Reprinted from INFORMATION AND COMPUTATION Vol. 95, No. 1, November 1991
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Fault-Tolerant Critical Section Management
in Asynchronous Environments

AmoTtz BarR-Noy*

IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, New York 10598

DaNNY DoOLEV

IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 and
Computer Science Department, Hebrew University, Jerusalem, Israel

DapPHNE KOLLER '

Computer Science Department, Stanford University, Stanford, California 94305 ———————
AND

Davip PELEG!

Department of Applied Mathematics, The Weizmann Institute, Rehovot 76100, Israel

The paper deals with the problem of managing a fault-tolerant critical section in
a completely asynchronous distributed network. The existence of a solution to this
problem should be contrasted with a basic result of Fischer, Lynch, and Paterson,
proving that in a completely asynchronous network, “nontrivial agreement” cannot
be achieved even when only a single “benign” processor failure is possible. We
present solutions to several versions of the critical section problem in this model.
Denote by ¢ the maximum number of possible faulty processors. Processors are
allowed to fail while in the critical section, and therefore the critical section must
have at least ¢+ 1 slots. In the case where the slots are identical we present two
algorithms which require 7 + 1 slots. The first is very simple, but requires every non-
faulty processor to use the critical section infinitely often. The second solution
allows non-faulty processors to quit. For distinct slots we present an algorithm that
requires 2¢ 4+ 1 slots. © 1991 Academic Press, Inc.

* This work was carried out while this author was visiting Stanford University. Supported
in part by a Weizmann fellowship, by Contract ONR N00014-88-K-0166, and by a grant of
Stanford Center for Integrated Systems.

* This work was carried out while this author was a student in the Computer Science
Department, Hebrew University, Jerusalem.

¥ Part of this work was carried out while this author was visiting Stanford University.
Supported in part by a Weizmann fellowship, by Contract ONR NOOO14-88-K-0166. and
by a grant of Stanford Center for Intregrated Systems.

1

0890-5401/91 $3.00

Copyright © 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.

2 ‘ BAR-NOY ET AL.
1. INTRODUCTION

An important issue in the theory of distributed systems is the extent to
which processor cooperation and coordination can be achieved in the
presence of faults. There are several parameters influencing this question.
The first major parameter is the level of synchronism that exists in the
system. A basic result [FLP] states that in a completely asynchronous
system, a collection of n>3 processors cannot deterministically achieve
“nontrivial consensus” in a faulty environment, even if at most one
processor may fail, and even when this can only be a benign fail-stop fault
(ie., a faulty processor may only stop functioning completely at some
stage). This result and later stronger versions of it [DDS] characterize
agreement as a “possibly too powerful” goal, and force us to limit ourselves
to weaker forms of processor cooperation, hoping that these will be
sufficient for executing various common tasks within such a system.

In this paper we study the ability to achieve weak forms of cooperation
in a completely asynchronous message passing evironment. The paper deals
with various algorithms for handling a basic task that requires a certain
degree of processor cooperation—a controlled access to a shared resource.
This task is sometimes called critical section management. Sometimes it is
necessary to achieve mutual exclusion for accessing the resource, ie., at
most one processor can be in the critical section at any time. This goal is
obviously unachievable when processors may fail while inside the critical
section. We consider an extension of the problem in which there are several
copies or slots of the resource, and the number M of such slots bounds the
number of processors allowed to concurrently access the resource. This
models a common situation in parallel operating systems [PS, Ru], and
was introduced first in [FLBB].

Note that most previous studies of the critical section problem assumed
a shared memory (cf. [R]) and that no processor fails in the critical
section. Failure within a critical section was studied in [DGS]. Recently,
other achievable goals in faulty asynchronous message passing networks
reccived. some attention (cf. [ABDKPR, BW, BMZ, DLPSW, K1).

When possible access methodologies for a multi-slot resource are con-
sidered, there are two viable alternatives. One approach in designing the
access algorithms asserts that a processor’s responsibility is limited only to
ensuring itself the right to enter the critical section, and it is not required
to locate and secure itself a particular slot. This approach allows processors
to view the critical section as a “black box,” containing equal, externally
indistinguishable slots. A more demanding approach requires the processor
to be responsible for the entire assignment process, including finding itself
a specific slot and making sure that this slot is not occupied by any other
processor at the same time. Here, the processor views each slot as a distinct

FAULT-TOLERANT CRITICAL SECTIONS 3

entity although all the slots might be functionally equivalent and inter-
changeable; ie., a system with a number of identical servers, where the
process has to choose a specific server. This is a common situation in
operating systems.

The two approaches can be illustrated by considering the different proce-
dures of buying a ticket for a bus ride or a flight. In the first case, the
passenger needs only to make sure that there is a room on the bus, but not
to reserve a particular seat. In the second case, it is necessary to have a seat
assignment before boarding the aircraft. This seemingly insignificant
distinction turns out to have a considerable influence on complexity and
algorithmic issues.

The identical-slot critical section problem (identical CS, for short) can be
formalized by imposing the following three requirements:

1. Exclusion: At most M of the processors are in the CS at any given
time.

2. Non-starvation: Every non-faulty processor that wants to enter the
CS eventually succeeds.

3. Fairness: 1If a non-faulty processor p enters the CS, then it is
among the first M processors according to a given priority rule.

