
One Algorithm to Match Them All:
On a Generic NIPS Pattern Matching Algorithm

Yaron Weinsberg Shimrit Tzur-David Danny Dolev
The Hebrew University Of Jerusalem

Email: {wyaron,shimritd,dolev}@cs.huji.ac.il

Tal Anker
Radlan - a Marvell Company

The Hebrew University Of Jerusalem
Email: tala@marvell.com

Abstract— Today’s Network Intrusion Prevention Systems
(NIPS) provide an important defense mechanism against secu-
rity threats. The detection of network attacks utilizes a high-
speed pattern matching algorithm that can be implemented in
either hardware or software. Adapting a software-based pattern
matching algorithm to an hardware-based device is a complicated
task. This paper presents a cost effective multi-pattern matching
algorithm based on Field Programmable Gate Arrays (FPGAs)
and standard RAM. The algorithm achieves line-rate speed of
several orders of magnitude faster than the current state of the
art, while attaining similar accuracy of detection. The algorithm
can be easily adapted to operate in hardware-based NIPS and
attain even higher line-speed by utilizing a TCAM memory.

I. INTRODUCTION

Network Intrusion Prevention Systems (NIPS) detect ma-
licious packets by constantly monitoring the network traffic.
Once such a packet is detected, a NIPS device usually trig-
gers an alert and blocks the offending packet. NIPS systems
are usually comprised of two major components: a pattern-
matching engine and a complementary packet classification
engine. The pattern matching engine’s input is a packet and
its output is a set of matched patterns belonging to the set of
well-known attack signatures.

Snort [1] is an open source NIPS that is commonly used
in industry. Snort contains a database of rules with several
thousands of attack signatures. Each of Snort’s rules contains
a header and several content fields. The header part consists
of a packet identifier while the content part contains one or
more patterns that may have some correlation between them.
A rule is matched only if all of its patterns are matched
with the expected correlation. The Snort rule syntax is the
de-facto industrial standard. Internally, Snort uses a software-
based pattern matching algorithm, a variant of the Boyer-
Moore algorithm, which is applied to a set of keywords held
in an Aho-Corassick-like keyword tree.

The current trend for integrating security with network
switches and routers implies that the NIPS device must meet
stringent network performance and reliability requirements.
As network traffic speeds increase, PC-based solutions cannot
continue to process all traffic in real time. For example, Snort’s
string matching algorithm by itself consumes more than 80%
of the CPU time [2]. The need for a hardware-based pattern
matching algorithm is apparent.

This paper will appear at the High Performance Switching and Routing
Conference (HPSR’07). Distribution of this paper is prohibited.

This work is part of a research project aimed at designing
and implementing a hardware based NIPS device [3]. This pa-
per presents a novel pattern matching algorithm using FPGA,
which enables the NIPS appliance to operate at an aggregate
rate of several gigabits per second.

II. NOTATIONS AND DEFINITIONS

The following section provides the necessary notations and
definitions which are used in the proposed pattern matching
algorithm (Section VI).

DEFINITION 1 A pattern P is defined as a string of characters
from an alphabet Σ that need to be identified within the input
text. A sub-pattern, Ps is defined as a sub-string of pattern P.

DEFINITION 2 A search window is defined as a part of the
input text within which a sub-pattern is searched.

DEFINITION 3 A Shift is defined as the number of bytes the
algorithm can safely skip without losing an occurrence of any
pattern in the text. Formally, a pattern P of length m and a text
T of length n has a shift value s, iff ∀s′< s, T[s+1..s+m] 6= P[1..m],
s.t. 0≤ s≤ n−m. A shift value of n−m+1 indicates that the
text does not contain the pattern.

A string-matching algorithm is defined as the problem of
finding the first appearance of a pattern in the text. One
can look at the the string-matching algorithm as finding the
maximal shift value s s.t. s≤ n−m.

The extended problem of finding multiple patterns P =
{P1, · · · , P̀ } in a given text T is called “multiple pattern
matching” and its goal is to identify the minimal position at
which a pattern Pj ∈ P occurs.

