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1. INTRODUCTION

We consider the problem of constructing a “fault-tolerant” routing in a
network with an arbitrary number of nodes. This work is motivated by a
practical problem of message routing in a communications network. The
message delivery system must find a route along which to send each
message to its destination, where a route is a path from one node to
another. If the route is known beforehand, then it can be attached to the
message, allowing intermediate nodes to forward the message, using only
information contained in the message itself. Such a simple forwarding
function can be built into fast special-purpose hardware, yielding the
desired ‘high overall network performance.

The problem is greatly simplified if one chooses a route in advance for
each source/destination pair and uses that route for all messages from one
node to the other. Such a choice of routes is called a routing table. 1f the
routing table is computed only once for a given network configuration,
considerable effort can be put into its computation. Even this effort,
however, must be kept within reasonable bounds, since the routing table
must be recomputed when the network configuration changes. All routes in
a routing table are customarily simple paths and in addition might have
other desirable properties such as being minimal length and approximately
evenly distributed throughout the network.

In this paper, we are particularly concerned with the fault-tolerant
properties of fixed routings. In such a system when a node or link fails, all
of the routes which go through the failed component become unusable,
leaving certain pairs of nodes unable to communicate in the normal way.
However, assuming the network remains connected, communication is stifl
possible by sending a message along a sequence of surviving routes. We
analyze the surviving route graph, which consists of all nonfaulty nodes in
the network with two nodes being connected by a directed edge iff the
route from the first to the second is still intact after a set of component
failures. Then the diameter of the surviving route graph (the maximum
distance between any pair of nodes) is a measure of the worst-case
performance degradation caused by the faults.

There are several reasons for continuing to use old routing tables even
after a fault has occurred. One significant reason is that nodes must com-
municate in order to compute a new routing table, so some kind of interim
communication mechanism is essential. A standard way of accomplishing
this communication is for a node to “flood” the network, that is, to send a
message to all of its neighbors, who in turn pass the message on to all of
their neighbors. To guarantee that the process will eventually halt, a coun-
ter, which is incremented each time the message is forwarded, can be used.
The message can be discarded when the counter attains the value of the
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diameter of the network. Unfortunately, this value could be as large as n,
resulting in O(n") message exchanges. Alternatively, each node could
maintain a message table and forward only those messages that it had not
previously received. The table approach requires only O(n®) message
exchanges, but it has the obvious drawback of both consuming space and
requiring a table search for every message that is received.

By contrast, if the surviving route graph of a network is guaranteed to
have a small (ideally constant) diameter 4, then one can broadcast along
routes instead of along edges. In this case, the number of times that a
message is forwarded along a route is O(n“), and no route tables are
required. In particular, a node can broadcast to all others without knowing
which routes are still intact by sending its message together with a “route
counter” along all of its routes; any node receiving the message increments
the route counter and rebroadcasts it along all of its routes if the route
counter does not exceed the bound on the diameter of the graph.

Another reason for using route tables is that for certain types of fault
tolerant protocols, such as those used in Byzantine Agreement, a node at
the endpoint of a route must do considerably more processing of messages
than one which is an interior point of a route. Consequently, the time it
takes for a message to reach all other nodes is proportional to the diameter
of the surviving route graph.

A further application for this model is the case of a network that recon-
figures itself according to some shortest path strategy at certain (relatively
rare) intervals. If one wishes to run a protocol on such a network in which
it is assumed that messages between two nodes are always delivered so long
as neither of the nodes is either down or disconnected, then the message
can be sent over the routes of the surviving route graph. As mentioned
above, if one assumes more extensive processing at nodes that are the
endpoints of routes, then the maximum delivery time for a message is
proportional to the diameter of the surviving route graph. The length of the
diameter of the surviving route graph is utilized in a clock synchronization
algorithm (Halpern et al., 1984), which has been developed for an arbitrary
network that might contain faults. A Byzantine Agreement algorithm which
uses routes for communication has been impiemented in a research
prototype developed by the Highly Available Systems Project at IBM. This
project also uses routing for establishing point-to-point communication
between two nodes in the network.

