and receivers were disjoint. It is important to note
that for some configurations, such as the all-to-all
configuration and the experiments with the jumbo-
frames, we utilized the traffic shaping feature of the
switching device, namely the one that is connected
to the TX NICs. This ensured that no loss occurred
on a node due to the PCI bus limitations.The value
serving to limit the traffic was selected by measuring
maximum achievable throughput for each setting.
The main benefit of using traffic shaping is the limit
it imposes on traffic bursts that were the major cause
of packet drops in our experiments.

1) All-to-all Configurations: Results for all-to-
all configurations and configurations with dedicated
senders are discussed separately, since when a node



Nodes Throughput PO Latency UTO Latency
Number Mb/s ms ms

3 310.5 (0.08) 4.2 (0.03) 6.5 (0.03)
4 344.4 (0.04) 4.4 (0.02) 6.8 (0.02)
5 362.5 (0.09) 4.1 (0.02) 6.7 (0.02)

TABLE I

THROUGHPUT ANDLATENCY FOR ALL-TO-ALL CONFIGURATION

serves as both a sender and a receiver, the CPU and
PCI bus utilization patterns differ, and the node is
overloaded.

TableI presents throughput and latency measure-
ments for all-to-all configurations, along with the
corresponding confidence intervals shown in paren-
theses. The nodes generate traffic at the maximum
rate bound by the flow control mechanism. Two
different latency values are presented: PO Latency
and UTO Latency. PO Latency is defined as the time
that elapses between transmission of message by a
sender and its delivery by the network back to the
sender. UTO Latency is defined as the time elapsed
between a message transmission by a sender and
the time the sender receives ACKs for this message
from every receiver.

The number of the nodes that participated in this
experiment increases from 3 to 5. As presented in
Table I, the achieved throughput increases with the
number of participating nodes. This is accounted
for by the PCI bus behavior ( See SectionVIII-
A). Since each node both sends and receives data,
the load on the PCI is high, and the limitation is
the boundary of the total throughput that can go
through the PCI bus. As the number of nodes grows,
the amount of data each individual node can send
decreases. When a node sends less data, the PCI bus
enables it to receive more data. The nonlinearity of
the increase in throughput in this experiment can be
attributed to the above mentioned property of the
PCI bus, where the throughput of transferring data
from memory to NIC is higher than in the opposite
direction.

2) Disjoint Groups of Senders and Receivers:
TableII presents the performance results of through-
put measurements for disjoint sets of nodes. We
used 2-5 nodes for various combinations of groups

of senders and receivers. The maximum throughput
of ∼512.7Mb/s was achieved. In the trivial config-
uration of a single sender and a single receiver, the
result is close to the rate achieved by TCP and UDP
benchmarks in a point-to-point configuration, where
the throughput reaches 475Mb/s and 505Mb/s, re-
spectively. The lowest result was registered for
a single sender and four receivers, the achieved
throughput of 467Mb/s not falling far from the best
throughput.

For a fixed number of receivers, varying the num-
ber of senders yields nearly the same throughput
results. For a fixed number of senders, increasing
the number of receivers decreases the throughput.
The reason is that a sender has to collect a larger
number of ACKs generated by a larger number
of receivers. It is noteworthy that the flow control
mechanism opens the transmission window only
after a locally originated message is acknowledged
by all the receiver nodes. Possible solutions to this
problem are discussed in SectionIX.

Table III presents the results of UTO latency
measurements at the receiver’s side. As can be seen,
in case of a fixed number of senders, increasing
the number of receivers increases the latency. The
explanation is similar to that for the throughput
measurement experiments: the need to collect ACKs
from all the receivers. Increasing the number of
senders while the number of receivers is fixed
causes an increase in the UTO Latency. Our hy-
pothesis is that this happens due to an increase in
the queues both at the switches and at the hosts.