Note that the fairness requirement alone does not prevent non-starva-
tion. It could be the case that a processor has priority to access the CS but
still cannot do this. In the sequel two priority rules are discussed in detail.
Both rules are based on # p, the actual number of times that p has ever
used slots of the CS. This is a natural criterion in an asynchronous system,
where more widely-used criterions (e.g., which process attempts to enter
the critical section first) are very difficult to formalize. These rules imply
the following two variants of the identical CS problem:

e The Global Identical CS: The variant based on the rule that
processor p has higher priority than processor g whenever {#p, p> <
(#q, 9>

e The Transient Identical CS: The variant based on the rule that
processor p has higher priority than processor g only if {(#p, p) <
{#gq, q», p wants to enter the CS, and furthermore, ¢ knows that fact.

An apparent limitation of the first rule is that it forces non-faulty pro-
cessors to use the critical section infinitely often; if M non-faulty processors
stop entering the critical section at some stage, then some time afterwards
they will reach the highest priority and deadlock the system. This limitation

! Throughout the paper, whenever we compare two tuples {a,, .., a,,» and <{by, .., b, >, we
assume a lexicographical ordering with the first component being the most significant.

4 BAR-NOY ET AL.

does not exist with the second rule. On the other hand, when the second
rule is used sometimes a processor can effectuate its priority only after
some other processors know that it wants to enter the critical section.

A third variant of the problem is the distincr-slot critical section problem
(distinct CS, for short). In this variant there are M distinguished slots
1, .., M, and the exclusion property is replaced by:

1". Distinction: No two processors are simultaneously in the same
slot.

Solving these versions of the critical section problems when all the pro-
cessors are non-faulty is not difficult. In this paper we solve them in the
presence of faulty processors, where the fault model assumed is fail-stop. In
this model, a faulty processor may suddenly stop functioning, regardless of
the state it is in. In particular, a processor may fail while in a critical sec-
tion, as well as in the process of sending messages. Some of the algorithms
can be extended to worse kinds of faults, such as Byzantine faults, where
the faulty processors may be malicious and even collude to prevent a
correction solution.

Throughout, # denotes the number of processors in the system and ¢ is
a prescribed upper bound on the number of faulty processors. These values
are known to all the processors and the processors are named 1, .., n.

Solutions to the CS problems should strive to minimize M. However,
there may be as many as ¢ faulty processors in the system, and each of
them might stop functioning while inside the critical section. The
asynchronous model implies that one cannot distinguish between a faulty
processor and a slow one. Therefore, any algorithm needs at least 1+ 1
slots in order to prevent starvation. This proves:

ProposITION 1.1. Any algorithm for either of the critical section
problems requires M =t + 1 slots.

Clearly, if M >n we can dedicate a distinct slot to each processor and
trivially meet all the requirements. Thus Proposition 1.1 is complemented
by the following:

PROPOSITION 1.2. There exists an algorithm for either of the critical
section problems using M =n slots.

In the case of the Byzantine fault model, we can prove a stronger lower
bound on M. According to Proposition 1.1, there are at least ¢+ 1 slots
which are open to competition to all processors. If we assume that a faulty
processor can enter the critical section without any of the other processors
being aware of the situation, then the ¢ faulty processors can secretly take

FAULT-TOLERANT CRITICAL SECTIONS 5

up ¢ additional slots, thus creating a situation where there are 2¢+1
processors in the critical section at the same time. This proves:

PROPOSITION 1.3. In the presence of Byzantine faults, any algorithm for
either variant of the identical critical section problem requires M =22t+1
slots.

A few of the algorithms presented for the identical CS problem overcome
Byzantine faults, as they are with ¢ additional slots. We note that the
bound on the number of non-faulty processors in the critical section
remains the same in both environments. The z additional slots are required
for the faulty processors only.

Another consideration besides the number of required slots is the
amount of memory and communication used by the algorithm. The defini-
tion of fairness ncessitates the usage of an internal memory proportional to
the number of processors and the number of times that the processors have
accessed the critical section. Nevertheless, it does not impose the use of
messages of that size. The issue of message complexity will not be discussed
in this paper.

Let us now list the results presented in the paper. For the global identical
CS problem, our basic algorithm requires M = ¢+ 1, matching the above
lower bound. This algorithm is very simple and the size of the messages is
only one bit. The algorithm overcomes Byzantine faults as well, using
21+ 1 slots. In this algorithm each processor is required to maintain infor-
mation about the usage of the critical section by all the other processors.

Next, we present an algorithm for the transient identical CS problem. In
this algorithm each processor p stores locally only # p, the number of
times it has used the critical section, and collects additional information
only when it wants to use the CS. This algorithm also requires M =1¢+1
slots, but the size of its messages is proportional to the number of times
processors have accessed the critical section. Another, simpler, algorithm
for the transient identical CS problem, which requires M =2¢+ 1 slots is
described. The later overcomes Byzantine faults using 3¢+ 1 slots.

For the distinct CS case we provide an algorithm that uses M =2¢+1
slots. This algorithm again requires the processors to access the critical sec-
tion infinitely often and use internal memory and message size proportional
to the numbers # p. Also, there is still a gap between our upper and lower
bounds for M in this problem, as we cannot prove any lower bound other
than that of Proposition 1.1.