Yet another reason for using route graphs is that if every pair of nodes
has a route between the nodes, then the fault-free route graph is a com-
pletely connected graph. Consequently, algorithms and protocols that run
only on completely connected graphs can be run on the route graph. In
other words, we can use the route graph as a “virtual” completely connec-
ted graph when the network itself is not completely connected.
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The minimum number of faults that increases the diameter of a network
(called persistence) has been previously studied (see Exoo, 1982; Boesch et
al., 1981, and references therein). However, if the routes are fixed, then the
persistence is not a good measure of the fault tolerance of a network.

This problem was introduced in (Dolev et al, 1983). In it, they establish
properties of routings in general networks. They also give a routing for a
specific network (a #-dimensional hypercube) that can tolerate up to ¢ — 1
faults and still have a surviving graph of diameter at most 2. In terms of N,
the number of nodes in the graph, their construction tolerates up to
t=1log, N — 1 faults and can be applied whenever N is a power of two. The
degree of each of the nodes in the resulting hypercube is 7+ 1.

In this paper, we look at the problem of finding good routings for
networks where the number of nodes is not a power of two. We have a
general construction which allows one to form a “product route graph”
from two or more constituent route graphs. Any graph can be used as a
constituent route graph. The tolerance, diameter, and degree of the product
graph are related in a simple way to the corresponding parameters of the
constituent graphs, although the construction of the routing on the product
graph is definitely nontrivial. Applying this construction repeatedly to
simple 2-node. graphs yields the cube result of Dolev et al. However, other
cardinality graphs can be obtained by starting with a different basis. In
addition, we have a “pudding theorem” which allows us to add nodes to a
product graph and extend the previous routing.

As an example, using the 2-node, 3-node, and 5-node starting graphs of
Fig. 1, one can construct a routed graph of any cardinality N of the form
273/5% The resulting graph will tolerate i+ 2j 4 2k — 1 faults, have degree
i+ 2j+ 2k, and have surviving diameter of 2. Alternatively, if the complete
graph on 5 nodes is substituted for the 5-cycle, the resulting graph will
tolerate i+ 2j+4k — 1 faults, have degree i+ 2j+ 4k, and- have surviving
diameter of 2. Note that in both cases the fault tolerance is optimal in that
any larger set of faults might disconnect the network.

In addition to providing a constructive technique for building networks
and providing them with fault-tolerant routings, our approach provides the
network designer with a powerful tool. As the above example illustrates,
sparse or dense “basic” graphs in constructing the product graph can be
used according as the goal is either minimizing the number of links or
maximizing the fault-tolerance.

Fig. 1. Potential building blocks.
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2. GrAPH RoUTING

A network is modeled as an undirected graph G = (V, E), with nodes
representing processors and edges representing communication links. We
do not allow self-loops or parallel edges. A routing assigns to any pair of
nodes in the network a fixed path between them. All communications
between these nodes travel along this path.

More formally, define Pathg(x, y) to be the sct of all simple paths
between the nodes x and y in G and Path(G) to be the set of all simple
paths in G. A routing is a partial function p: V'x V' — Path(G) such that
p(x, y)e Pathy(x, y). (If Pathg(x, y) =, then p(x, y) is undefined.) We
call p(x, y) the route from x to y. For a path ne Path(G), let I(n) be the
number of edges in ©. A shortest path routing is a routing p such that for
every pair (x, y), l(p(x, y)) is minimal among all paths in Paths(x, y). A
routing p induces the route graph R(G, p) = (V, Dom(p)), where Dom(p) is
the domain of definition of p. If p is defined for every pair x, y for x #y,
then R(G, p) is the complete graph on | V| nodes.

When speaking of a path between x and y in G, we use the notation
ne(x,y). We shall abbreviate R(G,p) as R and mg(x,y) as n(x, y)
whenever such an abbreviation is unambiguous. (Since we are dealing with
several different graphs, the later abbreviation will be used less frequently.)