III. RELATED WORK

The string matching algorithm is an essential building block
for NIPS. Most algorithms either provide poor performance or
are too complex to be implemented in hardware. This section
presents the state-of-the-art hardware based algorithms.

Several common software based algorithms can be found in [4], [5], [6],
[7], [8], [9], [10], [11] and [12].

A. Parallel Bloom Filters

The Parallel Bloom Filters [13], [14] algorithm uses a bloom
filter for each possible pattern length. Briefly, a bloom filter
uses several hash methods that reduce the potential pattern
space that may match the search window. The paper gives a
reasonable cost-space tradeoff by using four parallel engines.
The algorithm can push four bytes in a single clock cycle,
with a throughput of approximately 2.46Gbps. The fact that
each different pattern length requires a separate bloom filter is
a limiting factor, especially when dealing with very long virus
definitions that can be thousands of bytes long.

B. Network Processor Pattern Matching

The work of Liu et al. [15] describes a shift-based algorithm
that uses a network processor with a memory based hashing
engine. It uses a prefix sliding window of length w, which
shifts from the leftmost byte to the rightmost byte of the
text. Their algorithm only supports simple patterns, with no
identification of correlation of patterns. The algorithm uses
a shift table (of size (28)w) that includes all possible w bytes
combinations. At the time of the introduction of this algorithm,
setting w to 4 was sufficient, since most Snort signatures were
that long. However, the average length of signatures used today
is 12 bytes. Maintaining a table for w = 12 is impractical. A
major limitation in using a small window size is the large
number of false positive matches. For the proposed w = 4, the
algorithm obtains an average shift of ∼ 2.

C. FPGA Solutions

In [16], a hardwired design is presented that provides good
area efficiency and good time performance by using replicated
hardwired 32-bit comparators in a pipeline structure. The
matching technique proposed there uses four 32-bit hardwired
comparators, each with the same pattern offset successively by
8 bits, allowing the running time to be reduced by 4x for an
equivalent increase in hardware. Furthermore, they use about
100 rules, “the most common attacks”, and have implemented
only these patterns in the FPGA. The main weakness is the
p2 increase in hardware for a p increase in throughput.

Similarly, Other FPGA solutions (like [17]) usually take
one of the available software algorithms and deploy it in the
parallel environment facilitated by the FPGA.

IV. RTCAM: A TCAM BASED ALGORITHM

A Ternary Content Addressable Memory (TCAM) [18]
is an advanced memory chip that can store three values
for every bit: zero, one and “don’t care”. The memory is
content addressable; thus, the time required to find an item
is considerably reduced relatively to regular memory lookups.

We have presented a TCAM-based algorithm called RT-
CAM [19]. In the RTCAM algorithm, a TCAM of size M
is configured to hold dM/we rows, where w is the TCAM
width. The rule’s signatures (patterns) were split to fit in the
chosen w. Patterns longer than w occupy more than one row.
Each TCAM row has a corresponding shift value that states
the number of bytes the algorithm can safely shift in the packet

when a match occurs. In addition, a set of shifted sub-patterns
is created for each pattern prefix, by shifting the prefix to the
right, losing the rightmost character and adding don’t care at
the left. Such a rotation increases the shift value by one. The
last row corresponds to the maximum shift value and contains
w don’t care bytes, thus providing the default match row.

The algorithm constructs a “key” of size w bytes based on
the packet and produces a TCAM lookup. The corresponding
shift value is retrieved. A shift value greater than zero indicates
the algorithm can construct a new key at the shifted position.
A zero value implies that a prefix pattern has matched the
key, the algorithm queries its internal data structures in order
to locate the potential attack patterns.

The RTCAM algorithm considers the TCAM as a big hash
table, thus, it can be easily replaced by simple FPGA logic
supporting a standard SRAM. In this paper we present a
FPGA version of our algorithm, the RTCAM algorithm was
ported to simple SRAM with minimal performance penalty
(See Section VIII for comparison). Figure 1 presents both
architectures, the RTCAM and the FPGA-based one.