The general strategy for solving the distinct CS problem is somewhat
similar to that presented in the renaming algorithm of [ABDKPR], where
selecting a slot is analogous to deciding a new name. A major difference
between the two problems is that in the renaming problem, the entire

6 BAR-NOY ET AL.

process is done only once, and processors do not change their names
once they decide on them. The need to repeatedly access the CS and the
non-starvation requirement prevent us from using the solution to the
renaming problem. v

The system model is the standard asynchronous model [FLP, DDS].
Each processor has a message buffer modeled as an unordered set; sending
a message to processor p is represented as appending the message to p’s
buffer. In each step the processor either receives or sends messages, but not
both (i.e, we assume non-atomic receive/send). When receiving, it reads
some arbitrary (possibly empty) subset of the messages in its buffer; when
sending, it can only transmit a message to a single processor. There are no
restrictions or assumptions on the order in which messages are received,
nor are there any restrictions on the order in which processors take steps,
except that each none-faulty processor takes an infinite number of steps
during any infinite run. In addition, every message sent from a non-faulty
processor to another non-faulty processor will eventually be received.

Section 2 describes the solution for the global identical CS problem. The
two algorithms for the transient identical CS problem arc presented in
Section 3. The solution for the distinct CS problem is given in Section 4.

2. TuE GLOBAL IDENTICAL CS PROBLEM

This section presents a simple algorithm named GICS for the
global identical CS problem with M =+ 1. The result matches the lower
bound of Proposition 1.1. The algorithm requires every processor to
attempt entering the critical section infinitely often, in order to guarantee
non-starvation.

The main idea of our algorithm is that upon leaving the CS, a processor
sends a one-bit message notifying the others. Each processor p maintains a
vector C, of counters. The gth entry of this vector, C,(g), accumulates the
number of notifications received by p from cvery other processor g. The
following simple fact makes these estimates useful by relating them to
the actual number of times (denoted by #g¢) each processor ¢ entered the
critical section.

Facr 2.1. For every two processors p, ¢, at any time,
1. Cq)<# =g, and
2. Cyp)=#p.

In every counter vector, C,, the processors g are ordered dynamically by
the pairs {(C,{(g), ¢>. Note that this is a logical ordering, not a physical
one. We refer to it as the local ordering of p. The local rank of a processor

FAULT-TOLERANT CRITICAL SECTIONS 7

g in a vector C, (in this local ordering) is denoted by R,(¢q). Also, the
global rank of a processor g in the global ordering of the pairs (#gq, g) is
denoted by R, (q).

COROLLARY 2.1. For every processor p, at any time, R,(p)= R ,(p).

Proof. Suppose that R ,(p)=i. This means that there are exactly i— 1
other porcessors g such that {#gq, ¢> <<{#p, py. By Fact 2.1, for each
such processor g,

CCp(q), g0 << #q, 9> <{#p,p)=LC,(p) P
This completes the proof since then necessarily R,(p)=>i. |

These relationships imply that the local estimates made by a processor
p about its global rank are conservative, in the sense that it always
ranks itself no lower than its real place. Thus if the estimates
maintained by p indicate that its rank is 7+ 1 or less, then it can safely
enter the critical section.

Let us now give a formal description of the algorithm.

ALGorITHM GICS. /* For a processor p */

1. /* Initialization */
Create a vector C, of length n. Set each entry to 0.
2. /* An attempt to enter the CS */
(a) If you receive a message “1” from ¢, then C,(g) « C,(g)+ L.
(b) If R,(p)<t+1 then goto 3.
3. /* Entering the critical section */
(a) Enter the critical section.
(b) Upon leaving the CS:
send “1” to everyone; C,(p) <+ C,(p)+1; and goto 2.

In order to prove the correctness of the algorithm we need to show that
the algorithm guarantees exclusion, non-starvation, and fairness.

Lemma 2.1 (Exclusion). In every run of algorithm GICS, at most t+ 1
processors are in the critical section at any given time.

Proof. Assume to the contrary that 7 + 2 or more processors are present
in the critical section at a certain time, in some run of the algorithm. Let
p be the processor with the largest global rank R,(p) among these
processors at that time. Necessarily R.(p)=t+2. It follows from
Corollary 2.1 that also R,(p)> ¢+ 2. Hence p should not have entered the
critical section; a contradiction. |

3 BAR-NOY ET AL.

LemMa 2.2 (Non-starvation). In every run of algorithm GICS every
non-faulty processor enters the critical section an infinite number of times.

Proof. Assume, seeking to establish a contradiction, that starvation has
occurred in some run of the algorithm and let p be the processor with the
minimal global rank R, (p) among the starved processors. Eventually, for
every non-starved non-faulty processor g, #g> # p, because every non-
starved non-faulty processor uses the critical section infinitely often. At
some later time the appropriate notifications reach p and are reflected in
C,, ie., C,(q)> C,(p) for every non-starved non-faulty processor g. There
are at most ¢ faulty processors whose messages may not reach p from some
point on. Therefore the local rank of p, R,(p), eventually becomes 7+ 1 or
smaller, and p should enter the CS; a contradiction. §

LemMA 2.3 (Fairness). In any run of algorithm GICS, if a processor p
enters the critical section, then its global rank satisfies R, (p)<t+ 1.

Proof. 1If p enters the CS then its local rank satisfies R,(p)<t+1. By
Coroliary 2.1 this is true also globally (ie., R, (p)<z+1). |

Theorem 2.1 follows from Lemmas 2.1, 2.2, and 2.3.

THEOREM 2.1. Algorithm GICS solves the global identical CS problem
with t+ 1 slots.

