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Abstract Many previous and ongoing approaches aim to improve
network processing by offloading parts of thetocol to
During the last two decades, a considerable amount of the networking devices, as distinct from modifying or of-
academic research has been conducted in the field of dis-floading the application. Current efforts have centered on
tributed computing. Typically, distributed applications re- specialized TCP Offload Engine (TOE) devices [6] that im-
quire frequent network communication, which becomes aplement parts of the TCP/IP networking stack. TOE devices
dominate factor in the overall runtime overhead. The re- perform well for specific types of applications, but do not
cent proliferation ofprogrammableperipheral devices for  provide the expected performance gains for many kinds of
computer systems may be utilized in order to improve thenetworking and distributed applications [16].
performance of such applications. Offloading application-
specific network functions to peripheral devices can im-  The proliferation ofprogrammableperipheral devices
prove performance and reduce host CPU utilization. Due for computer systems opens new possibilities for research
to the peculiarities of each particular device and the dif- into alternate sources of performance improvement [25].
ficulty of programming an outboard CPU, the need for an The capabilities offered by the high-performance micropro-
abstracted offloading framework is apparent. This paper cessors available in disk controllers, network interface cards
proposes a hovel offloading framework, calledibRA that and graphic accelerators, are extremely underutilized today.
enables utilization of such devices. The framework enablesThis paper proposes¥bRA, a generic offloading frame-
an application developer to design the offloading aspects ofwork that enables a developer to utilize programmable pe-
the application by specifying an “offloading layout”, which  ripherals to improve application performance.
is enforced by the runtime during application deployment.
The performance of a variety of distributed algorithms can  Today, there is no generic programming model and run-
be significantly improved by utilizing such a framework. We time support that enables a developer to desigroffiead-
demonstrate this claim by evaluating several offloaded ap-ing aspects of an application. This work involves the design
plications: a distributed total message ordering algorithm and implementation of a framework to address these chal-
and a packet generator. lenges. We introduce the concept of aifffoading layout
as an additional phase in the process of an application de-
velopment. After designing the application’s logic, the pro-
1. Introduction grammer will design the offloading layout using a generic
set of abstractions. The layout describes the interaction
between the application and the offloaded code at various

The development of distributed computing applicationsOPhasesy such as deployment, execution and termination.

is very challenging. When messages may be lost, corrupte
or delayed, robust algorithms must be used in order to build The rest of this paper is organized as follows. Sec-

a coherent system. Distributed algorithms rely on inter- tion 2 describes the related work concerning offloading,

changing messages among compute npdg;. The proceSSir’§ection 3 describes the®rRA programming model. Sec-
of the network protocols consumes a significant amount oftion 4 presents MDRA's software architecture. Section 5

a server’? CPrL]J rlesoches, which directly affects the perfor- yis\,q5 several distributed algorithms that may benefit from
mance of such algorithms. the proposed framework and offloading capabilities. Sec-

This paper will appear at the 2007 IEEE International Parallel and Dis- 10N 6 provides some case studies of usingbiRA, and
tributed Processing Symposium. Distribution of this paper is prohibitedl Section 7 concludes the paper.




2. Related Work The Ethernet Message Passing (EMP) [20] system is a
zero-copy and OS-bypass messaging layer for Gigabit Eth-

Offloaded applications have been designed for particular€Met: EMP protocol processing is done at the NIC and a

needs in the past using specific devices. Some of this workn©St application (usually through an MPI library) can di-
has led to the availability of near-commodity products. We rectly manipulate the NIC. Arsenic and EMP provide very

discuss the previous work in three subsections according td°®W Message latency and high throughput but are very task-
the device type. specific and lack the support for generic offloading or host

application integration.

TCP Offload Engines (TOE) [6] are adapters that move
some of the TCP/IP network stack processing out of the
main host and into a network card. While TOE technol-