The packet is first received at the static flow classifier
component which only extracts information from the header,
a process that yields a flow descriptor. The packet is then
transferred to the stateful inspection engine that uses the
pattern-matching algorithms, which in turn looks for attacks.
The pattern matching algorithm can be either the RTCAM or
the FPGA-based algorithm.

In either case, the input to the algorithm is the packet
payload and the flow signature (protocol, source and desti-
nation IPs and source and destination ports) and its output
is the matched patterns. Both algorithms contain the list of
the sub-patterns (TCAM or hash table) with pointers to the
corresponding pattern nodes. In case of a sub-pattern match,
these nodes are examined to verify the sub-pattern full context
(see Section VI). If the full pattern is matched, the pattern
matching algorithm adds a record in the matched pattern list.

Static Flow Classifier

5-tuple logic

Packet In Stateful Inspection
Engine

Pattern Matching Algorithm

RTCAM Algorithm FPGA-based Algorithm

pattern 0 pattern 1 pattern r

pattern
len
Hash_Ptrs[]

Shift Table

AA 5

AB 0

AC 7

Key 0

Key 1

Key 2

Hash-Table

Key m

 .
 .

Buc 0, PNP

Buc m, PNP

Buc 1, PNP

Buc 2, PNP

Pattern 0

Pattern 1

Pattern 2

Pattern r

3, PNP

7, PNP

0, PNP

2, PNP

TCAM TRT

PNP = patterns Node Pointers

Pattern List (contains Pattern Nodes) Matched Patterns List

pattern ID position

1 17

Buc = Bucket

pattern
len
Hash_Ptrs[]

pattern
len
Hash_Ptrs[]

. . .

Fig. 1. RTCAM vs FPGA Architecture

V. MOTIVATION

A NIPS device is required to deploy a multi-pattern match-
ing method that can meet the line-speed of packet transfer.
The multi-pattern matching method should efficiently handle
a large number of patterns with a wide range of pattern
lengths. Due to the high price of TCAM memory and the
increasing number of signatures, a TCAM oriented solution
may not be acceptable for industrial purposes. For example,
one can easily calculate the memory requirements of the
RTCAM solution as follows: for a TCAM width of w and
k patterns, each of length mi, the number of TCAM rows is:
r = ∑dmi/we. So the total TCAM memory required is w2 ∗ r
bytes. Significantly increasing the TCAM width reduces the
amount of false positives and increases the average shift value.
Thus, the algorithm has an inherent tradeoff between cost
and performance. Figure 2 shows the TCAM size required in
order to accommodate all the patterns in Snort and in ClamAV
signature databases.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

TCAM width

M
em

or
y

(K
B)

TCAM For Snort

full shift
half shift
10 shift
no shift

0 50 100 150
0

0.5

1

1.5

2

2.5
x 10

5

TCAM width

M
em

or
y

(K
B)

TCAM For ClamAV

full shift
half shift
10 shift
no shift

Fig. 2. TCAM Size Requirement

Several techniques can be used in order to decrease the
amount of required TCAM (like shifting part of the pattern
length), however the total cost of a TCAM-based solution is
usually much higher than software or FPGA ones. Therefore,
it is desirable to be able to construct an algorithm that can
balance between its use of TCAM versus regular, and much
cheaper, SRAM. The uniqueness of our prior algorithm is that
it can be easily adapted to use regular SRAM. In this paper
we will present how it is done and will provide a detailed
evaluation of a fully implemented system.

We will start by giving a high-level description of the
algorithm and describe the data structures needed for the
algorithm. We will conclude with a simple example.

VI. FPGA ALGORITHM

A. High-Level Runtime Operation

Algorithm 1 presents the FPGA pattern matching algorithm
in pseudo-code. The algorithm operates in several steps:

(i) A “text-key” of size w bytes is constructed from the
packet at position = pos (pos is initially 0).

ClamAV is a free open source antivirus software, See [20].