As was mentioned above, in case a node either
sends or receives packets, the utilization of the PCI
bus and other system components is different from
the case when a node acts as both a sender and a
receiver. For this reason, the results presented in this



Receivers
Senders 1 2 3 4

1 512.7 (0.47) 493.0 (0.17) 477.0 (0.34) 467.1 (0.40)
2 512.5 (0.27) 491.7 (0.67) 475.7 (0.33)
3 510.0 (0.55) 489.6 (0.41)
4 509.2 (0.30)

TABLE II

THROUGHPUT(Mb/s) FOR DIFFERENT CONFIGURATIONS

Receivers
Senders 1 2 3 4

1 2.3 (0.003) 3.1 (0.035) 3.2 (0.045) 3.1 (0.012)
2 2.5 (0.002) 3.1 (0.025) 3.4 (0.040)
3 3.2 (0.004) 3.6 (0.041)
4 4.9 (0.003)

TABLE III

UTO LATENCY (ms) FOR DIFFERENT CONFIGURATIONS

section cannot be compared with those described
above.

B. Tradeoffs of Latency vs. Throughput

In this section, we discuss the impact of an in-
creased load on latency. In order to study the trade-
off of Latency vs. Throughput, a traffic generation
scheme different from that in the previous experi-
ments was used. The scheme was implemented by a
benchmark application that generated a configurable
amount of data.

1) All-to-all Configuration: In this section, all-
to-all configuration is considered. Figure6 shows
the latencies for the 5-node configuration. Obvi-
ously, the UTO latency is always larger than the
PO latency. One can see an increase in the latencies
when the throughput achieves the 50Mb/s value, i.e.
a point from which small transient packet backlogs
were created, and then a slight increase until the
throughput approaches about 250Mb/s. After this
point, the latencies start increasing. The PO latency
reaches the value of about 1ms and UTO of about
3ms for throughput of about 330Mb/s.

We also measured the Application UTO Latency,
which is the time interval from the point when the
application sent a message until it can be “UTO
delivered”. One can see that when throughput in-
creases, the Application UTO Latency increases too.
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Fig. 6. Latency vs. Throughput (all-to-all configuration)

This happens because the Linux 2.4 kernel allows
events to be scheduled with a minimal granularity
of 10ms. Thus, in order to generate a considerable
load, the benchmark application has to generate an
excess number of packets every 10ms. Packets that
are not allowed to be sent by the flow control mech-
anism are stored in a local buffer data structure.
When ACKs arrive, the flow control mechanism en-
ables sending some more packets previously stored
for transmission. Packets that cannot be immediately
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sent increase the Application UTO Latency.
2) Large Packet Sizes:Figure 7 shows how

increasing the application packet size, along with
increasing the MTU size, affects the Application
UTO Latency. In this experiment, we used disjoint
groups of two senders and three receivers. We
compared results achieved for jumbo frames with
those obtained for regular Ethernet frames of MTU
size. As expected, in case of jumbo frames, a larger
throughput can be achieved, mainly due to the
significantly reduced amount of PCI transactions.

When throughput increases, the Application UTO
Latency increases, too, the reasons being the same
as for the “all-to-all configuration”. One can see that
at lower throughput values, the jumbo frames show
higher latency. This can be attributed to the fact that
when the system is relatively free, the high trans-
mission latency of jumbo frames dominates; in other
words, the time for putting a jumbo frame on the
wire is larger. As the load on the system increases,
the overhead of the PCI bus and packet processing
becomes the dominating factor, and using jumbo
frames helps to reduce this overhead and thus to
achieve the UTO faster.

3) Packet aggregation:The experiment evaluated
the effect of using the packet aggregation algorithm
described inVI-B.1. Figure 8 shows the perfor-
mance of the system with small packets, the payload
size being about 64 bytes. Two accumulating packet
sizes were used, Ethernet MTU of 1500B and
jumbo frame size of 9000B. In addition, the same

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

10

Throughput (Mb/s)

A
pp

lic
at

io
n 

U
T

O
 L

at
en

cy
 (

m
s)

Without message packing
MTU = 1512
MTU = 9000

0 20 40

0.5

1

1.5

2

2.5

Fig. 8. Packet aggregation (the low throughput area is extended)

tests were conducted without packet aggregation.
Since the throughput without packet aggregation is
considerably smaller, in the same figure the area
corresponding to the throughput values between
0 and 40Mb/s is shown. One can see that the
maximum throughput without packet aggregation
is about 50Mb/s. On the other hand, using an
accumulating size of 1500B increased the maximum
throughput up to 400Mb/s. With accumulating size
of jumbo frames, the throughput climbed as high as
630Mb/s, which is about one million small packets
per second.

