
FACILITATING EFFICIENT AND RELIABLE MONITORING
THROUGH HAMSA
David Breitgand,

�
, Danny Dolev

�
, Danny Raz

�
, and Gleb Shaviner

�
�
School of Engineering and Computer Science

The Hebrew University
Jerusalem 91904, Israel

�
�

davb, dolev, gleb � @cs.huji.ac.il�
Department of Computer Science

The Technion, Haifa 32000, Israel �
danny@cs.technion.ac.il

Abstract: Monitoring is a fundamental building block of any network management system. It is
needed to ensure that the network operates within the required parameters, and to account
for user activities and resource consumption.

In the SNMP paradigm, network management systems have been structured using a
two-tier architecture with managers being thick clients, and the target agents being thin
servers. This architecture may be unreliable in times since it depends on the management
station having an access to the targets. Network distance between the manager and the
network elements also imposes high overhead traffic, large processing overheads, and long
control loops. To overcome these drawbacks, distributed network management architec-
tures based on a middleware layer were proposed. However, such approaches suffer both
from the need to modify network elements, and the high (and sometime hard to predict)
overhead and complexity.

In this paper we study a solution based on a lightweight middleware architecture that
aims primarily at improving availability and efficiency of monitoring applications. We
describe the Highly Available Monitoring Services Architecture (HAMSA), present its im-
plementation details, and evaluate its performance. Specifically, we demonstrate how the
system can be easily deployed and used for several monitoring applications. HAMSA
allows a high level of availability and abstraction, with relatively low overhead.

Keywords: monitoring, network management, high availability, middleware, group communication.

1. Introduction and Motivation
The traditional two-tier structure of network management applications based on the

rigid client/server paradigm with thick managers and thin target agents suffers from
scalability and availability limitations [16]. Among the more prominent problems with
this approach are the following.

�
This research was supported in part by Intel COMM Grant - Internet Network/Transport Layer & QoS

Environment (IXA), and by Check Point PhD Fellowship program, Israel.�
Partial funding provided by the Fund for the Promotion of the Research at the Technion, and the Technion

V.P.R. Fund - New York Metropolitan research Fund.

Since the management agents have limited functionality, and only instrument
the access to the management data, all the computations should be performed
at the manager. Thus, large volumes of data should be transferred over the
network, and the traffic overhead can be high.

As shown in [7] reactive (i.e., event-driven) monitoring schemes are far more
efficient in terms of communication than polling-based ones. However, in stan-
dard management frameworks, such as SNMP, configuring application-specific
threshold-driven traps is a non-trivial task, and not always possible.

Manager station becomes a processing bottleneck as the size of the managed
network increases.

Manager station is a single point of failure, which hurts availability of the mon-
itoring services. Although for some types of management data disconnected
operation of monitoring can be achieved using RMON [15], the disconnected
monitoring operation is not available in the general case. This type of operation,
however, is essential for scaling monitoring services, reducing communication
overhead, and increasing survivability of management services as explained be-
low.

The unavoidable network distance between the management station and (some
of) the network elements makes it very hard to control the elements, due to the
inherent instability imposed by long control loops.

Because of these problems, alternative approaches to monitoring architectures are
being pursued [5, 6, 11, 12, 4, 13, 14]. The more important of these emerging ap-
proaches and their relationship to our proposal are discussed in Section 5.

One alternative is adopting the popular three-tier architecture. A typical three-tier
monitoring application is described in Figure 1b. The target agents constitute the
lowest tier and serve as the source of the management data. The monitoring compo-
nents are dynamically dispatched at the middle tier. They monitor the target agents
(and, possibly, communicate with other monitoring components) accumulating and
pre-processing the information collected from them. The end-consumers of this infor-
mation, the management front-ends, constitute the uppermost tier.

Manager

Switch
 Switch

Figure 1a. Two-tier approach.