Object Storage Devices (OSD) came from a researchogy has been available for years and continues to gain pop-
project called Active Disks from CMU [19], which in- ularity, it has been less than successful from a deployment
fluenced a recent OSD standardization by the ANSI T10 standpoint. TOE only targets the TCP protocol, thus, user
group. OSD is a protocol that defines higher-level meth- extensions are out of its scope. Practical concerns such
ods for the creation, writing, reading and managing of data as the inability to modify TOE behavior for evolving TCP
objects on a disk. Implementing OSD requires a high de- protocol changes or to implement non-trivial firewalls also
gree of processing capability at the disk controllers or the limit the utility of non-programmable TOEs. Other ap-
devices themselves and can offer the potential for exten-proaches to reducing network processing overheads are pos-
sion by custom programmability at the device. One ex- sible as well. iWARP [18] is an approach that takes advan-
ample of a storage-specific extension is the Diamond sys-tage of remote direct memory access and processor offload
tem [12]. Unlike traditional architectures for exhaustive to increase throughput and reduce host overhead. iWARP
search in databases, where all of the data must be shippedetwork cards conceptually include TOEs and other func-
from the disk to the host computer, the Diamond architec- tionality needed to implement the higher-layer protocols.
ture employs “early discard.” Early discard is the idea of  Previous research has also considered using pro-
rejecting irrelevant data as early in the pipeline as possible.grammable components to accelerate network processing in
By exploiting active storage devices, one can eliminate aspecific situations [9, 15]. Our goal in this work is to enable
large fraction of the data before it is sent over the intercon- more general access to programmable components for arbi-
nect to the host. Diamond applications can install filters at trary networking, computing or 1/O tasks.
the active disk for eliminating data.

2.1. Storage Offload

2.3. Computation Offload
2.2. Network Offload
Specific devices to assist a host processor with some
One of the more fruitful areas for exploiting pro- of its computational burdens have existed for many years

grammable devices is in the area of networking. As and seem to be experiencing a recent resurgence. Field-

wire speeds increase and demand extensive host proces&’ogrammable Gate Arrays (FPGAs) in particular are avail-
ing power, moving some of the work to the network card able as add-in PCI cards and mtegrated |nt<_) supercomputer
becomes an attractive alternative. systems. Each FPGA vendor provides varying level of sup-
o Port for the development of host applications and device
programs ranging from a single high-level language and
auto-generating compilers down to explicit device gate de-

sign. What is lacking in FPGA development is any generic
interface or commonality that would enable applications to

Spine [8] is a safe execution environment that is appr
priate for programmable Network Interface Cards (NICs).
Spine enables the installation of user handlers, written in
Modula-3, at the NIC. Although Spine enables the exten-
sion of host applications to use NIC resources it has a few
major limitations. In particular, it requires an event-driven run on platforms other than where they were developed.

programming model and does not include a handler deploy-AI.So. t.he communication models for FPGAs are typically
ment process nor a framework for design of offloading as- primitive compared to the networking and storage examples
pects in the host application described above. OurHbRrRA approach is potentially very

Arsenic [17] is a Gigabit Ethernet NIC program that well suited to FPGA devices.
exports an extended interface to the host operating sys- )
tem. Unlike conventional adaptors, it implements some of 3. HYDRA Programming Model
the protection and multiplexing functions traditionally per-
formed by the operating system. This enables applications Our proposed programming model enables one to de-
to directly access the NIC, thus bypassing the OS. 2 velop an ‘Offload-Aware (OA)application by using a set



of special components call€ffcodes An offcode defines Figure 1 presents an offcode deployment process that is

the minimal unit for offloading and exports a set of well- executed by the runtime. The OA-Application running on

defined interfaces. Offcodes are interconnected via “com-the host creates a single offcodethat requires a second

munication channels” that determine various communica- offcode 3. Since the offcode is automatically created, the

tion properties between them. runtime constructs an offloading-layout graph (Section 3.3)
We follow the “layout programming” design methodol- and performs the actual offloading process.

ogy first presented in FarGo [10, 11] and then in FarGo-

DA [24]. Although not dealing with offloading, FarGo and [,

FarGo-DA propose a programming model that enables a de-

veloper to program relocation and disconnection semantics Link R

between components in a separate phase during the appli- OA-Application - %,70 _—

cation development cycle. N @
Similarly, OA-applications are designed by two orthog- @

onal aspects. One aspect defines the basic logic of the ap- @ ”g‘(ﬂ;‘""‘

plication. Components which are potential candidates for @

offloading are identified and tagged@#fcodes Inthe sec- ~ ~— T

ond aspect, the offloading constraints of the application are
defined. In this phase, mapping between components and F@><
peripheral devices, both in software and hardware, is set,| 4 mitaiizeo coece (5) Initialize(
including the offloading priorities and channel characteris-
tics among offcodes, and between offcodes and the host.