Let p(x,y)p(y,z) be the route from x to y followed by the route
from y to z. The function p can be extended to a function on V* in an
obvious way: p{x;, X5, X3, ..)= p(x;, X,) p(x3, X3) ... . In particular, given
a path m(x;, x;)=x,X; - X, then p(n(xy, xi))=p(x, X2) p(x2, X3) -+
p(x_1, xi). Let V(. ,, be the set of nodes in p(x, y). A routing is consistent
if for all x, y such that p(x, y) is defined and for all z such that ze V', ,),
p(x, y)=p(x, z) p(z, y).

A fault in G is eigher a node or an edge in G. A route is affected by a
fault if the fault is contained in it. Note that one fault may affect several
route. Given a set F of faults in G, we define the fault free routing p/F to be
reduction of p to fault free routes. As above, the fault free routing p/F
induces the surviving route graph R(G, p)/F = (V/F, dom(p/F)), where V/F
consists of all nonfaulty nodes in G. We use the notation R/F for R(G, p)/F
when it unambiguous.

A (shortest path) routing p is called (d, f)-tolerant if for every set F of f
faults in G, R(G, p)/F has diameter at most d. A graph G is called (d, f)-
tolerant if there exists a shortest path routing p on G that is (d, f)-tolerant.
Note that if G is (d, f)-tolerant, then the degree of any node in G is at least
f+1, and that for shortest path routings f faults will increase the diameter
of G at most 4 times.

Fact 1. If p is consistent, then for every set F of faults in G, p/F is
consistent.
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Facrt 2. If Gis (d, f)-tolerant and f> 0, then d> 1.

LeMMA 1. Let p be a consistent routing of G and let x, y be any pair of
nodes in G. Let F be a set of faults such that p(x,y) contains a fault but
there is a path g {x, y) from x to y in R/F which does not contain any
faults. Then there exists a node on T g,{x, y) which is not on p(x, y).

Proof. Let V., ,) be the set of nodes in 7g/A(x, y) and assume to the
contrary that ¥V, , SV, ). Let p(x, y)=XoX; - Xy, where x,=x and
Xi =y, and let mg/p(x, y) = xox} -+ X,,, where xo=x and x,,=y. If p(x, y)
has only node faults, then let 7 be the largest number less than k such that
x, € F. Otherwise, let I be the largest number less than k such that the edge
(x;, X, )€ F, and let J be the largest number less than m such that x);=x;
for some i</l Then x)x;,,;x;,,---x,,, is a route by the consistency
assumption with respect to p(x, y), and by construction it contains a fault.
This contradicts the assumption that p(mg/(x, ¥)) is fault-free. |

LEMMA 2. Let p be a (d, f)-tolerant consistent routing with >0, and x,
y a pair of distinct nodes in G. For every set F of faults with |F| <f, there
exists a path mg,Ax, y) of length at most d such that p(mg/p(x, y)) is Sfault-
free and T g x, y) contains a node that is not on p(x, y).

Proof. Let F' be the set of faults F together with an edge from p(x, V)
The set F' contains at most f faults, so by definition there exists a path
Tgr(x, y) from x to y such that p(n rr(X, y)) does not contain any faults
in F'. By Lemma 1, mg (x, y) contains a node that is not on p(x, ) 1

3. PRODUCT OF ROUTING

Given two graphs G=(Vg, Eg) and H=(Vy, Ey), their cartesian
product G x H is a graph (V, E), where V=V x V and ((, ), (k,))e Eiff
both (i, j) and (k, I) are nodes in V and cither i=k and (j,/)e E, orj=1
and (i, k)€ Eg. The H plane defined by i (G plane defined by j) in Gx H is
the subgraph of G x H determined by all nodes having the first (resp.
second) coordinate equal to i (resp. j). We use the notation H; and G; for
the H plane defined by i and the G plane defined by j, respectively.
Isomorphic graphs being considered equal, it can be shown that the
cartesian product of graphs is commutative and that any graph can be
uniquely decomposed into a cartesian product of indecomposible graphs.
For details see Sabidussi (1960).