Switch

Top Level

Manager

Mid-Level

Managers

Switch

Figure 1b. Three-tier approach

Note that in the three-tier architecture, the components residing in the middle tier
can partially or fully implement some of the processing functionality that was previ-

Facilitating Efficient and Reliable Monitoring through HAMSA

ously residing exclusively on the manager side. Thus, using this architecture reduces
the traffic overhead, shortens the control loops, and extends the management function-
ality. In particular, the middle-tier components can implement efficient application-
specific event-driven monitoring schemes. Survivability and availability of the net-
work monitoring services are also improved. The mid-tier components can operate
autonomously of the first-tier managers (see Figure 1b). When certain parts of the
monitored network become unavailable, e.g., due to a network split, the mid-tier mon-
itoring components can continue monitoring in their respective partitions, and later
merge the results. This is impossible in the centralized two-tier architecture.

On the down side, the three-tier client/server applications are much more difficult
to control. Providing high availability of the mid-tier components in spite of host
crashes, network splits and merges is especially challenging.

A standard way of creating a three-tier client/server application is using application
server that provides the mid-tier run-time environment. However, to the best of our
knowledge, no existing application server provides a highly available run-time envi-
ronment that copes with the kind of failures described above, and can transparently
restarting failed stateful monitoring components from a consistent point.

Given the complexity of handling distributed three-tier applications in an unpre-
dictable environment prone to various network failures, it is both important and chal-
lenging to provide a maximally transparent infrastructure that allows a manager to
deploy the needed monitoring components of the second tier in a highly available
manner. This improves the overall failure behavior of the management applications,
allows more efficient applications (such as event-driven monitoring applications), and
therefore contributes to better provisioning of network services in general.

In this paper we propose a novel middleware architecture, HAMSA, that facilitates
reliable and efficient deployment of three-tier monitoring applications. We describe
the main building blocks of this architecture, and demonstrate it power for efficient
and reliable monitoring by describing and analyzing the performance of monitoring
applications implemented using HAMSA.

2. Architecture Overview
HAMSA is an architecture that defines the interfaces, and functionality of a highly

available run-time environment for HAMSA-Compatible Components. We use the
term components (as done in many other middleware software systems) to describe
objects that implement a set of the predefined interfaces allowing dynamically to mix
and match this object with other objects that conform to the same set of interfaces. The
following guarantees on the execution of these components in the second tier generate
the primary added value of HAMSA.

Failures of the components are masked from the outside entities. As long as
HAMSA has sufficient resources for executing the components, components
function continuously despite component host failures (i.e., the machine run-
ning the component), arbitrary asynchronous network splits, merges, and host
recoveries.

In case of network splits, a single instance of each component is executed per
network partition.

The component whose host machine has failed is guaranteed to resume opera-
tion from the last consistent state, i.e., the last state of this component known to
the outside world.

Component’s interactions with the environment may potentially influence the
state of other components, and/or external entities. In this case, interactions
(messages, method invocations) are termed non-idempotent. Failure, and a sub-
sequent recovery, of a component being in the middle of a non-idempotent inter-
action may violate the original interaction semantics. An advantage of HAMSA
over other middleware architectures is that it preserves the original at-most-
once, or at-least-once semantic of the component interactions in spite of asyn-
chronous network failures.

HAMSA highly available execution model is not trivial to achieve. Due to the lack
of space we do not elaborate on these issues. More details will be provided in the full
version of this paper.

These advantages come at a certain price in bandwidth and processing overhead.
In Section 4 we discuss the trade-offs between the extended functionality of HAMSA
and this overhead. Also HAMSA restricts the inter-process communication model to
asynchronous communication and messaging. This communication model, though,
fits well into the NM domain.

MLM

HA-MLM Ctrl

MLM
MLM

HA-MLM Ctrl

RMI (e.g., Java RMI) / Messaging (e.g., JMS)

MLM

MLM
 MLM

Group Communication Service
 (Transis)

Management

Frontends

HA-MLMs

component

component

component
component
 component

component

component

HAMSA

administration

tool

Third party

applications

Figure 2a. Detailed Logical Structure of
HAMSA

RMI / Messaging

Group Communication Toolkit

Active Group Controller

Dormant Component X

Active Component Y

Dormant Group

Controller

Active Component X

Dormant Component Y

MLM i
 MLM j

...