(6) StartOffcode() (7) StartOffcode()

Device A Device B

3.1. Offcode

, . ) ) Figure 1. Offcode Deployment
An offcode defines the minimal unit for offloading. Of-

fcodes can be provided as source code, which is then com-

piled for the target device, or as pre-compiled binaries. An  Once an offcode has been explicitly created, a set
offcode is further described by an Offcode Description File of attributes can be applied to it. ¥®RA provides an
(ODF) that describes the offloading layout constraints and API to get and set offcode attributes. There are sev-
the target device hardware and software requirements. eral attributes already defined, includiogSOLETETIME,

An offcode can present multiple interfaces, each of WATCHDOG_TIME andOFFLOAD_PRIORITY. The latter can
which contains a set of methods that perform some be-be used to affect the offloading sequence, as will be further
havior. Each interface is uniquely identified by a glob- elaborated in Section 3.3.
ally unigue identifier (GUID). An OA-application commu-
nicates with an offcode using an abstraction calléthan-
nel (described in Section 3.2). All offcodes implement a
common interface that is used by the runtime to instantiate3.1.2  Offcode Invocation
the offcode and to obtain a specific offcode’s interface.

HYDRA provides two ways to invoke an offcode: trans-
31.1 Offcode Creation parently and manually. A transparent invocation requires a

proxy component that shields the client from the complexity
Offcodes are created by an OA application by calling the involved in invoking the target offcode directly. The proxy
CreateOffcodenethod provided by the ¥bRA runtime en- has a similar interface as the target offcode and allows the
vironment. The runtime generates and uses an offloadingclient program to invoke an offcode as if the offcode were a
layout graph to offload the OA-application’s offcodes. Sec- local component. When a user creates an offcode, a proxy
tion 3.4 details the mechanism used for the mapping of of- object is loaded into user-space. All interface methods re-
fcodes to their respective devices. Once the offcode is con-turn aCall object that contains the relevant method infor-
structed at the target device, it is initialized and executed mation including the serialized input parameters. Once a
by the HYDRA runtime. Offcode initialization is performed  Call object is obtained, it can be sent to a target device (or
in two phases. First, thimitialize method is called and the several devices) by using a connected channel. The manual
offcode acquires itkocal resources. Once all the related of- invocation scheme consists of manually creating Gl
fcodes specified by the layout graph have been initialized, object, and using a custom encoder to marshal arguments
the StartOffcodemethod is called. 3 and invoke the channels’ methods.



3.2. Channels Channel constraints are used to direct the placement of

offcodes on target devices when multiple offcodes are re-
Offcodes are connected to each other and to the host apguired to support an application i8RA currently supports

plication by communicatiorthannels Channels are bidi-  the following constraint types:

rectional pathways that can be connected between two end-

pointS, or connectionless when On|y attached to one end- ® Link Constraint; The Link constraint is the default ba-

point. The runtime assigns a default connectionless chan-  Sic channel constraint between two offcodes. It does

nel, called theOut-Of-Band Channel (OOB-channdbr not require that they run on the same or different target

every OA-application and offcode. The OOB-channel is devices, just that both be present in the system.

identified by a single endpoint used to communicate with

the offcode without the need to construct a connected chan-

nel, such as for initialization and control traffic that is not

performance critical. The OOB-channel is the default com- o Gang Constraint The Gang constraint is used to en-

munication mechanism between peer offcodes and between  syre that both offcodes will be offloadedtteir target

offcodes and OA-applications. The OOB-channel is also devices, respectively.

used to notify the offcode regarding management events and

availability of other channels. An OA-Application can also influence layout by setting
the offload priority for each offcode that it directly requires.

3.2.1 Channel Creation Once a reference priority is defined, it is inherited by sub-

] o o sequent offcodes required by the top-level offcode until a
For high performance communication, a specialized chan-| ik reference is encountered.

nel that is tailored to the needs of the application and the of-
fcode_would be c_re_ated as well as the default O_OB-channeI.3_4. Offcode Description File
Creating a specialized channel is performed in two steps.

First, the. apphcauon or offcode determmes the channel An offcode description file (ODF) summarizes the avail-
characteristics and creates its own endpoint. Next, the cre-

. .~ .~ able offcode interface functions and required hardware ca-
ator attaches an offcode to the channel. This action im- q

licitl tructs th d endooint at the t ¢ devi pabilities. An ODF contains three parts: first, the structure
PlCItly constructs the second encdpaint at the 1arget device, ;¢ o oteqges package and required files on the host. The
and notifies the offcode about the newly available channel.