Comparing corresponding curves in Figures7
and 8, one can see that packet aggregating causes
a higher latency and a lower maximum achievable
throughput. It could be explained by the amount of
CPU resources spent on aggregating the messages.

C. Comparisons with previous works

There are only few papers that evaluate perfor-
mance of total order algorithms over real networks.
The rapid advancement of networking technology in
recent years often makes the comparison irrelevant.
For example, [11] presented performance evalua-
tions of several total order algorithms. However, the
measurements were carried out on a shared 10 Mb/s
Ethernet network, which is 100 times slower than
Gigabit Ethernet which is widely deployed today.

In the experiment described below, we compared
the performance of our system with results of an
algorithm based on weak ordering oracles ([18],
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described in SectionVII-B ), and of an algorithm
based on failure detectors [26]. When carrying out
the measurements for the comparative experiment,
we tried to provide similar settings. All links were
configured to 100Mb/s rate, the message size was
100 bytes, no message packing was used and the
aggregation of ACKs limit was set up to 3. The
experiments in [18] were performed at 4 nodes for
weak ordering oracles and at 3 nodes for the algo-
rithm based on failure detectors. In our experiments,
we used 4 nodes. Since the main parameters of the
experiments under comparison coincide, while there
might be differences in equipment and implementa-
tion environments, it is likely that the approximation
is sufficient.

As the comparison presented in [18] shows, the
maximum throughput for both algorithms was 250
messages per second. The latency of the weak order-
ing oracle algorithm increased from about 2.5s for
the throughput of 50 messages/sec up to about 10ms
for the throughput of 250 messages/sec. The perfor-
mance of the algorithm based on failure detectors
depends largely upon the timeout set for heartbeat
messages. For large timeout of about 100ms, the
latency was within the range of 1.5-2ms, and for
small timeout (2ms) the latency was within the
range of 8-10ms.

Figure 9 presents the results of our experiments
in 100Mb/s networkand shows that the throughput
of about 1000 messages/sec was achieved. The
throughput of 300 messages/sec induces the PO

latency of about 0.7ms, and the UTO latency was
within the range of 1.7-2.2ms. The95%-confidence
interval was also computed and found practically
negligible, as one can see in the graphs. It is
important to note that while for low throughput
our results do not differ significantly from those
achieved by Pedone et al. [18], for a high throughput
they are much higher. The reason is that in our
system, order is not distrupted even if a message
m is lost, as losses happen mostly in switch A
(see Figure3). So, if m is missed by a process,
there is a high probability thatm is lost by all the
processes, and PO order remains the same among
all the processes. Whenm’s sender discovers that
m is lost, it retransmitsm promptly.

Another question is whether the propagation time
of a message in our two-switch topology is much
higher than in a one-switch topology. Theoretically,
the propagation time in a Gigabit network over a
single link is 1500∗8

109 =0.012ms, the speed of signal
transmission over the cable is negligible, and the
maximum processing time in the switch that we
used is not more than 0.021ms. We performed two
experimental measurements of propagation time. In
the first experiment, ping utility was used to mea-
sure the latency of 1500-size packet, and 0.05ms
propagation time was obtained in both topologies.
In the second experiment, we used application level
ping based on UDP protocol, as opposed to the
original ping utility which works on kernel level.
In the application level ping, we registered 0.12ms
latency in both topologies. The results show that
packet processing time (∼0.1ms) is much higher
than message propagation time (∼ 0.012ms). We
can conclude, therefore, that two-switch topology,
without significantly increasing the latency, allows
to predict message order with much higher proba-
bility!

IX. SCALABILITY

The performance evaluation presented above was
carried out only for up to five nodes. This evaluation
proves that the architecture can be useful in small
storage systems. The scalability issues addressed in
this section show that the architecture is also appli-
cable for systems consisting of dozens of nodes.

The measurements showed that increasing the
number of receivers decreases the throughput. The
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reason is that a sender has to collect a larger number
of ACKs generated by a larger number of receivers.
There are a few ways to make a system scalable
in number of receivers. In [18], an algorithm was
proposed that reduces the number of ACKs required
to deliver a message. This approach can be further
improved by using recently introduced NICs [27]
which have an embedded CPU that enables to
offload some of the tasks currently running on the
host CPU. Our system can offload to those NICs the
tasks of sending, collecting and bookkeeping ACK
messages.