(ii) A block of size B bytes is constructed from the end of
the text-key. The block’s corresponding entry in the shift table
is obtained.

(iii) The corresponding shift value is retrieved. A shift value
greater than zero indicates that none of the patterns end with
the given block and thus none of the patterns match the given
text-key; we can therefore repeat step (i) with position =
position+shi f t. A zero value implies that the block is a suffix
of one of the patterns and step (iv) is invoked, to check if there
is a full pattern prefix match.

(iv) The algorithm calculates a hash-key for the text-key
and looks for an entry in the hash table. If there is no such
entry, none of the patterns match the text-key and the algorithm
repeats step (i) with position = position+1. If an entry with
the same hash-key exists in the hash table, the pattern’s bucket
is located and step (v) is invoked.

If the pattern’s bucket contains the text-key, step (v) queries
the internal data structures (discussed in VI-B) in order to
locate the potential attack patterns. The easy case occurs if
the matched pattern’s length is exactly that of the key size
w (perhaps with the padding discussed later). In this case,
the relevant pattern is added to a dedicated “Matched Patterns
List” and step (i) is invoked with position = position + 1. If
the pattern is a partial match (i.e., it matched the prefix of
a longer pattern), the rest of the pattern should be matched
as well. Step (v) repeatedly uses the shift and hash tables to
match the rest of the pattern by taking the next w bytes from
the text and applying steps (ii) through (iv) at the text-keys.
The pattern can be marked as fully-matched, only if all of its
sub-patterns are matched. Otherwise, step (i) is invoked again
with the position increased by one.

B. Data Structures

For brevity we assume that all patterns have length of m
which is greater or equal to the sliding window of w bytes.
Later in this paper, we will show how the algorithm is used
for matching patterns of smaller lengths.

Hash Table – This table resides in SRAM and contains the
r patterns divided by w, the search window’s width. Entries
with less than w bytes are prepended (padding at the prefix)
with the suffix of the previous part. A key is calculated on
the sub-pattern and the sub-pattern is placed in the hash table
“bucket” according to the sub-pattern key. Each value in a
bucket contains the sub-pattern’s text and a list of associated
patterns that have this sub-pattern as their prefix. Sub-patterns
with the same hash-key are linked to a “bucket” under the
same hash-key. Patterns longer than w occupy more than one
value in the hash table. The first subpattern of each pattern is
marked as the “pattern’s prefix”.

Shift Table – The shift table enables us to skip the text
by more than one character at each iteration. We create shift
values for each possible block of B characters where B ≤ w
(as in the algorithm presented by Manber [21], [22]). By using
blocks (and not a single character), we reduce the amount of

Algorithm 1 Hash Table Pattern Matching
1: T (Packet) = {Ti,1≤ i≤ n}
2: pos⇐ 1; shi f t⇐ 0
3: while pos≤ n−width do
4: Step (i)
5: key⇐ T[pos,..,pos+width−1]
6: Step (ii)
7: block⇐ Key[width−B+1,..,width]
8: Step (iii)
9: if shi f t table(block) 6= 0 then

10: pos⇐ pos+ shi f t
11: continue
12: end if
13: Step (iv)
14: if hash table.containsKey(key) then
15: Step (v)
16: hash val⇐ hash.GetVal(key)
17: if (current = hash val.bucket.GetNode(text−key))! = null

then
18: if current.len≤ width or

checkSubPatterns(current.len, pos, current.Hash Ptrs)
then

19: MatchedList.add(current)
20: end if
21: end if
22: end if
23: pos⇐ pos+1
24: end while

1: checkSubPatterns(len, pos, Hash Ptrs)
2: while pos≤ len−width do
3: text− key⇐ T[pos,..,pos+width−1]
4: block⇐ text− key[width−B+1,..,width]
5: if shi f t table(block) > 0 then
6: return f alse
7: end if
8: hash val⇐ hash.GetVal(text− key)
9: if (current = hash val.bucket.GetNode(text − key)) == null

then
10: return f alse
11: end if
12: if current.patternId 6∈ Hash Ptrs then
13: return f alse
14: end if
15: end while
16: return true

false matches. For simplicity assume that the table size is ΣB,
where Σ is our alphabet. Each entry corresponds to a distinct
substring of length B. This is a B-dimensional table, thus, when
we have a block of B bytes, we can obtain its corresponding
entry in the table in one memory hit.