Figure 2b. Logical Structure of HA-MLM

2.1 Highly Available Mid-Level Managers (HA-MLMs)
The run-time environment with the above properties is provided by a set of virtual

servers termed Highly Available Mid-Level Managers (HA-MLMs). HA-MLMs are
logical entities that are comprised of one or more physical servers called MLMs (see
Figure 2a). To its users, every HA-MLM appears as a single object. Its interface is
exported by the special component called HA-MLM Controller. Each MLM in a given
HA-MLM is capable of running the HA-MLM Controller, but at any given moment
only a single MLM is executing it. At other MLMs this component is being dormant,
see Figure 2b.

Facilitating Efficient and Reliable Monitoring through HAMSA

HAMSA-compatible component is dynamically delegated to a specific HA-MLM
through its controller interface using the HAMSA administration tool. The identity
of the HA-MLM to which the component is being delegated, is part of the run-time
identity of this component.

The executable code of the component is being reliably propagated to all MLMs in
the HA-MLM through the group communication service (e.g., Transis [2]), see Sec-
tion 2.4. However, similarly to the HA-MLM controller component, this component
will be executed only at one MLM at any given moment. Other MLMs within the same
HA-MLM keep dormant replicas serving as warm backups for the components whose
host MLM may fail, see Figure 2b. This is different from the more common practice
of keeping components on a component server, and downloading them on demand.
HAMSA performs component propagation as above to increase their availability.

The administrator has limited direct control over the physical location of the com-
ponents within HA-MLM. This is motivated by the fact that components may need
to be relocated automatically in case of failures. However, it is possible to influence
the HA-MLM placement decisions by supplying some suggestive policies that are fol-
lowed as long as no failures occur.

2.2 HAMSA-compatible Components
To render warm backups of the executing components, MLMs transparently repli-

cate the state of the components delegated to their HA-MLM. To achieve high avail-
ability, the state is co-located with the component. This is another difference between
HAMSA, and more traditional approaches in which a dedicated database is used to
store the state of the components.

The state of a component consists of Interaction State, and Component-Specific
State. Interaction State consists of all inbound and outbound unprocessed interactions
between this component and external entities. Component-Specific State consists of
arbitrary application-specific objects (e.g., files) that implement a predefined inter-
face. The state objects are managed by the components themselves. The predefined
interface allows components to demand state replication without knowing any details
of the replication mechanism. Similarly, MLMs handle a component’s state with no
knowledge of its semantics.

Components may interact with other components executing within the same HA-
MLM, in different HA-MLM, and outside HAMSA, e.g., with the front-ends residing
in the first tier, and the network elements.

To provide its guarantees, HAMSA requires that all non-idempotent interactions
between the HAMSA-compatible components, and any external entities are made
through HAMSA Message Service. This allows to replicate the interaction part of a
component state transparently.

However, using HAMSA Message Service is feasible only for interactions between
the entities of the second and first tiers. It is not feasible to restrict in this way the
interactions with the managed devices. Therefore, HAMSA is primarily targeted to
monitoring, and not to other kinds of management activities that may change the state
of the target devices.

2.3 HAMSA Messaging Service
Allowing a direct interactions of the components with their environment is not

always safe. HAMSA defines that each component is assigned an interaction approver
that policies its interactions. In particular, it may defer interactions with the outside
entities depending on the specific state of the network, e.g., when the network splits.

The interactions between the HAMSA-compatible components and the network
elements are not restricted in any way. These interactions are supposed to be implicitly
reflected in the component-specific state objects, which get replicated on demand from
the components.

Each component is given a unique symbolic name consisting of its host HA-MLM
name and a unique prefix within this HA-MLM. Each time a component is (re-)activated
at an MLM, it updates the external Naming and Directory Service to renew the bind-
ing between the component’s name and its communication handles. The HA-MLM
assigns two types of communication handles for each component: Mailbox, and Proxy.

Mailbox is needed for directly sending a message to a component. There is one
mailbox per HA-MLM that is shared by all components within this HA-MLM, and
their clients. In order to support remote method invocations while using the HAMSA
consistency and ordering mechanisms transparently, we use the standard proxy ap-
proach. Any remote invocation between a HAMSA component and any other party is
intercepted, and processed by the per-component proxy. The proxy creates a message
from the method call performed on it, and relays it to the HAMSA Messaging Service.

Group Communication Service

MLM
MLM

Regular

Message for

A@foo

(1)

(2)

...

Component

Component

Active

Component

A

...

Component

Proxy

Component

Proxy
Component

A

Proxy

Component

Component

Dormant

Component

A

...