0 the ch ¥ ted. the ch I's API b second part defines the target device’s hardware. The last
nce the channet 1 connected, the channel's Al can epartdeclares software interfaces used in its implementation
used for communication. The channel API contains typical

: . that should be defined in the target device’s execution envi-
operations to read, write and poll. The channel API also 9

; istrati f a dispatch handler that is invok dronment. Currently, all required interfaces must be defined
supm_r S rfﬁqls rha lon Ioha Spaich nan ter at1s Invoke by a GUID (much like offcodes themselves). The basic run-
ea%h ime | ec t"?””? als a newfrequ_es :ch h ¢ time interfaces defined by ¥bRA are available to all off-

hann_e (t:.rea lon Invo vest con(;ggjr:c?g € channe typei codes without an explicit interface requirement. Figure 2
§yncArorr1]|za |0|n requt;remfetn S;n. u t(:]r {nanagerlne.n PO “presents a snippet from a typical ODF, containing the three
icy. A channel can be of ypt nicast tha can only in- sections just described, including the use Bidl constraint
terconnect two offcodes, dfulticast that can interconnect t ;

i . to specify a peer offcode.
more than two offcodes. A channel can be either unreli-
able or reliable, where the latter type is careful not to drop .
messages even though buffer descriptors are not available4- HYDRA Software Architecture
A multicast channel can utilize hardware features, if avail-

e Pull Constraint The Pull constraint ensures that both
offcodes will be offloaded to the same target device.

able, to broadcast a single request to multiple recipients. In the previous section we introduced the program-
ming model, focusing on the separation between applica-
3.3. Offload Layout Programming tion logic programming and offload-layout programming.

In this section we present the design of the runtime system.

The offloading layout is usually statically defined or set The system implements the model and provides facilities
during deployment (See Section 3.4) to minimize the over- for programming, testing, deploying, and managing OA-

head of offloading operations. As opposes to FarGo’s pri- applications and offcodes. Both the host OS and the target

mary motivation of enabling the dynamic relocation of dis- device firmware must support the interfaces defined by the
tributed components (See 3), we envision the offcodes asprogramming APl and implement the runtime functionality.
specialized components performing one task on a specific Runtime library requirements for a particular target de-

device, thus purposefully do not implement offcode migra- vice may be provided by the device manufacturer, system

tion, for instance. 4 integrator, or by application developers themselves. The



<offcode bindname="Hydra.net.utils.NetAPI"> User
<GUID>6060842</GUID>

<!-- offcode package info -->

<package> K )
i - i —— erne

<device> <! offload device > Sys Call | Offloading | Channel Memory Layout | Resource

<id>0x0001</id> Mgmt APL Mgmt Mgmt Mgmt Mgmt
<file>/lib/offcodes/NetLib.oc</file>

<!-- a netlib stub for this device -->
<file>/1lib/stubs/NetLibStub.oc</file> Runtime API
</device>
<host>  <!-- host proxy -->
<os>Linux FC4</os> ;
<ver>2.6.10</ver> { (pa ) (Tcp/ip)  (iscsl) (RDMA]
<file>/lib/proxy/NetLibProxy.so</file> ;
</host>
</package>

Channel Executive
Channel Providers Local

Remote

. ffi
Device Offcode

@ Offcode Device OS
<!-- software environment section --> Offloading Runtime
<sw-env> Extensions

<import>
<reference type=Pull pri=0>
<bindname>Hydra.net.utils.Checksum</bindname>
<GUID>6060843</GUID>
<file>"/lib/offcodes/checksum.oc"</file>
</import>
</sw-env>

Figure 3. System Architecture

<!-- hardware environment section -->

<hw-env>
<hydra-device 1d=0x0001>
<name>Netgear GA-620T</name>
<vendorID>0x1385</vendorID>
<deviceID>0x620A</deviceID>
<bus>pci</bus> <!-- (optional) -->
<address>0x0011</address>
</hydra-device>
</hw-env>
</offcode>

nel types to the device and provides a cost metric regarding
the “price” for communicating with the device through a
specific channel, in terms of latency and throughput. The
executive uses this capability information to decide on the
best provider for a specific offcode. TResource Manage-
mentunit keeps track of all active offcodes and related re-
sources. Resources are managed hierarchically to allow for

robust clean-up of child resources in the case of a failing
parent object. ThéMemory Managemernmnodule exports
memory services such as user memory pinning that is used
by zero-copy channels. THeayout Managemeninit per-

forms layout related functionalities such as analyzing the
second half of the runtime system exists on the host as opoffloading layout graph.

erating system extensions. Our host implementation for
Linux is modular, in that it maintains strict separation be-
tween device-specific code and generic code. It is imple-
mented as a set of loadable kernel modules, requiring no
kernel source code modifications.