Let X = {x1,x2, ..,xB} be a string corresponding to the i’th
entry of the shift table. There are two cases: either X appears
somewhere in one of the patterns or it does not. If X does not
appear in any of the patterns (and thus none of the patterns
end with X), we store w−B + 1 in the corresponding shift
entry. Since we observe the rightmost B bytes of the search
window, we can shift the text w−B+1 bytes (note that part of

The table can be easily compacted by hashing the B characters and setting
the shift value to be the minimum of the values corresponding to the same
bucket.

the block might be a prefix of one of the patterns). The second
case occurs when the block appears in one of the patterns. In
this case, we find the rightmost occurrence of X in any of these
patterns: suppose it is in Pj and that X ends at position q of
Pj, then we store w−q−1 in the table. In this way we align
the text to a position where the block X in the texts matches
the same block X in Pj.

Patterns List – The patterns list data structure is accessed
when the algorithm finds a match of a pattern prefix (step (v)).
A patterns list entry contains several fields which hold the
information needed to implement the various Snort keywords:
len - is the pattern’s length; offset - indicates the place
in the packet from which the pattern should be searched;
distance - the minimum number of bytes allowed between
two successive matches (i.e. the previous pattern match and the
current pattern match); within - the maximum number of bytes
allowed between two successive pattern matches; depth - how
far into the packet the algorithm should search for the specified
pattern; Hash Ptrs - an array of the hashtable references that
are used in step (v) of the algorithm whenever the pattern’s
length is greater than w. Each cell in the Hash Ptrs array is a
pair (i, j) where i is the key index and j is the index of the
pattern within the pointed bucket.

It is important to note that the hash table, shift table and
the patterns list are populated once at initialization time.

Matched Patterns List – This list holds the matched pat-
terns for the current processed packet. Each entry contains
the matched patterns and their corresponding end position
in the packet. In case of a match, the algorithm checks if
the pattern’s position is compliant with the pattern position
constraints within the rule.

C. A Packet Flow within the NIPS

In this section we will walk through the algorithm, using
the example shown in Figure 3. Assume that the sliding
window width is 4, the block size is 2, the input packet
is “WWABCDEFTXYZA“ and we search for the patterns:
“ABCDEF”, “XYZW”, “ABCDARP”.

Shift Table

AB 2

CD 0

EF 0

FT 3

Key0 ABCD(0,2)

CDEF

XYZW(1) DARPKey1

Key2

Hash-Table

pattern 0 pattern 1 pattern 2

"ABCDEF"
len=6
Hash_Ptrs[(2,0)]

"XYZW"
len=4
Hash_Ptr[]

"ABCDARP"
len=7
Hast_Ptrs=[(1,1)]

Pattern List (contains Pattern Nodes)

DE 1

YZ 1

ZA 3

Fig. 3. A Packet Flow Walk-through

Initially, we search the packet at position 0. The first text
key is WWAB and the block is AB, the shift table retrieves the
AB entry and the shift value is 2. The sliding window position
within the packet is then increased by 2. The next text key is
ABCD, the block is CD so the shift value is 0.

Now, step (iv) of the algorithm is invoked and a hash key is
calculated for the sliding window value. A search of the hash
table leads to the bucket that contains the prefix ABCD.