Note that if M =2¢+ 1, this algorithm is correct even when the faulty
processors are malicious, as long as a non-faulty processor can always
identify the immediate sender of any message it receives:

Though this algorithm achieves our definition of fairness, it is only weak
fairness, as it does not ensure that processors enter the critical section in
the right order. Under this definition, a processor can wait arbitrary long
(though finite) amount of time, while processors with lower priority enter
the critical section. A slightly stronger notion of fairness requires that if a
non-faulty processor p enters the CS, then every processor g with higher
priority than p enters the CS when it receives all the messages in transit for
it. Note, that under this definition there might be also some time in which
the fairness is not perfect. It is possible that a processor enters the CS
before some other with higher priority, but this is unavoidable in a com-
pletely asynchronous system. The GICS algorithm can easily be extended
to achieve this notion of fairness, using simple message forwarding. This
extension is only valid in a fail-stop fault model.

FAULT-TOLERANT CRITICAL SECTIONS 9

3. THE TRANSIENT IDENTICAL CS PROBLEM

3.1, The M=1t+1 Algorithm

Algorithm GICS, presented in the previous section, has two main draw-
backs. First, it requires every processor to try to enter the critical section
infinitely often, in order to guarantee non-starvation. Second, each pro-
cessor has to handle every message it receives. The correctness of the
algorithm depends heavily on a processor’s updating its data structure
upon receiving every message. Without this update it cannot reflect
the state of other processors. Algorithm TICS, described below, solves
the CS problem with the transient fairness property and does not have
these drawbacks.

In algorithm TICS, processors that do not want to access the CS are
asked only to reply by sending some acknowledge message, and do not
need to maintain any information about other processors. The algorithm
requires ¢+ 1 slots. Whenever a processor intends to use the CS, it registers
itself by sending an appropriate message to every processor. Only pro-
cessors that at present want to use the CS need to keep track of how many
times each processor has visited the CS. Every other processor stores only
the number of times it has previously visited the CS.

In the previous algorithm GICS, whenever a processor finds itself ranked
t+ 1 or less in the global ordering of the pairs {#gq, ¢), it may safely enter
the critical section. The transient rule for fairness does not allow us to use
such a simple criterion. A processor needs to inform others that it intends
to access the CS. Similarly, before entering the CS, it has to make sure that
no processor of higher priority has changed its state. Thus, the process of
entering the CS is composed of two rounds of acknowledgment collection.
This process is best described by identifying special states through wich the
processor has to go. Each processor is initially in PASSIVE state. A
processor p that wishes to enter the CS first changes its state into
REGISTERING and sends announcements informing all other processors
of its wish. It then has to await acknowledgements for its announcement.
These acknowledgments enable p to collect information regardig other
processors’ states. It switches into the state TRYING when it finds itseif
ranked 7+ 1 or less among the processors that want to enter the CS,
Upon entering state TRYING, p has to start a second round of sending
announcements and awaiting acknowledgements. If, while collecting these
acknowledgements, p learns of any higher priority processor that changed
its state, it has to return to state REGISTERING and go through the
entire process once again. The delicate part of the algorithm is to guarantee
the Exclusion Property.

Let us now give a slightly more formal definition of the various states

10 BAR-NOY ET AL.

and messages used in the algorithm. Every processor can be in one of four
states:

» PASSIVE (not interested at the moment}—encoded by 3.
» REGISTERING (to enter the CS)—encoded by 2.

o TRYING (to enter the CS)}—encoded by 1.

o ACCESSING (at present in the CS)}—encoded by 0.

There are two types of messages sent by processors. Announcement
messages of the form “{S, ¢),” where S is the current state of the sender
and ¢ is its counter, or acknowledgment messages of the form
“(8, ¢, S, ¢’ as a reply to an announcement message “{S’, ¢'>,” where
S and c¢ are defined as above.

Duuring any run of the algorithm processors may send the same announ-
cement message more than once. Therefore, they need to be able to
associate each acknowledgment with the appropriate announcement in
order to recognize when an acknowledgment to the current announcement
is received. This can be achieved by cither adding a counter to messages,
or assuming FIFO on the lines and counting the acknowledgments
received. It can also be solved by transmitting an announcement only after
the acknowledgment to the previous announcement is received. Applying
the last method to the algorithm does not require storing all outstanding
announcements; it is sufficient to remember the last one. Throughout the
algorithm we assume that one of these methods is applied. Hence, a pro-
cessor eventually receives an acknowledgment to its last announcement
from any non-faulty processor.

While a processor p attempts to enter the CS, it maintains three vectors,
K,, §, and C,, each of length n, containing information about the other
processors. The vector CD, is as in the previous section. The gth
entry indicates whether g has acknowledged knowing that p is in a
REGISTERING or TRYING state (encoded by K,(g)=1), or such
an acknowledgement has not arrived p yet (encoded by K,(g)=0).
Throughout the run of the algorithm, each processor maintains information
about itself (even when it is in state PASSIVE). The initial values are
K, (py=1,S8,(p)=3, C,(p)=0. Thus, every processor starts in a PASSIVE
state with a zero counter.

Denote by DB, the database that processor p holds, i.e., the above three
vectors. In every database DB, the processors g are ordered dynamically
by the quadruples

(K Aq), S,(q), Cplq), -

The rank of a processor g in a database DB, (in this ordering) is denoted
by R,(q).