Let p; and p, be given routings for G and H, and let x=(i, ) and
y=(k,I). We define the product routing pgxpy as follows:
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pe X pulx, y)=pux, z) pg(z, y), where z= (i, /). In other words, the route
is obtained by concatenating the route p,(x, z) of H; with the route
polz, y) of G,. Clearly, if i=k or j=1, then one of these routes is the null
route. In this case, we say that x and y are coplanar. The routing p; X p, is
a consistent routing iff both p, and p, are consistent. From now on we
shall denote pgx py by pg«u, although clearly there are other possible
routings on G x H.

Let x=(i,j) and y = (7, j’) be two nodes that are not coplanar in Gx H,
and let F be the set of faults in G x H. We associate to x and y a copy of G,
called G(x, y), with the set of faults F(x, y). The set Fs(x, y) is defined as
follows:

(a) if the edge (k, /)e Eg, then (k, [)e Fy(x, y) when either the edge
between (k,j) and (/, j) or the edge between (k, ') and (/, ;') is faulty (in
G x H).

(b) lf ke VG and k¢pG(l’ il)a then kGFG(X, Y) when pH(kaj)’ (k9],))
is faulty.

() ifkeVy, kepgli,i'), and k+#1, i, then ke Fg(x, y) when either
of the nodes (k, j) or (k, ;') is faulty.

The sets H(x, y) and F,(x, y) are similarly defined. Note that nodes j, j* in
H(x, y) and i, i’ in G(x, y) are always nonfaulty.

LemMMA 3. Any fault in F (the set of faults in G x H) determines a fault in
at most one of Fg(x, y) and Fy(x, ).

Proof. Let x=(i,j) and y= (i, j'). Suppose that there is an edge fault
fi=(( k), (I'k))eF. If f, determines an edge fault (/,/')e E;, then it
must satisfy condition (a) and, therefore, either k=; or k=j". Suppose
by contradiction that f, also determines a node fault. Then it must do so
by condition (b) and the fault must be an element of F,(x, y). But for
condition (b) to hold, k¢ p4(J, /'), which is clearly impossible, since either
k=jor k=j.

Suppose that f; does not determine an edge fault in Eg, ie., condition
(a) does not hold. Then k #j, /. Note that at most one of conditions (b)
and (c) can hold, and therefore f; can determine at most one fault. The
proof for edge faults of the form ((/, k), (/, k’)) is similar.

Now suppose that there is a node fauit f, = (k, [)e F. By definition, a
node fault in G x H cannot determine an edge fault in Fg{x, y) or Fy(x, y).
Suppose that f, determines a node fault in Fg(x, y). If condition (b)
holds, then ké¢ps(i, ') and pu((k,j), (k,j')) is faulty. In particular,
(k, D e p (K, j), (k,j'). If f, also determines a node fault in Fy(x, y), then
it must do so by condition (c) (since /€ p x(J, j')). But for condition (c) to
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hold, /+#j, j* and one of the nodes (i, /) or (i, [') is faulty. This implies that
k=i or k=1, which contradicts the assumption that k¢ ps(i, '), ie., the
assumption of condition (b) by which f, determines a fault in Fs(x, y).

Finally, suppose that f, determines a node fault in Fg(x, y) under con-
dition (c). Therefore, k€ pg(x, y), k#1i, ¢, and one of the nodes (k,j) or
(k,j') is faulty. This implies that /= or /=" If f, determines a node fault
in Fy(x, y), then since /=j or /=, condition (c) cannot hold. For con-
dition (b) to hold, /¢ p,(Jj,j'). Since /= or /=", this is clearly impossible.
A similar proof holds if there is a node fault /5 = (k, ) which determines a
node fault in Fy(x, y). §

COROLLARY. | Fg(x, )| + | Fu(x, ) <|F].