At step (v), the algorithm follows the association pointers.
In our example there are two patterns that ABCD is their
prefix, ABCDEF and ABCDARP. The algorithm queries the
pattern nodes in order to compare the full patterns with the
packet’s content. The first association pointer points to a node
that contains the pattern ABCDEF. The pattern’s length is 6,
so the algorithm takes the next 2 bytes and the text key is
CDEF (prepending the 2 bytes with the last 2 bytes from the
previous text key). The block is EF which also yields 0 as
a shift value. Lookup in the hashtable returns key 2 and the
pattern is the first in the bucket. Since the pair (2,0) appears
in the Hash Ptrs array, the algorithm finds a match, and adds
the pattern to the matched patterns list. The algorithm also
turns on the pattern’s bit in the rule entry bitmap.

The next pointer in the association list for the key ABCD
points to a node containing the ABCDARP pattern which does
not match the packet content (the text key is DEFT and the
shift value for the block FT is 3). The algorithm increases the
search position within the packet by one, and constructs the
search key BCDE and the block DE. The shift value for this
block is 1, thus the next text key is CDEF, and the shift value
for the block EF is 0. Step (iv) is then invoked but since CDEF
is not a prefix, the algorithm returns and the position within
the packet increases by one. The next text key is DEFT, the
block is FT and the shift value is 3.

The next key is TXYZ, the block is YZ and the shift value
is 1. The position increases by one, the next key is XYZA, the
block is ZA and the shift value is 3. The entire packet has now
been analyzed and the algorithm stops.

Note that the design of the algorithm and its associated
data structures is highly influenced by the requirement to be
compatible with Snort. We have successfully imported Snort’s
database directly to our simulated NIPS and were able to deal
with Snort’s keywords. Due to space limitations, some of the
details concerning Snort compatibility have been omitted. The
interested reader is encouraged to read [19], [3].

VII. DEALING WITH SHORT PATTERNS

There is a major difficulty in designing a unified algorithm
that deals both with long patterns and with short ones, since
performance is typically influenced by the overhead caused
by the short patterns. It is important to note that ClamAV
signatures are quite long (an average of 124 bytes), where
Snort’s signatures are shorter (average is only 12 bytes).

In order to deal with short patterns while using a large w,
we need to pad the short patterns to equal the width on which
the hash is applied. Since there is no way to pad short patterns
with don’t care signs as we did in the RTCAM solution, a pad
must be constructed out of actual characters. The pad can be
usually extracted from the flow context.

The pad is constructed twice: once, when creating the hash
function (the flow signature is extracted from the rule) and
a second time, when constructing the search key (the flow
signature is constructed from the received packet). Most of
the short patterns reside in rules that specifically state their
flow signature. A padding technique must be used in order

to create a key for locating short patterns. A pseudo random
pad is the most trivial solution. This method is suitable for
rules with almost no flow signature. Using the flow signature
to create a pad is a better practice since it reduces the amount
of false positives while comparing the hash value with the
text-keys. For example, if we are currently parsing an FTP
packet, the hash function will use the protocol (sub-protocol)
as pattern padding, thus reducing the amount of false matches.

Note that when we construct the shift table and we look
for the rightmost appearance of a block in one of the patterns,
we need to look at each pattern from its end to its beginning;
i.e. if pattern p contains some block b that ends at position q,
the de facto rightmost end position will be q+(w−m) where
m is the sub-pattern length (m ≤ w). For example, if w = 7,
B = 3, we are looking for the block xyz and the only pattern
that contains it is axyz f , the block end position within the
pattern is 3+(7−5) = 5.

In order to locate short patterns we must calculate w text-
keys for each sliding window, where w is the sliding window
length. Each text-key is constructed by shifting the pattern to
the right (losing the right most byte) and adding a padding
byte from the left. For example, let’s look at the case where
w = 4, the text-key is xyzw and the packet’s flow signature
identifiers are P1, P2 and P3. The text-keys are xyzw, P1,x,y,z,
P2,P1,x,y and P3,P2,P1,x.

Calculating the hash value should be done quickly, and
therefore it is preferable to do it incrementally. For example,
one can create a full pad using a hash function and only use
a simple XOR operation on the text. In order to recalculate
the next hash one can XOR the text again, increase the text
window width and XOR again with the pad.