FAULT-TOLERANT CRITICAL SECTIONS 11

Each processor is instructed by the algorithm to respond to certain

messages arriving while it is in certain states, but is allowed to ignore these
messages while being in other states. Consequently, the description of the
algorithm prefixes each instruction by the states in which that instruction
is applicable. :

AvrcoritaMm TICS /* For a processor p */

/* Initialization */

Create vectors K,, S, and C, of length n. K (p)<1; S,(p)«3;

C,(p)<0.

In every state:

/* acknowledgements and book-keeping */

if you receive “<s, ¢>,” from g then

(a) Send “(s, ¢, S,(p), C,(p))>” to ¢q.
if not in state PASSIVE and ¢ = C,(g) (not an old message) then
Colg) < ¢ S,{g) « .

In state PASSIVE:

if you want to enter the CS then

(a) Change your state to REGISTERING (S,(p) < 2).

(b) Send “{S,(p), C,(p))” to every processor.

(¢) For every processor ¢ initialize the vectors:

In state REGISTERING:

(a) If you receive “{s, ¢, s', ¢'>” from ¢ such that s=S,(p) and
c=C,(p), then K (q) « 1; C,(g)=¢"; S,(q)=s"

(b) If R,(p)<t+1 then

i. Change your state to TRYING (S,(p) < 1).

ii. For every g, K, (g}« 0.

iii. Send “{S,(p), C,(p))>” to every processor.

In state TRYING: :
(a) If you receive “(s, ¢, 8, ¢’)” from ¢ such that s=S§,(p) and
c=C,(p), then K,(q) « 1; Cp(q) < ¢’; Sp{g) « 5"
(b) If an announcement message was received from some g such that
<Cp(q)a QI> < <Cp(p)9 p>’ then
i. Change your state to REGISTERING (S,{p) < 2).
ii. For every ¢, K,(q) 0.
iii. Send “{S,(p), C,(p)>” to every processor.
(). HR(p)<t+1then
i. Change your state to ACCESSING (S,(p)« 0).
ii. enter the CS.
In state ACCESSING:
upon leaving the CS:

12 BAR-NOY ET AL.

(a) Change your state to PASSIVE (S,(p) < 3).
(b) C,(p) = Cp(p)+ 1.
(c) Send “{S,(p), C,{p))” to every processor.

LemMma 3.1 (Exclusion). Ir every run of algorithm TICS at most t+1
processors are in the critical section at any given time.

Proof. Assume to the contrary that there is a set Z of 7+ 2 processors
in the critical section at a certain time in some run. Let p be the last
processor from this set that changed its state from REGISTERING to
TRYING before accessing the critical section. Since p accessed the critical
section, there must be a processor ¢ in the set Z such that according to the
data in p’s vectors just before switching from TRYING to ACCESSING

CKL(p), S,(p), Co(p), 0> <LK, (@), S{q), C,(q), 7.

As K,(p)=1 we conclude that K,(g)=1 and S,(q)>S,(p)=1. On the
other hand, S,(g) was extracted by p from an acknowledgement sent by g.
This acknowledgment was sent in response to an announcement sent by p
after switching into state TRYING (in Step 4(b}). Since p was the last to
change its state into TRYING, it foliows that g was already TRYING or
ACCESSING, ie., S,(q)<1. Thus, necessarily S,(¢)=S,(p)=1. Hence it
should be the case that {C,(p), p> <<{C,(q),g). But then if ¢ had
received p’s announcement while being in state TRYING, the algorithm
instructs ¢ (in Step 5(b)) to change its state back to REGISTERING and
retry. Thus if g is in the CS now, it must have switched back into TRYING
after p had already done so, contradicting the assumption that p was the
last to switch from REGISTERING to TRYING. E

Lemma 3.2 (Non-Starvation). In every run of algorithm TICS every
non-faulty processor that wants to enter the critical section eventually
succeeds.

Proof. Assume to the contrary that starvation has occurred in some run
of the algorithm. Let p be the non-faulty processor with the smallest pair
{#p, p> among the starved processors. Eventually, for every non-faulty
processor g, {C,(q), > will be greater than {C,(p), p>. When this hap-
pens, p will no longer return from state TRYING to state REGISTERING,
and therefore will access the CS after all the non-faulty processors acknow-
ledge its trying announcement; a contradiction.

Lemma 3.3 (Fairness). In every run of algorithm TICS, if a non-faulty
processor p enters the CS, then at the time p enters the critical section, there

FAULT-TOLERANT CRITICAL SECTIONS 13

is a slot available for every processor with higher priority that wants to use
the critical section.

Proof. If {#q,q><<{#p, p)> and q wants to enter the CS and p
knows that, then by definition ¢ has higher priority than p. If
S,(g)<S,{p), then g appears before p in p’s database, and p takes ¢ into
account (and leaves it a slot} when it decides to enter the CS. If
S,(q) > S,{(p), then since ¢ is not in state PASSIVE, necessarily p’s state is
TRYING. But then when p gets ¢’s announcement, it will return to state
REGISTERING (Step 5(b)), which reduces to the first case. §

Theorem 3.1 follows from Lemma 3.1, 3.2, and 3.3.

THEOREM 3.1. Algorithm TICS solves the transient identical CS problem
with t + 1 slots. }§

3.2. The M=2t+1 Algorithm

In algorithm TICS, state TRYING is necessary because the CS has only
t+1 slots. In the case where M =27+ 1, one can implement the transient
rule for fairness without state TRYING, ie., with only one round of
announcements and acknowledgements. The necessary modifications
involve canceling Steps 4(b)(ii), 4(b)(iii); and S of the algorithm; in Step
4(b)(i), instead of entering state TRYING, the processor directly switches
into state ACCESSING. We refer to this modified algorithm as algorithm
TICS-1.