LeMMA 4. Assume pg is (dg, fg)-tolerant, py is (dy, fy)-tolerant, at
least one of f; and fy is greater than 0, and both are consistent routings. Let
x, y be two nodes in G x H that are not coplanar. Then for every set F of
Saults such that Fg(x,y) (resp. Fy(x, y)) contains fewer than fg (resp. fy)
Saults, the distance between x and y in R(G x H, ps . y)/F is at most d (resp.

dy).

Proof. Let x=(i,j) and y= (i, ). Without loss of generality, assume
that f; > 0 and that Fg(x, y) contains f < f; faults. By Lemma 2 there exists
a path 7 of length <d; in R(G, pg)/Fs(x, y) from i to i’ such that pg(n) is
fault-free and = contains a node which is not on ps(i, i’).

We first show a fault-free path in G x H from x to y and then prove that
its length in R(Gx H, pgs, »)/F is bounded by d;, which by Fact 2 is at
least 2. Let k& be a node on = that is not on p4(i, i’) and let [ be the node on
n immediately after & (i.e., (k, /) is an edge in R(G, pg)/Fs(x, y)). Denote
n=mn,(k, [} n,. Note that k#¢ but that / might equal /, in which case
7, = . By the definition of Fg(x, y), since p(n) had no faults in Fg(x, y),
pg(m,) is fault-free in the G;. Similarly, both p (%, /) and"fpg(nz) are fault-
free in the G;. By condition (b) of the definition of F(x, y), pu((k,)),
(k,j')) is fault-free (ie., p,((k,j), (k,j)) contains no fault from F).
Therefore, the path in G x H composed of the corresponding ps(m;) p x((k,
7 (k7)) pellk, 7)), (I, J) pemy) is fault-free. But from the definition of
the routing in G x H, it follows that p,((k, ), (k,j)) pel(k,j), (L))
form just one route. Hence, this path is of length at most dg; in
R(GXHa pGxH)/E

The proof for F,(x, y) is similar. The only difference is that we have to
take / to be the node immediately preceding k in = to get a path of length
dym R(GXH, p.y)/F. |

THEOREM 1. Let G be (dg, f)-tolerant and H be (dy, fy)-tolerant with



60 BRODER ET AL.

consistent (dg, fg)- and (dy, fy)-tolerant routings ps and py, respectively.
Then the graph G x H is (max{dg, dy, 2}, fo+fu + 1)-tolerant.

Proof. Let pguu=pcXpy We will show that pg.y 18
(max{dg, dy, 2}, fo +fu+ 1)-tolerant. It suffices to show that for any pair
of nodes x = (i, j) and y = (/', ') and every fs+f, + 1 faults in the product
graph, there exists a path of length bounded by max {d;, dy, 2} from x to
y in the graph R(G x H, ps »)/F. The proof is by cases.

Case 1. i=1i.

Case 1.1. H,; contains f, or fewer faults. We are done because H,
itself is (d,,, f)-telerant.

Case 1.2. H, contains at least f, + 1 faults. Both node x and node y
have at least f;+ 1 corresponding adjacent nodes in their respective G
planes. Each pair of corresponding adjacent nodes has a route joining them
in an H plane. These planes are mutually distinct and also different from
H.. Therefore, these adjacent nodes define at least f;+ 1 node disjoint
paths, each utilizing a different H plane, connecting x and y. Since we have
at most f faults among these node disjoint paths, at least one of them is
fault-free. Each of these f;+ 1 disjoint paths is composed of exactly two
routes in pg, . The first route consists of the edge from x to the H plane
and the second consists of the path in that H plane followed by the edge to
y. Therefore, each one is of length 2 in Ry, 4/F.

Case 2. j=Jj'. The proof is symmetrical to Case 1.

