1. A Data-Centric Approach for Scalable State
Machine Replication *

Gregory Chockler’:2, Dahlia Malkhi!, and Danny Dolev!

! School of Computer Science and Engineering, The Hebrew University of
Jerusalem, Jerusalem, Israel 91904
email:{grishac,dalia,dolev}@cs.huji.ac.il

2 IBM Haifa Research Labs (Tel-Aviv Annex)

1.1 Introduction

Data replication is a key design principle for achieving reliability, high-
availability, survivability and load balancing in distributed computing sys-
tems. The common denominator of all existing replication systems is the
need to keep replicas consistent. The main paradigm for supporting repli-
cated data is active replication, in which replicas execute the same sequence
of methods on the object in order to remain consistent. This paradigm led to
the definition of State Machine Replication (SMR) [1.8, 1.13]. The necessary
building block of SMR is an engine that delivers operations at each site in
the same total order without gaps, thus keeping the replica states consistent.

Traditionally, existing SMR implementations follow a process-centric ap-
proach in which processes actively participate in active replication protocols.
These implementations are typically structured as a peer group of server
processes that employ group communication services for reliable totally or-
dered multicast and group membership maintenance. The main advantage
of this approach is that during stability periods, work within a group is
highly efficient. However, when failures occur and are detected the system
needs to reconfigure. This requires solving agreement on group membership
changes. Moreover, membership maintenance implies that participants need
to constantly monitor each other. Consequently, group communication based
systems scale poorly as the group size and/or its geographical span increases.
Additionally, due to the high cost of configuration changes, these solutions
are not suitable for highly dynamic environments.

In contrast, we advocate the use of a data-centric replication paradigm
in order to alleviate the scalability problems of the process-centric approach.
The main idea underlying the data-centric paradigm is the separation of the
replication control and the replica’s state. This separation is enforced through
a two-tier architecture consisting of a storage tier whose responsibility is
to provide persistent storage services for the object replicas, and a client
tier whose responsibility is to carry out the replication support protocols.

* This work was supported in part by the Israeli Ministry of Science grant #1230-
3-01.



2 Gregory Chockler et al.

The storage tier is comprised of logical storage elements which in practice
can range from network-attached disks to full-scale servers. The client tier
utilizes the storage tier for communication and data sharing thus effectively
emulating a shared memory environment.

The data-centric approach promotes fundamentally different replication
solutions: First, it perfectly fits today’s state-of-the-art Storage Area Net-
work (SAN) environments, where disks are directly attached to high speed
networks, usually Fibre Channel, that are accessible to clients. Moreover,
due to the lack of broadcast support by Fibre Channel networks, direct mul-
ticast communication among processes, as mandated by the process-centric
paradigm, is not easily supportable in SAN environments. Second, it sim-
plifies the system deployment and management as the only deployment pre-
requisite is the existence of an infrastructure of storage elements which can
be completely dynamic. Also, there is no need to deploy any non-standard
communication layers and/or tools (such as group communication). In fact,
all the communication can be carried out over a standard RPC-based mid-
dleware such as Java RMI or CORBA. Third, the storage elements do not
need to communicate with one another nor they need to monitor each other
and reconfigure upon failures. This reduces the cost of fault-management
and increases the system scalability. The replication groups can be created
on-the-fly by clients simply writing the initial object state and code to some
pre-defined collection of the storage elements. Fault-tolerance can be achieved
by means of quorum replication as it is done in the Fleet survivable object
repository [1.11].

Finally, the data-centric approach has a potential for supporting replica-
tion in highly dynamic environments where the replicas are accessed by an
unlimited number of possibly faulty clients whose identities are not known
in advance. In this paper, we first mention the results introduced in [1.3],
which extend the Paxos approach of Lamport [1.9] to such environments.
These results provide universal object emulation in a very general shared
memory model, in which both processes and memory objects can be faulty,
the number of clients that can access the memory is unlimited, and the client
identities are not known. We then outline future directions for research within
the data-centric framework.

1.2 SMR in Data Centric Environments

The Paxos algorithm of Lamport [1.9] is one of the techniques used to imple-
ment operation ordering for SMR. Numerous flavors of Paxos that adapt it
for various settings and environments have been described in the literature.
At the core of Paxos is a Consensus algorithm called Synod. Since Consensus
is unsolvable in asynchronous systems with failures [1.5], the Synod protocol,
while guaranteeing always to be safe, ensures progress when the system is sta-
ble so that an accurate leader election is possible. In order to guarantee safety



1. A Data-Centric Approach 3

even during instability periods, the Synod algorithm employs a 3-phase com-
mit like protocol, where unique ballots are used to prevent multiple leaders
from committing possibly inconsistent values, and to safely choose a possible
decision value during the recovery phase.