Figure 2. Sample offcode description file

4.2. Offcode Dynamic Loading

Supporting dynamic offcode loading is an important
building block in the H¥DRA framework. We have consid-
ered different approaches for implementing dynamic load-
ing. The simple solution would be to hand over the offcode
to the target device and require that each device implement a

The HYDRA runtime is comprised of several components simple offcode loader. However this naive solution is quite
as shown in Figure 3. It is accessed through an offloadingexpensive in terms of device resources. Another approach
access layer that consists of a user-level library linked to would be to fully perform the linking process at the host,
each OA-Application, and a kernel-level set of services.  and only transfer the offcode when it is ready to be de-

The kernel layer consists of several functional blocks. ployed (at a specific memory region). The device’s loader
The System Call Managemeand Offloading APlblocks will merely need to initialize the offcode and execute it.
implement the various APIs defined in the programming  HYDRA runtime is built to support both approaches.
model. TheChannel Managementnit manages the chan- HYDRA support for dynamic offloading is provided by a
nels by interacting with th€hannel ExecutiveThis mod- set of device-specific loaders that implement a generic in-
ule handles channel creation by using a partic@hean- terface for offcode loading. The interface is intended to be
nel Provider These providers are target-specific and pro- implemented by the device driver of each target peripheral.
vided as an extended driver for each programmable de-Each loader can decide whether to transfer the offcode as is,
vice. A channel provider creates various specialized chgn—or to perform some processing at the host first, depending

4.1. HyprA Runtime



on features of the target. grammable clock, network card, or encryption engine.

The loader for our programmable network card is imple-  Self-Stabilizing Algorithms. These algorithms are de-
mented both in the device and in the host. A device-specificsigned to return a system to normal functioning, irrespec-
host-based loader is implemented in the NIC’s driver; it usestive of the severity and nature of transient failures, as long
the OOB channel time to communicate with the target de- as there is a sufficiently long time interval for convergence.
vice loader. Four message transfers are used to load a singl®ffloading some of the functionality can significantly re-
offcode. Once the host-based loader calculates the offcode’sluce convergence time. E.g. due to the higher reliability
size, it asks the device’s loader to allocate memory for it. of the NIC, the self-stabilizing algorithm may significantly
The runtime loader does so and returns the device’s mem-decrease the time required to trust the coherence of the re-
ory address. The host dynamically generates a linker file ceived messages by verifying them with the NIC.
adjusted by the returned address and links the offcode ob- Distributed File Systems.Networked storage can use
ject. It then transfers the linked offcode to the target device offloading to enhance application performance by moving

where it is placed and executed. common functions to an assist device. While RDMA-
capable networks can successfully bypass the operating sys-
5. Application Scenarios tem for bulk transfers, other protocol activities such as

cache validation can generate message and interrupt over-

Distributed algorithms are often designed to function head to a host.

correctly despite unpredictable and unreliable infrastruc-  Providing a toolbox of reusable offcodes that implement
tures. Following is a partial list presenting some potential a variety of distributed algorithms may simplify the devel-
building blocks that are used by many distributed applica- opment and deployment of distributed systems. We argue
tions that can benefit from the offloading capability offered for the need of such a toolbox, with proven correctness and
by HYDRA. performance guarantees. Future work should provide such
Network Oriented Components.Distributed applica-  components. The next section presents several of our case
tions operate by interchanging messages among nodes. Thstudy components used in evaluatingRA.
message exchange networking protocols are potential can-
dida_tes for offloading. For examp_le, the reliable broadcgst6_ HYDRA Evaluation
service that ensures that all hosts in a group of nodes deliver
the same set of messages to the application layer can be eas- _ ) )
ily offloaded to the networking device. This service can be N the previous sections we described theniRA sys-
used as a building block to construct value-added multicast!®™ including its programming model and its internal de-
services, such as agreement and total ordering, or it can b&§i9n- In this section we demonstrate the use oDRA
utilized to support the applications that involve groups of through several sample applications.
cooperating hosts.
Total Order. Many distributed algorithms need guaran- 6.1. Traffic Generator
tees on message order. Section 6.2 provides a detailed dis-
cussion of our case-study of offloading such a protocol to  Generating steady network traffic at high rates is difficult
the networking device. Another example of an ordering pro- given the variety of sources of delays and unpredictability
tocol that can be easily offloaded is the token-ring protocol in a modern computer system, including devices’ interrupts,
used in the Totem [1] system. cache and TLB misses, and power management changes.
Virtual Synchrony. The virtual synchrony model [4] of-  We implemented an offload-aware traffic generator that pro-
fers stronger guarantees required by applications such asluces a packet stream with fixed inter-packet delays. We
replicated database systems. The implementation overheadvaluate the performance of this application and compare
involved can be drastically reduced by offloading the criti- the results with an equivalent user-level application.
cal components to the networking card. The traffic generator is comprised of two components:
Cluster Synchronization.Real-time guarantees can be a GUI that is used by the user to setup the system, and a
implemented on programmable peripheral devices [23] andStreamGeneratocomponent that generates the stream of
used as a building block for a variety of distributed appli- packets given user settings on protocol type, length, ports,
cations. For instance, the work of Verissimo et al. [21] inter-packet delay, burst size, etc. TB&reamGenerator
presents a set of distributed algorithms that assume the exiscomponent is designed as an offcode. The GUI is the off-
tence of a Timely Computing Base. Having such a compo- code’s controller and creates a specialized, zero-copy, chan-
nent simplifies the design complexity of these algorithms. nel for communication. The APIs for interaction between
This timely component is an ideal candidate for offload- the GUI and theéStreamGeneratooffcode ore omitted here
ing, as it exports a simple interface that is ideal for a prg- for brevity, as are details of the offcode description file.