Case 3. i#1i and j#j. The remainder of the proof is an analysis of
G(x, y) and H(x, y).
Case 3.1. Either | Fg(x, y)| <fg or | Fu(x, y)| <fy- The result follows
from Lemma 4. ‘

Case 3.2. Both |Fg(x, y)| =f¢ and | Fy(x, y)| =f4. If either pg(i, i')
or py{/J, /) contains a fault, then the result follows from techniques similar
to those of Lemma 4. So suppose that both p(i, i) and p4(Jj, /') are fault-
free in G(x, y) and H(x, y), respectively. By Lemma 3 there can be at most
one fault in G x H which has not determined a fault in either Fg(x, y) or
Fu(x, y). If this fault is not in either p((i, j), (i,j'}) or p((i,j'), (', j')), then
the route from x to y is fault-free, and the distance from x to y in G x H is
one. If there is a fault in either of the above routes, then by the definition of
Fg(x, y)y and Fy(x, y), it must be the point (i, /). Therefore, the point (', j)
must be fault-free and a path of length two from x to y in Rg, u/Fs .y can
be obtained by concatenating ps(i, i') in G; with p4(j,j') in H,.

Case 3.3. Either |Fg(x, y)| =fg and | Fy(x, ) =fuy+ 1 or | Fg(x, y)|
=fc+1 and |Fy(x, p)l=fy. Assume |Fg(x, y)l=/c and |Fy(x, y)| =
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fu+ LIf pg(i, ') has a fault, the proof follows using previous techniques. So
suppose that pg(i, i) is fault-free. If p 4(j, j') is fault-free in H,, then p((i, j),
@7 e ), (i',))) is a path of length one. If p,(J, ') is fault-free in H,,
then p((i, j), (¢, 7)) p((¢, J), (i',j')) is a path of length two. So suppose that
p(J,J') contains a fault in both H,; and H,. Since both H planes contain at
least one fault, neither contains more than f,; faults. Therefore, we can
travel from (i, j) to (i, j') in H, along a path of length no greater than d. If
p((5, /)i, J)) is concatenated to this path, the length of the path is not
increased. The proof is similar if instead we have Fg(x, y)=fs+1 and

|Fu(x, V)| =fu- |

4. PADDING GRAPHS

THEOREM 2. Let G=(V, E)} be (d,f)-tolerant with every node in G
having degree no greater than u. Then for |V|<N<|V|+(|V|/u*), G can
be extended to a graph G'=(V', E') and a routing p' such that G' is (d, f)-
tolerant, | V'| = N, and the maximum degree in G' is no more than p+ 1.

Proof. We extend G to a graph G'= (V', E') with | V'| =N as follows.
Match one of the new nodes, say x’, to a node in the original network, say
x, and connect x’ to all of x’s neighbors in G (but not to x). Next, choose
another new node, say y’, and match it to a node in the original network,
say y, which has no neighbors in common with x in G. Connect y’ to all
the neighbors of y. This procedure can be repeated so long as there exist
nodes in G which are neither matched to a new node nor have neighbors in
common with an already matched node. Each iteration eliminates at most
p? nodes from G, since both x and each of its neighbors have degree at
most (. -

Let p be a routing in G which is (d, f)-tolerant. We extend p to p’ as
follows. For x, ye V, p'(x, y)=p(x, y). For x’ e V"=V and yeV, let x be
the node in V to which x' is matched. If y is a neighbor of x, then
p'(x', )= (x', ). If y is not a neighbor of x, then let w be the neighbor of x
which lies on p(x, y). We define p’(x’, y) to be the same as p(x, y) with the
edge (x, w) replaced by the edge (x', w). Routing p'(y, x') is similarly
defined to be p(y, x) with its last edge (v, x) replaced by the edge (v, x').
For x',y'e V'— ¥, let x and y be the nodes in ¥ to which x' and y’ are
matched, and let w and v be the neighbors of x and y, respectively, which
lie on p(x, y). By construction w # v. Then, p’(x', ') is the same as p(x, y)
with the edge (x, w) replaced by (x’, w) and (v, y) replaced by (v, y').