Most Paxos implementations were designed for process-centric environ-
ments, where the replicas in addition to being data holders, also actively
participate in the ordering protocol. Recently, Gafni and Lamport proposed
a protocol for supporting SMR in the shared memory model [1.6] emulated
by the SAN environment. Their protocol is run by clients that use network-
attached commodity disks as read/write shared memory. The protocol as-
sumes that up to a minority of the disks can fail by crashing. In Disk Paxos,
each disk stores an array with an entry for each participating client. Each
client can read the entries of all the clients but can write only its own entry.
Each of the two Paxos phases is simulated by writing a ballot to the process
entry at a majority of disks, and then reading other process entries from a
majority of disks to determine whether the ballot has succeeded.

A fundamental limitation of Disk Paxos, which is inherited from all known
variants of the Paxos protocol, is its inherent dependence on a priori knowl-
edge of the number and the identities of all potential clients. The conse-
quences of this limitation are twofold: First, it makes the protocol inappro-
priate for deployment in dynamic environments, where network disks are
accessed from both static desktop computers and mobile devices (e.g., PDAs
and notebooks computers). Second, even in stationary clusters, it poses scala-
bility and management problems, since in order for new clients to gain access
to the disks, they should either forward their requests to a dedicated server
machine, or first undergo a costly join protocol that involves real-time lock-
ing [1.6].

In [1.3], we initiated a study of the Paxos algorithm in a very general
shared memory model, in which both processes and memory registers can be
faulty, the number of clients that can access the memory is unlimited, and
the client identities are not known. Since wait-free Consensus is impossible
even for two processes in this model [1.7], we augment the system with an un-
reliable leader oracle, which guarantees that eventually and for a sufficiently
long time some process becomes an exclusive leader. Equipped with a leader
oracle, Consensus is possible for finitely many processes using read/write reg-
isters. However, even with a leader oracle, an infinite number of read/write
registers is necessary to implement Consensus among infinitely many clients
(see [1.3] for the proof).

Our solution first breaks the Paxos protocol using an abstraction of a
shared object called a ranked register, which follows a recent deconstruction of
Paxos by Boichat et al. in [1.1]'. The remarkable feature of the ranked register
is that while being strong enough to guarantee Consensus safety regardless

! Tn [1.1], an abstraction called round-based register is introduced, which we use
but modify its specification.



4 Gregory Chockler et al.

of the number of participating clients, it is nevertheless weak enough to allow
implementations satisfying wait-free termination in runs where any number
of clients might fail. Armed with this abstract shared object, we provide
a simple implementation of Paxos-like agreement using one reliable shared
ranked register that supports infinitely many clients.

Due to its simplicity, a single ranked register can be easily implemented
in hardware with the current Application Specific Integrated Circuit (ASIC)
technology. Thus, the immediate application of the ranked register would
be an improved version of Disk Paxos that supports unmediated concurrent
data access by an unlimited number of processes. This would only require aug-
menting the disk hardware with the ranked register, which would be readily
available in Active Disks and in Object Storage Device controllers.

1.3 Future Directions

In contrast to the process-centric approach whose power and limitations are
now well understood, the data-centric paradigm poses several unresolved the-
oretical questions requiring a further study. First, let us take a closer look
on the oracle abstraction required to guarantee the liveness of the Consensus
protocol. Most of the oracle abstractions found in the literature are targeted
for message passing systems. An exception is found in [1.10] where the notion
of an unreliable failure detector was adapted to the shared memory model
(without memory faults). Still, this approach is not easily implementable with
infinitely many processes, as it assumes that processes are able to monitor
each other which is problematic if the process universe is a priori unknown.

On the other hand, weak synchronization paradigms match the shared
memory environment more closely and as demonstrated in [1.4], can be made
oblivious to the overall number of clients and their identities. In light of this,
an interesting future direction is to identify a class of weak synchronization
primitives sufficient for solving Consensus in an asynchronous system, and
study their implementability in presence of infinitely many processes.