We implemented the application once usingo#A and interrupts, directly impacts the throughput seen by the ap-
once without the use of an offloaded component. We eval-plications. As an example, the calculated inter-arrival times
uate the designs using two hosts, Intel Pentium 4 2.4 GHzfor 1500 byte ethernet frames is approximately 1&Cfor
with 512 MB and a Tigon2 programmable network card, 100 Mb/s, 12us for 1 Gb/s and 1.s for 10 Gb/s ethernet.
interconnected by a 100 Mb/s switch. We attempt to fully We have observed that the interrupt overhead for an empty
utilize the link capacity by generating packets at fixed inter- interrupt handler is between 5+41€) consuming all but only

packet delays and for different frame sizes. 17% of the total available CPU cycles.
. Size | Tput | Avg. Arrival+ Std | CPU
User-Space Traffic Generator Bytes | Mb/s us %
The benchmark results for the user-space application are 64 | 239 34+ 6 2
. . . . . 64 | 51.5 16+ 8 2
given in Table 1. Although the achieved throughput is quite 768 | 98.4 654 13 5
good, the dispersion of the inter-arrival times is enormous, 1514 98:8 1264+ 50 5
so large as to make the average almost meaningless. Fig-
ure 4 shows the Cumulative Distribution Function (CDF) Table 2. Offload-Aware Traffic Results
for three packet sizes to better display the distribution of ar-
rival times and illustrate the wide dispersion in these mea-
surements. 100 AT
%0t : .
Size | Tput | Avg. Arrival+ Std [ CPU + Std : R
Bytes | Mb/s us % 80r : 7
64 6.0 140+ 8000 100+ 3 700 i : 1
80 | 134 1414+ 9000 99+ 7 .-
96 | 21.8 | 159+ 11000 99+ 8 801 ! , ]
192 | 56.8 164+ 6000 98+ 11 S 50 ' : 1
384 | 96.7 | 175+ 4000 81+ 11 a0l i ]
768 | 97.8 205+ 4000 37+ 28 !
1514 | 98.6 244+ 5000 33+ 5 30 ! 1
ol i —— 64 Bytes |
Table 1. User Space Traffic Results o "‘f"‘f‘zgiBé;etzs
or |0 1
00 160 260 360 460 500
Inter—arrival time [usec]
10 A Figure 5. Offload-Aware Traffic Distribution
90 P -
sor 1 Offload-Aware Traffic Generator

701

‘ The results from the offload-aware traffic generator are
oor e ] summarized in Table 2 and shown as a CDF in Figure 5.
50 : ] For both tests, in order to accurately measure the through-
40 ! 1 put and the inter-arrival times, we have used a second NIC
: with a simple traffic analyzer offcode. The data shows that
the inter-arrival times are uniform with small standard devi-

%

301

1

1

' :

i i —— 64 Bytes
1 -

1

1

20¢ : 5 - - 768 Bytes 7 ation. The sharp vertical edges in the CDF indicate that

10f N 1514 Bytes 1 the majority of the packets arrived within the same ex-

0 L ‘ pected inter-arrival time. Notice that for 64-byte packets,

10" 10° 10° the achieved throughput is only a quarter of the link’s band-

_ Inter-arfival time [usec] width. In order to achieve the full link capacity, a generator
Figure 4. User-Space Traffic Distribution must produce a 64-byte packet approximately eveps5

Because we have not tried to optimize thed®A runtime
Itis also evident from the table that delivering the gener- for this or any specific application, the generator can only
ated data to the application is difficult due to the very high send packets at a rate limited by the device’s OS constraints,
CPU load, especially with small packet sizes. The proces-which in this case is limited by the number of MAC de-
sor capacity problem, driven by the costs associated V\chscriptors at the NIC and the processing overhead involved



in managing them. In order to further improve the through-

Offload—Aware Total-Order Offloading Layout

put for such small packets, we have created an optimized
version of the device’s OS that can reuse a single MAC de-
scriptor for sending the same packet multiple times. The
table shows that for the optimized version (indicated by the

64* table entry) the throughput has been significantly im-
proved. This sort of optimization may be undertaken as
needed by particular applications that useDi#A.