The consistency of p’ follows trivially from the consistency of p. Since G
tolerates f faults and since all new nodes are connected to at least f+1
distinct nodes in G, it is easy to show that G’ tolerates f fauits.
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We now show that R(G’, p')/F has diameter no greater than d for
|F|<f Let x', y'e V' — V with x’ matched to x and y' to y (x, ye V), and
assume G’ contains at most f faults. Let F' consist of the set F with the
following three changes: (1) x, y ¢ F', (2) if (x', w)€ F, then (x', w) ¢ F' but
(x,w)eF, (3) if (y', w)eF, then (y',w)¢F but (y, w)e F. Note that
| F'| <f. Therefore, there exists a path in R(G, p)/F' from x to y. Replacing
x by x” and y by y’ gives a path from x’ to y’ in R(G, p)/F. We leave it to
the reader to verify that the distance between nodes in R(G’, p'), when at
least one of the nodes is in V, remains no greater than d.

If the maximum indegree in the original graph is p, then in the new
graph we have degree p+1. 1

It is straightforward to generalize this construction to handle the case
where | V| <N<k|V|/u? if we allow the maximum degree in G’ to be
u+k

A construction similar to the one in the padding theorem can be used to
extend a graph with | 7| nodes to a graph with up to 2 [ V| nodes at the
cost of at most doubling the maximum degree while maintaining the same
diameter and fault tolerance.

5. OTHER BOUNDS

For a graph G=(Vg, E;) denote by n, the minimum degree of the
nodes in G.

TueoreM 3. Let G and H both be connected. Then Gx H is (3,f)-
tolerant, where f=max{min{ny, |Ve|—1}, min{ng, | Vul—1}}.

Proof. Let G x H have F faults with | F| <f. Without less of generality
assume f=min{n,, |Vsl—1}. Since f<|Vs|—1, there is at least one
fault-free H plane; denote it by H,. Define p;.n as before, with the
difference being that p and p, are arbitrary (not necessarily shortest path)
routings on G and H.

Let x, y be any two nodes in G x H. Assume first that y is not a neighbor
of x. To each of the 5, neighbors u of x in its H plane, associate a different
neighbor v of y in its H plane, or u itself if u is also a neighbor of y. Let U
be the set of pairs constructed in this manner together with the pair (x, y).
The set U defines in an obvious way 5, + 1 paths from x to y, all of them
going through H, and disjoint outside H,. Each one has length no more
than 3 in the induced graph, and at least one of them is fault free.

In the case that x and y are neighbors, if the edge (x, y) is not faulty, the
distance is 1. Otherwise, the corresponding set U will have 7, pairs with at
worst 7, — 1 faults on them. |
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Using similar observations about faultiness in G and H planes one can
obtain other bounds similar to the one in Theorem 3.

6. REMARK

The proof of the main theorem can be greatly simplified if the following
conjecture due to Joe Halpern is true. Let G be a (d, f)-tolerant graph and
let p be a (d, f)-tolerant consistent routing on G. Then between every pair
of nodes in R(G,p) there are at least f4+1 node disjoint paths
Ty, Moy .y Tpy g Of length d or less such that the paths p(=,), p(n,), ..., p(n))
are node disjoint. This property does not hold for inconsistent routings.

7. OPEN PROBLEMS

Our “building blocks” usually will be small graphs with a prime number
of nodes, p,, p,, ... Starting from these blocks, we can construct (2, f)-
tolerant graphs that have p! pJ p% ---nodes. If we want to construct a (2, f)-
tolerant graph with N nodes and if the gaps in such a sequence are not
greater than O(N/(log N)?), then we can use a generalization of the
padding theorem to construct such graphs where the maximum degree is
less than log N+ ¢ for some constant ¢ independent of N. Hence we have
the following number theoretic question: what is the minimum number of
prime numbers such that, for any N, the gaps in the above sequence are no
greater than O(N/(log N)?)? It seems plausible that the answer is 3 and
that the desired bound can be obtained using 2-, 5-, and 7-cycles. (For 2-,
3-, 5-, and 7-cycles the maximum gap up to 10,000 nodes is 199). For
known results on this problem, see (Tijdeman, 1973,1974), and references
therein. N

In general, we would like to know what is the optimum N node graph
and what is its optimum routing for any N given a desired (d, f')-tolerance.
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