In order to prove that algorithm TICS-1 is correct, it suffices to prove
the exclusion property. The proofs for the non-starvation and fairness
properties remain as for algorithm TICS.

Lemma 3.4 (Exclusion). In every run of algorithm TICS-1 at most 2t + 1
processors are in the critical section at the same time. ‘

Proof. Assume to the contrary that there are 2¢+ 2 processors in the
critical section at a certain time in some run. Construct the following
directed graph over the set of the processors that are at the critical
section. The directed arc (p,g> 1is in the graph if in p’s database
CKLP), S(p), Colp)s 0 < {K,(q), S,(q), Cplg)s g>. 1t is impossible that
in this graph the arcs {p, ¢> and (g, p)> occur together (but it might be
that there is no arc between p and g). ’ ‘ '

Each procesor draws at least ¢+ 1 outgoing arcs from itself, otherwise it
cannot enter the CS. Therefore, there exists at least one processor with
indegree at least 14 1 which should prevent it from entering the CS; a
contradiction. '

Theorem 3.2 follows from Lemmas 3.4, 3.2 and 3.3.

14 BAR-NOY ET AL.

THEOREM 3.2. Algorithm TICS-1 solves the identical CS problem with
2t+1 slots. |

When M =37+1, Algorithm TICS-1 is correct even when faulty
processors are malicious, as long as a non-faulty processor can identify the
immediate sender of any message it receives. Algorithm TICS cannot over-
come Byzantine faults, because a faulty processor can force a non-faulty
processor to continually retry entering the CS without success (i.e.,
switching between the states TRYING and REGISTERING).

4. THE DistTincT CS PROBLEM

In this section we present an algorithm named DCS for the distinct CS
problem using M =2+ 1 slots. Following Proposition 1.2 we assume that
n>2t+ 1. The set of slots is denoted by S= {1, .., 2t + 1 }. Throughout the
execution of the algorithm each processor p maintains three vectors X, J,,
and C,, each of » entries, containing information about the system’s status.
The processors dynamically update their vectors by exchanging them with
all the others. Specifically, the information kept by p is the following:

1. X,(g)—a slot suggested by ¢.
2. J,(g)—a running counter of suggestions.

3. C,(q)—the number of times processor ¢ has previously used the
CS, according to p’s knowledge.

Initially, the vectors held by p are set to the appropriate null values.
Denote by DB, the dat:’ _se that processor p holds, ie., the above three
vectors. In addition, p maintains a collection U, of n databases, such that
U,(q) is the last database that p has received from ¢, and U,(p) is p’s
current database.

In every database DB, the processors g are ordered dynamically by the
pairs {C,(g), ¢>. The rank of a processor ¢ in a database DB, (in this
ordering) is denoted by R,(g). The set left,(g) contains all processors
in DB, with rank less than or equal to that of ¢ (ie., left,(¢)=

{2’ |R(q)<R,(q)})

DEFINITION 4.1. Suppose p holds the database DB,. The database DB
is a supporting database for DB, if it contains identical information about
all the processors in left,(p).

Since ¢ processors might be faulty, a processor cannot expect to get
messages from more than n—t—1 other processors. Thus, after receiving
n—t—1 supporting versions of its database from other processors, it is

iy

S

FAULT-TOLERANT CRITICAL SECTIONS 15

useless to wait for more information (which might never arrive), and the
processor should take some action. This observation leads us to define the
notion of a left-stable database.

DEFINITION 4.2. A database DB, is left-stable with respect to p in a
given run of the algorithm if p has n — ¢ supporting databases in its collec-
tion of databases, U,. The database DB is left-stable if it is left-stable w.r.t.
sOme Processor p.

The process of selecting a slot and entering the CS can be sketched as
follows. A processor p is required to exchange information with other pro-
cessors until it reaches a left-stable database DB,, and then to suggest a
slot based on this stable information. Again, p exchanges information with
other processors until it reaches a left-stable database. Now p has to review
its suggestion by checking whether it currently collides with suggestions
made by other processors. If there are no collisions, the processor p decides
on its slot and proceeds to enter the critical section. Otherwise, it has to
suggest a new slot and repeat the whole process.

The general strategy of algorithm DCS is thus somewhat similar to that
of the renaming algorithm of [ABDKPR], and selecting a slot is
analogous to deciding a new name. A major difference between the two
problems is that in the renaming problem, the entire process is done only
once, and processors do not change their names once they decide on them.
This simplifies the solution by allowing stabilization on the entire database.
The need to repeatedly recompute stable databases while processors change
their priorities every -once in a while is responsible for the additional com-
plication of having to consider only the “lower” part of the database.

We need a certain partial ordering on databases. This ordering reflects
the accumulation of knowledge by the processors. Intuitively, DB, > DB,
means that DB, is more updated than DB,. The ordering is defined as
follows. ‘

DrriniTioN 4.3, The information about processor r is more updated in
DB, than in DB, denoted by DB, >, DB, if '

LCUAr) T 1)) 2 LCylr), T,(r)).

In order to suggest a new slot, p should know all the slots that are
suggested and that appear in any of these supporting databases. We define
free(DB) for any database DB as the list of the slots that do not appear as
suggestions in its slot-suggestions vector X, and free(p, U,) as the list of the
slots that appear in free(DB,) in every supporting database DB, that
appears in the collection U,.