VIII. EXPERIMENTAL RESULTS

We have fully implemented the FPGA-based NIPS device
written in VHDL using Altera Stratix GX EP1SGX25F de-
velopment board. We have tested our device with a set of
intrusion detection signatures taken from the Snort tool. Most
of these signatures are comprised of correlated patterns. The
input for our NIPS was comprised of a real packet trace from
the MIT DARPA project [23].

We tested our NIPS device using several sliding window
widths and a fixed block size B = 2. Table I presents the
sliding window width, the average shift value and the bitrate
for each width.

Figure 4 shows the average shift value and the achieved
search rate for different sliding window widths. In the TCAM-
based algorithm, in order to increase the shift value one had to
increase the sliding window width. The immediate implication
is a significant increase in TCAM size and cost. The hash
based algorithm uses an SRAM instead of TCAM, thus the
cost is no longer a part of the “equation”, i.e., the sliding
window size can be increased for better performance. The
figure clearly shows a linear correlation between the sliding
window width and the gained average shift value, which leads
to an increased bitrate. The maximal achieved bitrate using
the FPGA solution is 10.3 Gbps for a sliding window of 16B.

Sliding Window Width Impact on Shift Average and Rate
width (Bytes) Total shift average (Bytes) Bit rate (Gbps)

4 2.14 2.80
5 2.73 3.54
6 2.83 4.17
7 3.72 4.86
8 4.23 5.46

12 6.14 7.64
16 8.87 10.31

TABLE I
WINDOW’S WIDTH IMPACT ON SHIFT AVERAGE AND RATE

0 5 10 15 20
2

3

4

5

6

7

8

9

Sliding Window Width (Bytes)

Av
er

ag
e

Sh
ift

 V
al

ue
 (B

yt
es

)

Average Shift Value Results

0 5 10 15 20
2

3

4

5

6

7

8

9

10

11

Sliding Window Width (Bytes)

Bi
tR

at
e

(G
bp

s)

Bit Rate Results

Fig. 4. Sliding Window Size Effect

Under the same environment settings, the achieved RTCAM
bitrate was 19.8 Gbps.

Our FPGA implementation does not take advantage of the
inherent parallelism capability of the FPGA. Thus, we com-
pared our results against a single engine version of the other
FPGA solutions (obviously we could run our FPGA algorithm
in parallel on several chunks of the packets concurrently, in
the same way other solutions did). For instance, in [16] the
throughput is ∼ 2 Gbps for a single engine implementation.
Also, the work in [17] achieved over 10Gbps performance with
four pipelined engines, thus we can assume worse performance
when a single engine is used (probably about a fourth of their
published result).

IX. DISCUSSION AND FUTURE WORK

We have designed and implemented a hardware based NIPS
with a novel pattern matching algorithm at its core. We
have shown that our previous TCAM based algorithm can be
successfully ported to a hash-based algorithm using FPGA and
still maintain line-speed rates. Our system is fully compatible
with Snort’s rules syntax, which is an important advantage
over related work as Snort is becoming the de facto standard.
The proposed FPGA algorithm can be easily incorporated
into a TCAM based device, thus reducing its total cost of
ownership. In a future work, we plan to further improve the
performance of our device by reducing the number of false
positives identifications. This can be done by applying several
parallel hash functions on a single text key and only proceed
if all the hash functions indicate a match. In addition, we can

significantly improve the algorithm performance by running it
in parallel on several chunks of the packets concurrently.

ACKNOWLEDGMENTS

We would like to thank Tomer Gershoni and Yaniv Cohen
for fully implementing the system and for providing valuable
comments. We would also like to thank Holon institute of
technology for providing the Hardware infrastructure for this
research project.

REFERENCES

[1] “Snort,” http://www.snort.org/.
[2] E. Markatos, S. Antonatos, M. Polychronakis, and K. Anagnostakis,

“Exclusion-based signature matching for intrusion detection,” CCN,
2002.

[3] “Hardware NIPS Project Home Page,” Homepage at
http://www.cs.huji.ac.il/labs/danss/nips.