Component

Proxy

Component

Proxy
Dormant

Component

A

Proxy

HA-MLM
 foo

(3)
(3)

Component A

Interaction

Approver

(4)

(5)

(6)

(3)

Regular

Message for

A@foo

Regular

Message for

A@foo

Regular

Message for

A@foo

Figure 3. Interacting through HAMSA Messaging Service

Figure 3 depicts how a message is communicated to a component. The message is
placed into the mailbox of this component by the MLM hosting it, (1). This message is

Facilitating Efficient and Reliable Monitoring through HAMSA

not delivered to the target component immediately. Instead, (2), it is being propagated
to all MLMs in the HA-MLM using the group communication service (see the next
subsection). When the message is received at the group communication service level
at all operational MLMs including the sender, (3), this message is assessed for delivery
to the target by consulting the component’s interaction approver, (4). If the interaction
approver permits the interaction, the message is delivered to the active component
proxy, (5). Finally, (6), the proxy delivers the message to the target component.

One restriction of this approach is that HAMSA-compatible component cannot sup-
port synchronous method invocations with non-void return values. HAMSA commu-
nication model requires that if a caller wants to receive information from a component
it has to supply either a callback interface or to be registered as a recipient at the
mailbox serving this component.

We use the Java programming language to implement HAMSA. We support Java
RMI as an instance of the RMI technology. In our prototype, we implemented HAMSA
Messaging Service as part of Java Messaging Service (JMS).

2.4 Group Communication Service (GCS)
The replication of the components state within a HA-MLM is facilitated by a group

communication toolkit that is not visible outside HA-MLM (see Figure 2a). Such
toolkit systems usually allow processes to form groups that can be addressed by a
single logical name, so that messages can be sent to the group using this name as
an address, and all operational members of the group receive them. HA-MLMs are
realized in HAMSA as process groups.

Reliable multicast FIFO delivery of messages.

Per-group notification of membership changes either due to network failures, or
members (i.e., MLMs in the context of HAMSA) voluntarily joining/leaving the
group.

Virtual Synchrony model of message delivery, which, simply stated, means that
members of the group that go together through the same set of membership
changes receive the same set of messages.

Partitionable Membership Model which means that although members of the
same group can find themselves in different network partitions (due to asyn-
chronous network splits), each connected component can continue its operation,
and when a network merge occurs, the members can resume operation from a
consistent point in the message stream so that the Virtual Synchrony model is
preserved.

There are many group communication toolkits that supply this functionality [1].

3. Monitoring Applications
In this section we present two typical NM applications, demonstrate how one can

deploy them using HAMSA, and explain the benefits NM applications gain from tak-
ing the HAMSA approach.

The first NM application is a highly available post-mortem failure analysis system.
In this application, several MIB scalar variables from each network element are being

kept in a centralized repository, and when a network failure occurs, the management
system searches this repository for the relevant variables whose values may suggest
the source for the failure (see for example [9]).

In a typical two-tier scenario such a system is deployed at a single station, and
the MIB variables of all network elements are accessed from it. The collected data
is kept in the local file system. When a failure of a monitored element (or of several
elements from the same network region) is detected the collected data is searched and
the behavior of the relevant MIB variables is examined in order to identify the cause
of the problem.

In HAMSA, the centralized polling application and its repository are being handled
transparently by the middleware. The administrator chooses a set of MLMs by either
selecting an existing HA-MLM, or defining a new one, and delegates the polling com-
ponent to this HA-MLM. Based on the component placement policy, the controller
activates this polling component at one of the MLMs, while the replicas are kept for
warm backup at other MLMs.

If the network splits, the monitoring continues automatically in each network par-
tition where at least one MLM of the split HA-MLM is present. The state (e.g., the
collected MIB variables), is kept locally per replica of the monitoring component in
each network partition. When the network re-merges these autonomously collected
states become available to the administrator.

One question raised by this example concerns different configuration trade-offs
available for the monitoring application that uses HAMSA. Consider the typical net-
work configuration illustrated in Figure 4a. In this scenario, the information arrives at
the monitoring station from � LANs. If the monitoring is done by centralized polling
from the management station, and the connectivity to one of the LANs is lost, the
monitoring of its elements cannot continue. In particular, if the failure is caused by a
misconfigured access interface in the LAN’s access router, the information about the
cause of the problem will not be available. This is because the connectivity may be lost
before the values of the router’s MIB variables suggesting the cause of the problem
are retrieved.