6.2. Total Ordering

Total Order (TO) algorithms have been extensively stud-

LamportOrderer

NIC

7
Zero—Copy R/W Channel
/

I0rderer //

O

ReliableBroadcast

ied in the literature [7]. A TO algorithm is a fundamen-
tal building block in the construction of distributed fault-
tolerant applications. They are typically used to provide a
communication primitive that allows processes to agree on
the set of messages they deliver and also on their delivery
order. Total ordering is particularly useful forimplementing
fault-tolerant services, database replication and locking ser-
vices [2]. A TO algorithm that assumes an unreliable failure
detector is equivalent to the consensus problem [5]. It has
been shown that consensus cannot be solved in this type of
systems in fewer than two communication steps [13]. Many
TO algorithms for asynchronous systems use consensus as
a building block, but the implementation can be expensive
both in terms of communication steps and number of mes-

sages exchanged between hosts. This overhead is further 3.

exacerbated if in addition to the TO algorithm, the host also
executes a resource-demanding application such as a typical
High Performance Computing (HPC) application.

Offloading a TO algorithm, either in full or for partic-
ular components, can greatly improve the performance of
distributed applications for several reasons. First, a TO al-

gorithm packaged as an offcode can be easily reused by a 4-

variety of applications. Second, the reduced load on the
host machine will improve the performance of such appli-

cations; and third, an offloaded TO may take advantage of
specific hardware capabilities in order to improve its over-

all performance. For example, as shown in the traffic gen-
erator example above (Section 6.1), the small dispersion of
the inter-arrival times of ethernet packets may be used to
implement better accurate failure detectors and to maintain
finer-grained timeouts for message retransmissions.

Figure 6. Total-Order Offload Architecture

1. GUI: The Graphical User Interface controls the TO

application. It enables the user to define the rate at
which messages are transmitted and their size. The
GUI presents the message order once it is determined.

2. TO Service The TO Service is an application library

used by the GUI, that in turn uses the offcode to pro-
vide two basic total-order APIsTO_Broadcastand
TO_Receive The first API broadcasts a message and
the second receives the next message for which the TO
has been established.

LamportOrderer This offcode (denoted by the letter
a) presents théOrderer interface that implements a
TO algorithm. Specifically, we have implemented the
Lamport’s Timestamp ordering algorithm [14]. This
offcode interacts with th&O Servicen a well defined
interface, discussed below.

ReliableBroadcastThis offcode (denoted b@), pro-
vides the reliable broadcast service that is needed by
the LamportOrdereroffcode. In our implementation,
multicast is used in order to efficiently send messages
to peer hosts. Albeit our simplifying assumptions,
message omissions may still occur due to buffer over-
flow. To address this issue, this component implements
a simple negative acknowledgment scheme.

The left side of Figure 6 also indicates the bRA com-

munication channels that are used. A reliable unicast chan-

6.2.1 Offload-Aware TO Architecture

nel with a zero-copy policy for read and write is used in

order to eliminate the OS networking stack overhead. Ba-

We have implemented a simple offload-aware total order sically, theTO Servicemanages the application’s memory
application. To simplify the proof of concept implemen- descriptors (See Section 3.2) and effectively determines the
tation, we assume that there are no physical link disconnec-control-flow policies of the application (descriptors for re-
tions, switch failures, or process or node crashes. We do noteived messages are also posted by this component). In or-
assume a reliable message transmission—messages can ber to send a message, th@ Servicecreates a&all object

lost due to buffer overflow at the NIC, host or switch. The and invokes the channel. The NIC-residentd®A run-
sample application is comprised of several components thatime DMAs the message and notifies themportOrderer

appear on the left side of Figure 6.

offcode that a new message should be transmitted. The “or-



derer” offcode timestamps the message and multicasts it uscomponent comprised of two switches connected back-to-
ing theBroadcasteiinterface, which is implemented by the back. Each host is equipped with two NICs: one NIC is
ReliableBroadcasbffcode. used for transmitting (connected to the first switch) and