[4] C. E. L. Thomas H. Cormen and R. L. Rivest, Introduction to
Algorithms. The MIT Press, 1990.

[5] B. W. Watson, G. Zwaan, and M. F. V. Neerven, “A taxonomy
of keyword pattern matching algorithms,” Tech. Rep., Jan. 28
1992. [Online]. Available: http://citeseer.ist.psu.edu/4507.html;ftp://ftp.
win.tue.nl/pub/techreports/pi/pattm/taxonomy/1st.edition/pattm.ps.gz

[6] D. E. Knuth, J. Morris, and V. R. Pratt, “Fast pattern matching in strings,”
SIAM Journal of Computing, vol. 6, no. 2, pp. 323–350, 1977.

[7] D. R. Musser and G. V. Nishanov, “A fast generic sequence matching
algorithm,” May 13 2004. [Online]. Available: http://citeseer.ist.psu.
edu/676947.html;http://www.cs.rpi.edu/research/ps/97-11.ps

[8] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the ACM, vol. 20, no. 10, pp. 62–72, 1977.

[9] A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski,
and W. Rytter, “Fast practical multi-pattern matching,” Oct. 11
1993. [Online]. Available: http://citeseer.ist.psu.edu/621721.html;http:
//www-igm.univ-mlv.fr/∼lecroq/articles/igm9303.ps.gz

[10] A. Czumaj, L. Gasieniec, M. Crochemore, S. Jarominek, T. Lecroq,
and W. Plandowski, “Fast practical multi-pattern matching,” Sept. 02
1999. [Online]. Available: http://citeseer.ist.psu.edu/336719.html;http:
//www-igm.univ-mlv.fr/∼lecroq/ipl3.ps.gz

[11] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.
333–340, 1975.

[12] Y. Fang, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet pattern-
matching using tcam.” in ICNP, 2004, pp. 174–183.

[13] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep packet inspection using parallel bloom filters,” 2003. [Online].
Available: citeseer.csail.mit.edu/dharmapurikar03deep.html

[14] D. E. Taylor, P. Krishnamurthy, and S. Dharmapurikar, “Longest
prefix matching using bloom filters,” Sept. 03 2000. [Online].
Available: http://citeseer.ist.psu.edu/641375.html;http://www.arl.wustl.
edu/Publications/2000-04/sigcomm03sd.pdf

[15] R.-T. Liu, N.-F. Huang, C.-H. Chen, and C.-N. Kao, “A fast string-
matching algorithm for network processor-based intrusion detection
system,” Trans. on Embedded Computing Sys., vol. 3, no. 3, pp. 614–
633, 2004.

[16] C. R. Clark and D. E. Schimmel, “Scalable pattern matching for high
speed networks,” FCCM, 2004.

[17] I. Sourdis and D. Pnevmatikatos, “Fast, large-scale string match
for a 10gbps fpga-based network intrusion.” [Online]. Available:
citeseer.ist.psu.edu/sourdis03fast.html

[18] T. C. Igor Arsovski and A. Sheikholeslami, “A ternary content-
addressable memory (tcam) based on 4t static storage and including
a current-race sensing scheme,” IEEE Journal of Solid-State Circuits,
vol. 38, no. 1, January.

[19] Y. Weinsberg, S. Tzur-David, T. Anker and D. Dolev, “High performance
string matching algorithm for a network intrusion prevention system
(nips),” High Performance Switching and Routing (HPSR06), 2006.

[20] “Clamav,” http://www.clamav.net/.
[21] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,

Tech. Rep. TR-94-17, 1994. [Online]. Available: citeseer.ist.psu.edu/
wu94fast.html

[22] S. Wu and U. Manber, “A grep – a fast approximate pattern-
matching tool,” in Proceedings USENIX Winter 1992 Technical
Conference, San Francisco, CA, 1992, pp. 153–162. [Online].
Available: citeseer.ist.psu.edu/wu92agrep.html

[23] “Mit darpa project data set,” http://www.ll.mit.edu/IST/ideval/index.html.