If however the administrator configures HA-MLM in such a way that there is at
least one MLM per LAN, the MLM in the disconnected LAN will re-start a separate
copy of the monitoring as soon as it detects (through the underlying group communi-
cation service) that there is a network partition, and all variables in the router’s MIBs
will be polled.

Once connectivity is re-established (say, through rolling back the configuration) the
management station will be able to access this information, and the manager will be
able to identify the source of the problem, (i.e., a wrong configuration) and to fix it.

This example also demonstrates the importance of proper HA-MLM configuration.
The administrator may be tempted to have at least one MLM in each LAN, as in our
example. However, since the state of each monitoring component is distributed by
HAMSA to all members of the HA-MLM, the communication costs induced by the
replication may become too high.

In fact, one may choose to create � separate applications, each having a different
HA-MLM containing only a pair of MLMs, as described in Figure 4b. In this case,
the monitoring application for each LAN is running separately on the local MLM (ac-
cording to the distance-based component placement policy), and thus being unaffected
by a possible network partition. If, however, the local MLM itself fails, a copy of the

Facilitating Efficient and Reliable Monitoring through HAMSA

...

Manager

MLM

MLM
 MLM
 MLM

...
 ...
 ...

HA-MLM

LAN
 k
LAN
 1
 LAN
 2

Figure 4a. All MLMs are put into a single
HA-MLM

...

Manager

MLM

MLM
 MLM

MLM

...
 ...
 ...

HA-MLM 2

LAN
 k
LAN
 1
 LAN
 2

HA-MLM 1
 HA-MLM k

Figure 4b. Pair-wise Organization

monitoring process for that LAN will be initiated automatically by HAMSA on the
MLM that is co-located with the management station. This configuration also reduces
the overall monitoring traffic when there are no failures, since in this case the monitor-
ing is done locally and the state of the monitoring components is synchronized among
the two MLMs only upon the external interactions.

There exists a trade-off between the monitoring overhead traffic, and the overhead
traffic induced by HAMSA due to replication it performs behind the scene. The actual
amount of overhead depends on the total number of MLMs in a HA-MLM, the size
of the application state in HAMSA, the frequency of external interactions, and the
amount of data involved in these interactions.

For example, in the described post-mortem failure analysis application, one can
choose to have a small state (i.e., the serial number of the last poll), or a very large
state (i.e., the actual data of the last ��� minutes polling). Clearly, the latter choice
allows a faster recovery after a failure of a monitoring component, but it generates
much more overhead traffic. We study these trade-offs in Section 4, and show that the
overhead required by HAMSA to provide the extra functionality is much smaller than
the monitoring costs we saved.

A more complex monitoring application demonstrating the inter-process communi-
cation capabilities of HAMSA is an event-driven reactive monitoring NM application.
In such an application we are required to detect when a function (typically the sum) of
a number of MIB variables, each belonging to a different network element, exceeds a
predefined threshold (see [7]).

A centralized realization of this application involves a polling station that monitors
all variables at all network elements, computes the function and sets up an alarm if
the value has exceeded the threshold. This solution induces both significant traffic
overhead and computation load at the monitoring station that grow linearly with the
number of polled elements.

To address these issues, several algorithms that combine local computation, traps,
and a centralized monitoring station were proposed in [7]. However, in order to deploy
these algorithms the agent should be able to carry on simple computation tasks and

issue traps, which are in many cases beyond the ability of the standard SNMP trap
framework. This is a very good example where the extended functionality of HAMSA
can be utilized. The global reactive monitoring application is executed in HAMSA
in a distributed way. Namely, a number of copies of the same monitoring component
are launched at several HA-MLMs. Each HA-MLM is responsible for its own local
set of devices. According to the algorithm of [7], if a local threshold event has been
detected (in this case the “local" means “with respect to the local set of variables"),
then the other copies of the monitoring component are being notified using HAMSA
messaging service. Then according to the algorithm, a global poll may be initiated,
and, if needed, an alarm is declared. If one of the local monitoring processes fails,
HA-MLM controller restarts it on another MLM, and the system continue functioning.
This, of course, comes with a cost of increasing the monitoring traffic, but paying such
a cost is definitely better than losing the ability to carry on with the critical monitoring
task.