The next future direction is concerned with tolerating malicious mem-
ory failures. Interestingly, this appears to have several non-obvious conse-
quences with respect to the overall number of shared memory objects needed
to achieve the desired resilience level. In particular, in contrast to the well-
known 3f + 1 lower bound on the number of processes needed to tolerate up
to f Byzantine failures in the message passing model, all the existing wait-
free algorithms for asynchronous shared memory model with faults require at
least 4f 4+ 1 memory objects to tolerate malicious failures of at most f mem-
ory objects (see e.g., [1.11]). Martin et al. show in [1.12] an implementation
of an atomic register with 3f + 1 servers which utilizes enhanced server func-
tionality and increased communication. In particular, in their method clients
subscribe to servers so as to repeatedly receive updates about the register’s



References 5

state. Further exploration is required to investigate this seeming tradeoff be-
tween the resilience on one hand, and the communication cost and memory
consumption on the other hand.

Another interesting direction would be to use the ranked register ab-
straction as a machinery for unifying numerous Consensus implementations
found in the literature. Of particular interest is the class of so called indulgent
Consensus algorithms: i.e., the algorithms designed for asynchronous environ-
ments augmented with an unreliable failure-detector. The Synod algorithm
of Paxos is an example of such indulgent algorithm. Another example is the
revolving-coordinator protocol (e.g., see [1.2]), which is based on a similar
principle as Paxos but has the leader election being explicitly coded into the
algorithm. One of the benefits of establishing a uniform framework for asyn-
chronous Consensus algorithms will be in a better understanding of how the
lower bounds for Consensus in asynchronous message passing model can be
matched in its shared memory counterpart.

Finally, on a more practical note, let us take a look on today’s SAN based
systems. These systems usually employ sophisticated software layers which
emulate higher level abstractions such as virtual disks, object stores and file
systems over the SAN. These software layers typically manage large volumes
of metadata such as directory structure, access permissions, etc., whose avail-
ability and consistency are crucial. This mandates using replication to ensure
continuous metadata availability despite faults. In this context, our data-
centric SMR represents a scalable solution for maintaining metadata replicas
in a consistent state. Consequently, integrating data-centric SMR into the
SAN software is a challenging future direction of practical importance.

References

1.1 R. Boichat, P. Dutta, S. Frolund and R. Guerraoui. Deconstructing Paxos.
Technical Report DSC ID:200106, Communication Systems Department
(DSC), Ecole Polytechnic Fédérale de Lausanne (EPFL), January 2001.
Available at http://dscwww.epfl.ch/EN/publications/
documents/tr01_006.pdf.

1.2 T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM 43(2):225-267, March 1996.

1.3 G. Chockler and D. Malkhi. Active disk Paxos with infinitely many processes.
In Proceedings of the 21st ACM Symposium on Principles of Distributed Com-
puting (PODC’02 ), July 2002. To appear.

1.4 G. Chockler, D. Malkhi and M. K. Reiter. Backoff protocols for distributed
mutual exclusion and ordering. In Proceedings of the 21st International Con-
ference on Distributed Computing Systems, pages 11-20, April 2001.

1.5 M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM 32(2):374-382, April
1985.

1.6 E. Gafni and L. Lamport. Disk Paxos. In Proceedings of 1jth International
Symposium on Distributed Computing (DISC’2000), pages 330-344, October
2000.



6 References

1.7 P. Jayanti, T. Chandra, and S. Toueg. Fault-tolerant wait-free shared objects.
Journal of the ACM 45(3):451-500, May 1998.

1.8 L. Lamport. Time, clocks, and the ordering of events in distributed systems.
Communications of the ACM 21(7):558-565, July 1978.

1.9 L. Lamport. The Part-time parliament. ACM Transactions on Computer Sys-
tems 16(2):133-169, May 1998.

1.10 W. K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in
asynchronous shared-memory systems. In Proceedings of the 8th International
Workshop on Distributed Algorithms (WDAG), Springer-Verlag LNCS 857:280-
295, Berlin, 1994.

1.11 D. Malkhi and M. K. Reiter. An architecture for survivable coordination in
large-scale systems. IEEE Transactions on Knowledge and Data Engineering
12(2):187-202, March/April 2000.

1.12 J. P. Martin, L. Alvisi and M. Dahlin. Minimal Byzantine Storage. In Proceed-
ings of the 16th International Conference on DIStribued Computing (DISC’02),
pages 311-325, October 2002,

1.13 F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys 22(4):299-319, December 1990.