16 BAR-NOY ET AL.

ArLGoriTHM DCS /* For a processor p. */
1. /* Initialization */
Construct an initial DB, and U,. Set all entries to 0.
2. /* A new attempt to enter the CS */
(a) Send DB, to every other processor.
(b) U,(p)« DB,
3. Wait until you receive a message DB, from some processor g.
(a) /* test if DB, is more updated */
i. U,q)« DB,.
il. For every processor r such that DB, >, DB,:
update C,(r) « C,(r); J,(r) « J,(r); X,(r) < X, (7).
ii. U,(p)« DB,.
iv. If DB, has been modified, send it to every other processor.
(b) /* p tests if it has more support */
If the number of supporting databases in U, is n—1,
then goto 4 else goto 3.
4. /* DB, is a left-stable database */
If a slot X,(p), has previously been suggested, and this slot is different
from any suggested slot X (r) for any r and any ¢ such that DB,e U,
is a supporting database for DB, then goto 5, else goto 6.
5. /* Entering the critical section */
(a) Enter slot number X,(p) of the critical section.
{b) Upon releasing this slot and leaving the CS:
X,(p)«0; Cy(p) < Cp(p)+1; J,(p) < 0; and goto 2.
6. /* otherwise, needs to suggest a new slot */
(a) If R,(p)>min{zr+1, |free(p, U,)|} /* no suggestion possible */
then: X ,(p) < 0; and goto 2.
(b) X,(p)« the R,(p)th slot in free(p, U,).
(c) J(p)<Jp)+1
(d)y Goto 2.

As in Section 2, in order to prove the correctness of the algorithm we
need to show that distinction, non-starvation, and fairness properties are
preserved.

Lemma 4.1 (Distinction). At most one processor is in slot number i at
any given time.

Proof. Assume to the contrary that there exists a time 7 such that pro-
cessors p and ¢ are in the same slot in the CS. The algorithm implies that
X,(p)=X_(q), where X, (respectively, X) is the vector of slots suggestions
held by p (respectively, g) when deciding to enter the critical section. Let
U, and U, be the sets of databases they respectively maintained when
they decided to enter the CS. The assumption n>2¢ implies that

FAULT-TOLERANT CRITICAL SECTIONS 17

(n— 1)+ (n—t)> n. Therefore, there exists a processor r such that U,(r) is
in the set of the n— supporting databases of p and U,(r) is in the set of
the n— ¢ supporting databases of ¢. Let T, and T, be the times at which
rsent U,(r) and U (r), respectively. Without loss of generality assume that
T,<T,<T. Processor p did not change its suggestion X,(p) between time
T, and T (otherwise, U,(r) ‘would not be counted as a supporting
database). Therefore, X,(p) appears in U,(r) by time T, and on. The
definition of T, implics that X,(p) appears as the suggested slot of p
in U,(r) and, hence, X (¢) could not have passed the test in step 4 of the
algorithm; a contradiction. | » :

LemMma 4.2 (Non-starvation). Every non-faulty processor enters the
critical section an infinite number of times.

Proof. We prove the claim by assuming the opposite and deriving a
contradiction. Given an infinite run, we classify the processors of P as
follows. Let P, be the set of non-faulty processors that access the critical
section infinitely often. Let P, be the set of non-faulty processors p that
enter the critical section only a finite number of times during the run (ie.,
reach a final value #p), but get infinitely many left-stable vectors
afterwards. Together, these two sets form the collection of active pro-
cessors, P,=P,u P,. Further, let P, be the set of non-faulty processors p
that reach a final value of # p and obtain only a finite number of left-stable
vectors during the run. Let P, denote the set of processors that become
faulty during the run. These two sets form the collection of passive
processors, P,=P,u P,. See Fig. 1.

P, P,

passive processors ‘ aclive processors

P Py P, P

faulty processors final #p and access the CS final #p and
finite left-stable | infinitely often | infinite left-stable

vectors vectors

FiG. 1. The partition of processors.

18 BAR-NOY ET AL.

The contradiction assumption assumes the existence of a run in which
P, U P,# . From some point on, all the databases DB, held by the pro-
cessors satisfy the following properties:

1. All processors g in P, have reached their final C,(q) value,
obtained their last left-stable database and made a suggestion based on it
(hence their entries to not change afterwards).

2. All processors ¢ in P, have reached their final C,(q) value.

3. For every processor ge P,, C,(q) is larger than any of the final
C.(r) values of the processors r in P, U P,.

Hereafter we refer to every database with these properties as a limit
database. Note that for all limit databases DB,, the rank R,(q) of any
processor ge P,u P, is fixed. We refer to these ranks as limit ranks. In
particular, let p, be the processor whose limit rank R, is the smallest
in PyuP,. For any limit database DB, of a non-faulty processor, the
subdatabase left,(p,) (all processors in DB, with rank less than or equal
to that of pg) is fixed and contains p, and possibly some processors from
P,. Since |P,| <t it follows that Ry <+ 1.

CLam 4.1. pyeP,.

Proof. Assume to the contrary that p, e P,. Consider the point of time
by which all databases held by the processors are limit databases. In all
these databases, only processors from P, might appear to the left of p,, and
the information on these processors does not change. Therefore, at some
later point p, will obtain a left-stable database again; a contradiction. |

Let Y, denote the set of final slots suggested by the passive processors
in P,, and let Y,=S—Y,. Intuitively, Y, is the set of slots into which the
active processors of P, continuously attempt to enter. .~

CLamm 42. Y, = R,.