3.1 HA-MLM Administration
HA-MLMs are created through the HAMSA Administration Tool. A screenshot of

HA-MLM creation operation is presented in Figure 5.

Figure 5. Creating new HA-MLM

The administrator picks the MLMs she wishes and groups them into HA-MLMs
with a unique name. The same MLM may be a member of different HA-MLMs. A
logical hierarchy of HA-MLMs may be formed. The MLMs chosen by the administra-
tor form the nominal view of the HA-MLM, as opposed to the current view, which is
always less or equal to the nominal view due to failures. MLMs that are bundled into
a HA-MLM join the process group with the same name. The joining is triggered by
the HA-MLM controller that multicasts a ������� message into the ���
	
���

��
����� process
group specifying the nominal view.

Facilitating Efficient and Reliable Monitoring through HAMSA

Each time a new member joins, it requests the state of the group from some-
one that is already in the group. The state versions are identified using the pair:�����������
	���
����
����������������� 	���!#"��
�$� , where the epoch number is advanced each
time the membership changes.

The communications cost involved in creating a new HA-MLM are dominated by
the following. A single multicast through Transis is needed to propagate a join mes-
sage. There are at most � membership change notifications delivered by Transis, where

� is the size of the nominal view of the new HA-MLM. Finally, there are at most �
state exchange messages needed to accommodate each newly joining MLM.

When a HA-MLM already exists, HAMSA compatible components can be dele-
gated to it using the administration tool. The HAMSA components are realized as
JAR packages.

The administrator specifies the target HA-MLM, component name, and the com-
ponent specific parameters, such as the interaction approving policy, and placement
policy. Two interaction approval policies are supported currently. One policy is al-
ways to approve all interactions. The second policy is to approve external interactions
only if the majority of MLMs in HA-MLM are present in the network partition.

Placement policy defines either load-dependent, or distance-dependent placement
of a component. These policies are best-effort ones.

The communication cost involved in the component delegation protocol is domi-
nated by multicasting a component through Transis to all MLMs of the HA-MLM,
and obviously, depends on the size of the component.

4. Performance Evaluation
In order to understand the trade-off between the communication overhead induced

by HAMSA, and the possible reduction in monitoring overhead, consider again the
scenario described in figures 4a, and 4b. We want to compare the amount of traffic
overhead generated by the monitoring application without HAMSA with the overhead
induced by HAMSA and the underlying group communication service.

The group communication service is responsible for failure detection that is based
on periodic broadcasting of short I-am-alive messages. In general, this overhead grows
as �

�&%
where � being the size of HA-MLM. Optimizations that reduce by factor ' , the

number of LANs, are possible [3]. However, this is inevitable overhead of failure de-
tection that cannot be strictly attributed to HAMSA or group communication, because
any application wishing to achieve the high availability guarantees of HAMSA on its
own would pay these costs anyway. The experiments performed in [3] with the current
implementation of Xpand and Transis show that group communication scales to (� �
hosts dispersed over WAN without visible impact on the regular traffic.

As described in Section 3 the overhead of HAMSA itself strongly depends on the
way we configure HA-MLMs and on the size of the application state. In order to
investigate the trade-off, assume that the state size sent by HAMSA is 150 bytes.
This is a reasonable size, when one chooses to use a small state (like a measurement
sequence number).

Figure 6a depicts the tradeoff for the two choices of HA-MLM configuration and
for � � , and (� scalar MIBs variables in each LAN. We assumed here that due to the
SNMP encoding (SMIv1/SMIv2), polling of one variable takes about �
) � bytes, and
thus polling ��� or (� variables per LAN will consume �
) � � , and * � � � bytes respec-

tively for each LAN. HAMSA’s overhead depends on the HA-MLM configuration. If
all � MLMs are members of the same HA-MLM, we need to update all � states each
polling interval. This takes ��) ��� �

�
bytes. On the other hand, if we use � different

HA-MLMs, each of size (, HAMSA’s overhead is reduced to �
) ��� � .
One can easily see that even for a very small number of monitored variables the

overhead of HAMSA is significantly smaller than the monitoring overhead of a tra-
ditional application. This is a big advantage even without considering the HAMSA’s
main goals: extended functionality and reliability.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6
x 10

4

number of LANs

co
m

m
un

ic
at

io
n

co
st

HAMSA: 2 MLMs HA−MLM
HASMA: k MLMs HA−MLM
MONITORING: 10 VARs
MONITORING: 20 VARs

Figure 6a. HAMSA communication cost,
and monitoring communication cost as a func-
tion of the number of LANs.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

100

200

300

400

500

600

700

800

Probability of total failure

co
m

m
u

n
ic

a
tio

n
 c

o
st

Single failure prob = 0.1
Single failure prob = 0.01
Single failure prob = 0.001
Single failure prob = 0.0001

Figure 6b. HAMSA communication cost
per state change as a function of the required
system error failure probability.

The main mission of HAMSA is increasing the system reliability. However, the
high reliability comes with the cost of introducing more MLMs. In particular, this
implies a higher communication overhead. Thus, there is a trade-off between the level
of availability and the traffic overhead. In order to evaluate this trade-off, we consider
the same scenario as above.

The current host MLM of an active component replica propagates its state to the
rest of its HA-MLM through multicast. Thus, communication cost of HA-MLM repli-
cating the state is linear in the number of group members. However, when we increase
the number of MLMs in the group, we reduce the probability of a total system failure,
since HA-MLM restarts the failed process on a different MLM as long as they are
available.

Thus, if we have 	 MLMs in a HA-MLM, and the independent probability of a
single MLM failure is � , the probability of the application failure is

���� ��� �	� . Since
we have only one active component per network partition then the communication is
 � � 	 � �
� per each state in the component state, where
 being the component state
size. To obtain specific numbers, let
 � �
) � bytes, as in our example. Then, in order
to get an application failure probability of

�� we pay �
) � ����� ����� ��������� ��� ��� � �
� bytes per
change. This cost is plotted in Figure 6b, for single MLM failure probability of � � � ,
� � � � , �!� � � � , and �!� � � � � .

As one can see, in order to get the often desired “5 nines” reliability, starting from
a very high error rate of �!� � on a single machine, " MLMs are sufficient. The commu-

Facilitating Efficient and Reliable Monitoring through HAMSA

nication cost (�
) � � " � �
� � �) � bytes per state change) becomes much smaller when
the reliability of a single machine increases.

5. Background and Related Work
The quest for more efficient and versatile management paradigms has been pursued

by many researches over the last few years. One general line of approach suggests us-
ing mobile agents, active networks, or programmable networks for decentralizing and
shortening the control loop [4, 13]. Usually, these proposals focus on the mechan-
ics of the mobility and extended functionality rather than on the high availability and
meta-management issues being in the focus of this paper.

Several approaches for integrating the management by delegation approach [17]
into SNMP environment have been proposed recently [10]. With the advent of Java,
the delegation is easily implemented by exploiting its mobility and security features
making Java a preferred language for developing delegated programs.

Java Management Extension (JMX) [11] is an emerging Java standard for repre-
senting managed objects as Java Beans. JMX Bean is an object that serves as a Java
wrapper facade for the actual managed object. JMX Beans may be co-located with
the objects they represent at the agent side, or be deployed in a distributed fashion. In
the latter case, JMX Beans need distributed object services of the second tier that are
currently left unspecified by JMX. HAMSA components can be implemented as JMX
Beans.

One of the more mature Java technologies for deploying three-tier Java applications
is provided by Enterprise JavaBeans (EJB) [8]. EJB defines interfaces for Application
Server, and Enterprise Java components (Beans) that execute in the environment of
the application server that manages transactions, persistency, security, and naming
services for the components.

The problems that HAMSA copes with are very similar to those of the stateful EJB
clustering. Some of the existing EJB implementations provide fail-over models that
allow replication of the beans’ states, and support takeover of the failed beans by other
servers in the cluster [8]. Most EJB servers perform stateful fail-over by using either
in-memory replication, or persistent storage to a shared database. These solutions are
inappropriate for the NM domain, since they rely on the fact that the network remains
connected. To the best of our knowledge, there is no current implementation of EJB, or
other application server technology that provide the high availability of the second-tier
components execution to the level that allows their comparison with HAMSA.