Our measurements showed only a small degrada-
tion of throughput (about 0.5% per sender) when
the number of senders increases. Implementing an
efficient flow control for big number of senders is
a more serious challenge. In future work, we are
going to explore hardware flow control [28] over
each link. The main idea is to slow down switch B
(see Figure3) when the number of free buffers in a
receiver is below a threshold. As a result, switch B
starts accumulating messages, and when the number
of its free buffers falls significantly, it causes switch
A to slow down. Switch A may now either ask
the senders to slow down, or drop messages. Our
current implementation already deals with message
drops: if a message is missed by all the receivers,
the impact on the throughput is insignificant.

The number of ports in the switches is an im-
portant parameter that may limit the system’s scal-
ability. The simplest way to expand the two-switch
network is to use trees of switches. Figure10 shows
an example of such expanded topology. Each sender

is connected to an intermediate switch which is in
turn connected to switch A. Also, each receiver is
connected to switch B via an intermediate switch. If
a node belongs to both groups, i.e. the senders and
the receivers, it is connected to the two intermediate
switches which are connected to switches A and
B, respectively. In this topology, the link between
switches A and B continues to serve as the virtual
sequencer. The path traversed by each message is
longer, but, as shown above, the propagation time
is very short.

Another important issue related to the scalability
problem is the ability to support multiple groups.
The most naive solution is to use only one group and
to implement multiple group support on the applica-
tion level. However, this solution is not always the
optimum one, as we force each node to receive all
the traffic. In future work, we intend to investigate
another approach in which an IP Multicast address
is associated with each group. As modern switches
support IGMP, a message will be delivered only to
hosts that are members of this group. Considering
possible bottlenecks in this solution, we see that the
link from switch B to a host is not a bottleneck, as
the host may stay away from participating in all the
groups.

If the link between the switches is near sat-
uration, one can use the new 10 Gb/s standard
which soon will be available, for uplinks connecting
two switches. Another option that has already been
implemented to increase throughput between two
network components is trunk [29]. We assume that
switches can be configured to associate a link in
trunk with a destination IP address. In addition,
it is possible to support more groups by using
more switches connected in the way described in
SectionVII-B . It is noteworthy that all total ordering
protocols can not order messages at rate that is
close to the link bandwidth, so if the link between
switches is used only for ordering, it will not be
saturated, and thus it is not a bottleneck but rather
an efficient ordering tool.

In future work, we plan to evaluate our archi-
tecture’s performance over I/O-driven networks like
InfiniBand [2] or Fiber Channel [3], as our approach
is applicable to such networking technologies.



X. RELATED WORK

There is a number of works which deal with
the problem of Total Ordering of messages in a
distributed system. A comprehensive survey of this
field, covering various approaches and models, can
be found in [1]. The authors distinguish ordering
strategies based on where the ordering occurs, i.e.
senders, receivers or sequencers. We use the net-
work as a virtual sequencer, so our algorithm falls
into the latter category.

As was noted in SectionI, the approach called
“Optimistic Atomic Broadcast” was first presented
in [30]. In [31], an interesting approach to achieving
total order with no message loss was presented.
The authors introduced buffer reservation at inter-
mediate network bridges and hosts. The networking
equipment connecting the senders and receivers was
arranged in a spanning tree. The reservation was
made on the paths in the spanning tree so that
no message loss could occur. The ordering itself
was performed using Lamport timestamps [32]. The
paper assumed a different network and presents only
simulation results, which makes it hard to perform
any comparisons.

An implementation of a Total Ordering algorithm
in hardware was proposed in [33]. This work of-
floads the ordering mechanism into the NIC and
uses CSMA/CD network as a virtual sequencer.
The authors assume that a single collision domain
connects all the participating nodes. Using spe-
cial software and hardware, the algorithm prevents
nodes that missed a message from broadcasting
new messages, thus converting the network to a
virtual sequencer. In our opinion, the use of a
single collision domain is the main drawback of
this approach, as it is known that collisions may
significantly reduce the performance of system.

Another work that deals with Total Ordering and
hardware is presented in [34]. In this work, a totally
ordered multicast which preserves QoS guarantees
is achieved. It is assumed that the network allows
bandwidth reservation specified by average trans-
mission rate and the maximum burst. The algorithm
suggested in the paper preserves the latency and the
bandwidth reserved for the application.
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