Proof. Assume |Y,|<Ry<t+1. Since |P/[<t and |S|=2¢+1, some
slots must be suggested by some processors of P,. Let pe P, be the pro-
cessor with the smallest limit rank among those processors in P, whose
final state includes a suggestion X,(p)#0. Since in all limit vectors the
rank of every active processor in P, is at least R, according to step 6(a)
no suggestions will be made and eventually all these processors will set
their suggestions to 0 and never change it. Therefore sometime later p will
obtain yet another stable vector; a contradiction. J

Assume that Y, is ordered, and let Y, = {y,, y,,..}. For every limit

FAULT-TOLERANT CRITICAL SECTIONS 19

database DB and for every slot yefree(DB), denote by f(y) its index in
free(DB). Clearly f(y,) <L

There is a time after which every suggestion made by processors in P, is
based on a limit database. Hence, there is a later time at which p, holds
a left-stable database DB, in which every suggested slot was suggested
based on a limit database.

CLaM 4.3. In every left-stable database DB obtained by p, after DB,
either y g €free(DB) or y is suggested only by p,.

Proof. Assume to the contrary that y. appears in DB as a slot
suggested by some g€ P,, ¢ # po. Then g suggested y g, according to some
left-stable limit database DB,. But then f(yg)<R, in free(DB,), so ¢
could not have suggested it, as its rank in DB is strictly larger than Ry. |l

Therefore, upon seeing DB, , p, either decides immediately on yg, and
enters this slot (in case y., appears as its suggested slot in DB,) or it
suggests y, now and decides it upon obtaining the next left-stable vector.

1t follows that p, does enter the critical section once again, contradicting
the assumption that p, has reached its final value of # p,. This completes
the proof of Lemma 4.2. §

LemMa 4.3 (Fairness). If a processor p enters the critical section then. its
global rank satisfies R ,{p)<t+ 1.

Proof. The same as the proof of Lemma 2.3. |
Theorem 4.1 follows from Lemmas 4.1, 4.2 and 4.3.

THEOREM 4.1. Algorithm DCS solves the distinct CS problem with 2t + 1
slots. 1 ,

We do not have any lower bound for the number of slots needed for the
distinct CS problem. The difficulties in constructing a better upper bound
arise from the fact that processors cannot distinguish between slow
processors and faulty processors. It seems that a processor must leave ¢
slots for the faulty processors, in case they have higher priorities, and ¢
slots for slow processors that might have higher priorities.

RECEIVED December 12, 1988; FINAL MANUSCRIPT RECEIVED March 1, 1990

REFERENCES

[ABDKPR] H. AtTiYA, A. BAR-NoOY, D. DoLEV, D. KOLLER, D. PELEG, AND R. REISCHUK,
Achievable cases in an asynchronous environment, J. Assoc. Comput. Mach., to
appear.

20

[BMZ]

[(BW]

[DDS]

[DGS]

[DLPSW]

[FLBB]

[FLP]

[K1]
[PS]
[R]

[Ru]

BAR-NOY ET AL.

O. BIrAN, S. MORAN, AND S. ZAKs (1988), A combinatorial characterization of
the distributed tasks whcih are solvable in the presence of one faulty processor,
in “Proc. 7th ACM Symp. of Principles of Dist. Computing,” pp. 263-273.

M. F. BRIDGLAND AND R. J. WATRO (1987), Fault-tolerant decision making in
totally asynchronous distributed systems, in “Proc. 6th ACM Symp. of
Principles of Dist. Computing,” pp. 52-63.

D. DoLev, C. DworRk, aND L. STOCKMEYER (1987), On the minimal
synchronism needed for distributed consensus, J. Assoc. Comput. Mach. 34,
77-97.

D. Doiev, E. GarnNi, aAND N. SHaviT (1988), Toward a non-atomic era:
L-exclusion as a test case, in “Proc. 19th ACM SIGACT Symposium on Theory
of Computing,” pp. 78-92.

D. Dowgv, N. A. LyncH, S. PINTER, E. STARK, anD W. E. WEHL (1986),
Reaching approximate agreement in the presence of faults, J. Assoc. Comput.
Mach. 33, 499-516.

M. J. Fiscuer, N. A. LyncH, J. E. Burns, AND A. BoRODIN (1979), Resource
allocation with immunity to limited process failure, in “Proc. 20th Symp. on
Foundations of Comp. Science,” pp. 234-254.

M. J. Fiscuer, N. A. LyncH, M. S. PATERSON (1985), Impossibility of
distributed consensus with one faulty processor, J. Assoc. Comput. Mach. 32,
374-382.

D. KoLLER (1986), “Token Survival: Resilient Token Algorithms,” M.Sc. Thesis,
Hebrew University.

J. L. PETERSON AND A. SILBERSCHATZ (1985), “Operating Systems Concepts,”
2nd. ed., Chaps. 8, 9, 13, Addison-Wesley, Reading, MA.

M. RAYNAL (1986), “Algorithms for Mutual Exclusion,” North Oxford
Academic Publishers.

L. S. RuboLpH (1981), “Software Structures for Ultra Parallel Computing,”
Ph.D. dissertation, Courant Institute, New York University, 1981.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20