6. Conclusion and Future Work
Efficient monitoring of large and dynamic distributed systems becomes challeng-

ing. Current standard technologies scale poorly due to their inherently centralized
approach. We present a lightweight monitoring middleware called HAMSA that dy-
namically allows to enhance monitoring functionality, and decentralize it in a reliable
and efficient manner. This work presents the architectural overview of the middle-
ware, and the possible functional and performance trade-offs involved in its deploy-
ment. Our architecture uses a group communication middleware to increase availabil-
ity, modularity, and scalability.

We are currently testing our implementation under different load conditions, and
for different failure scenarios. The exetensive performance evaluation study will be
presented in the full version of the paper.

7. Acknowledgments
We thank Elias Procopio Duarte, Jr, and Aldri L. dos Santos for their valuable

comments.

References
[1] ACM. Communications of the ACM, special issue on Group Communication Systems, 39(4), April

1996.

[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication sub-system for high avail-
ability. In 22nd Annual International Symposium on Fault-Tolerant Computing, july 1992.

[3] T. Anker, G. Chockler, D. Dolev, and I. Shnaiderman. The design of xpand: A group communication
system for wide area. Technical Report HUJI-CSE-LTR-2000-31, The Hebrew University, July 2000.

[4] Andrzej Bieszczad, Bernard Pagurek, and Tony White. Mobile agents for network management.
IEEE Communications Surveys, 1(1):2–9, Forth Quarter 1998.

[5] D. Breitgand, G. Shaviner, and D. Dolev. Towards highly available three-tier monitoring appli-
cations (extended abstract). ���������	����
���
���������
���
�
��������������� ����� !����"���
������#����$%���&
��!� , 2000. 11th
IFIP/IEE Internationaal Workshop on Distributed Systems: Operations and Management, Austin TX,
USA.

[6] M. Daniele, B. Wijnen, M. Ellison, and D. Francisco. Agent extensibility (AgentX) protocol, January
2000. RFC 2741.

[7] Mark Dilman and Danny Raz. Efficient reactive monitoring. IEEE Journal on Selected Areas in
Communications (JSAC), special issue on recent advances in network management, 20(4):668–677,
May 2002.

[8] Roman E., Ambler S., and Jewell T. Mastering Enterprise JavaBeans(tm). Wiley, 2nd edition, 2002.

[9] E. P. Duarte Jr. and Aldri L. dos Santos. Semi-active replication of snmp objects in agent groups
applied for fault management. In 7th IEEE/IFIP International Symposium on Integrated Network
Management IM, Seattle, WA, May 2001.

[10] D. Levi and J. Shonwalder. Definitions of Managed Objects for the Delegation of Management
Scripts, May 1999. RFC 2592.

[11] Sun Microsystems. Java management extensions(JMX) instrumentation and agent specification,
v1.1. ���������	�����������&
'����(�
'
�)*$+�#��"�)����!
�������,�������-���(���.�/�$!/�(�������)�
�
����#$+� , mar 2002.

[12] B. Pagurek, Y. Wang, and T. White. Integration of mobile agents with SNMP: Why and how. In 2000
IEEE/IFIP Network Operations and Management Symposium, pages 609 – 622, Honolulu, Hawaii,
USA, April 2000.

[13] Danny Raz and Yuval Shavitt. Active networks for efficient distributed network management. IEEE
Communications Magazine, 38(3), March 2000.

[14] Marcelo Gonçalves Rubinstein and Otto Carlos Muniz Bandeira Duarte. Evaluating tradeoffs of
mobile agents in network management. Networking and Information Systems Journal, 2(2):237–
252, 1999. HERMES Science Publications.

[15] William Stallings. SNMP, SNMPV2, SNMPV3, and RMON 1 and 2. Addison-Wesley, January 1999.

[16] Y. Yemini. The OSI Network Managemnt Model. IEEE Communications Magazine, pages 20–29,
may 1993.

[17] Yechiam Yemini, Germ«an Goldszmidt, and Shaula Yemini. Network Management by Delegation. In
The Second International Symposium on Integrated Network Management, pages 95–107, Washing-
ton, DC, USA, April 1991.