Received packets are first handled by feiableBroad- one for receiving (connected to the second switch). The
cast offcode. The offcode is operated in two phases: At back-to-back switch connection serializes the packets, thus
the first phase, the offcode transfers the received packet to £ffectively acts as a hardware sequencer. In addition to
pre-posted descriptor at the host using DMA. Note that the the switch configuration, a lightweight user-space TO al-
message cannot be delivered to the application yet, since thgorithm is invoked at each node. Thwoughputobtained
message order has not been determined. Because the NIfom the offload-aware TO application is close to that of
has a small amount of memory, it is better to release thethe hardware-based solution. Note that the throughput in-
NIC’s memory as soon as possible. The message identifieicreases with the number of nodes due to PCI bus properties
and timestamp are the only data that is saved on the NICas explained in previous work [3, 22].

by the LamportOrdereroffcode. The second phase begins  Although with HY'DRA we have used aoftwarealgo-

once the message order has been determined by the TO alithm to order the messages, we found that bypassing the
gorithm. TheLamportOrdereroffcode creates &all with  OS networking stack overhead enabled us to significantly
the messages’ order and invokes the channel connected tghcrease the throughput over typical user-based total order-

the TO Service Once the order is known at tfi@ Service  ing. This fact strengthens the motivation for offloading and
component, the ordered messages can safely be delivered tepecifically for using MDRA.

the application.

The right side of Figure 6 presents the offloading layout
that is designed by the developer. T&EI holds a standard
reference to th@ O Servicecomponent. This component
holds aLink reference to the “orderer” componentssince
it has no special offloading constraints. On the other hand
the “orderer” offcode must be offloadedth the broadcast

As for the measured latency, the results are approxi-
mately twice those in the hardware-based configuration.
Although we have offloaded the ordering algorithm to the
NIC, a distributed solution requires an extra round of com-
munication that is not required in centralized solutions (like
'the hardware-based solution). In addition, Lamport’s times-
_ et tamp algorithm is known to be very expensive in terms of
offcode (i.e,p) hence aPull constraint is used. Note that ¢, nication overhead and latency; messages must be re-
in order to compare the results of this offload-aware TO al- (e from every node in order to be able to determine the

gorithm with a non-offloaded version, a developer merely messages’ order. We expect to improve the performance by
needs to interchange the two constraints and re-execute thﬁeploying more efficient ordering algorithms

application. The effect of doing so is that the “orderer” will
be executed at the host while the broadcaster remains at the

networking device. 7. Conclusions and Future Work

6.2.2 Total Ordering Evaluation
This paper has presentedrbRA—a novel framework

We used five Intel Pentium 4 2.4 GHz systems, with 512MB for building high-performance distributed applications that
of RAM and 32-bit, 33 MHz PCI bus. Each machine was can benefit from offload capabilities of modern peripherals.
equipped with programmable Netgear 620 NICs, which HYDRA proposes a new dimension of flexibility for the ar-
have 512 kB of memory. We used Linux version 2.6.11 chitects of distributed applications: the ability to program
with the H'DRA module enabled. The hosts were inter- offloading layout policies separately from the application’s
connected by a Gigabit ethernet switch (Dell PowerCon- [ogic. We have developed a programming model that care-
nect 6024). The right side of Table 3 presents the maximumfully balances between programmer scalability and system
throughput and latency measurements for the offload-awarescalability. We believe that programmable devices will con-
TO when all nodes act as both senders and receivers. Eaclinue to grow in popularity. The need for a framework such
node generates traffic at a rate bounded by the flow controlas HrDRA is to enable the use of these devices to improve
mechanism imposed by tHEO Servicecomponent. The  performance and capability of a broader range of applica-
presented latency is defined as the time elapsed between thgons. We have evaluatedw®RA by implementing several
TO_Broadcastand TO_Receivemethod invocations that re-  applications and discussed its potential use for accelerating
fer to the same message. distributed computing. In the future we intend to provide a
We compare our results with those from a recent work by toolbox of offcodes consisting of reusable building blocks
Dolev et al. [3], which are given on the left side of the ta- that will suit a variety of distributed applications. We ex-
ble with title “Hardware-based TO”. That work implements pect to release an experimental version ofd#A towards
a wire-speed total order algorithm using hardware—basgedthe end of this year.



Nodes Hardware-based TO Offload-Aware TO
Throughput [Mbps]| Latency [ms]|| Throughput [Mbps]| Latency [ms]
3 310.5 4.2 301.8 8.7
5 362.5 4.1 324.6 9.5
Table 3. TO Performance (all-to-all)
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