Perfectly Secure Message Transmission

Danny Dolev*

Abstract

We study the problem of perfectly secure communi-
cation in a general network in which processors and
communication lines may be faulty. Lower bounds
are obtained on the connectivity required for success-
ful secure communication. Efficient algorithms are
obtained that operate with this connectivity and rely
on no complexity theoretic assumptions. These are
the first algorithms for secure communication in a
general network to simultaneously achieve the three
goals of perfect secrecy, perfect resiliency, and worst
case time linear in the diameter of the network.

1 Introduction

Recent advances in fiber optics make realizable the
construction of networks with immense bandwidth.
As more and more personal and business communi-
cation will take place over these systems, issues of
correctness and privacy become increasingly impor-
tant. In this paper, we solve the problem of per-
fectly secure message transmission in communication
networks, without complexity theoretic assumptions
and with perfect correctness, for processor and edge
faults alike. Our approach is to abstract away the
network entirely and concentrate on solving the Se-
cret Message Transmission problem for a single pair of
processors we call Sender and Receiver. In the Secret
Message Transmission (SMT) problem two synchro-
nized nonfaulty processors, Sender and Receiver, are
connected by some number n of wires. We may think
of these wires as a collection of vertex-disjoint paths
between Sender and Receiver in the underlying net-
work; each path corresponds to a wire. The Sender

*IBM Almaden Research Center

tIBM Almaden Research Center

tStanford University; Supported in part by contract ONR
N00014-88-K-0166.

SIBM T.J. Watson Research Center

36
CH2925-6/90/0000/0036$01.00 © 1990 IEEE

Cynthia Dwork!

Orli Waarts? Moti Yung®

has a secret message m, drawn from a finite set @
of values. There are two parameters, o (for secrecy)
and p (for resiliency). The problem is for the Sender
to convey m to the Receiver while satisfying:

Perfect Secrecy: For all sets L of at most o
wires, no listening adversary AL, listening to all
the wires of L, learns anything about m (secrecy
must be information theoretic).

Perfect Resiliency: For all sets D of at most p
wires (possibly, but not necessarily, disjoint from
L), Receiver correctly learns m, regardless of the
disrupting adversary Ap controlling and coordi-
nating the behavior of the wires in D.

Since each wire corresponds to a path in the under-
lying network, a compromised wire in Secret Mes-
sage Transmission corresponds to a compromised pro-
cessor or edge on the corresponding network path.
Thus, connectivity bounds for SMT yield connectiv-
ity bounds in the network as a function of the number
of faulty nodes or edges to be tolerated.

Qur protocol for secure transmission in general net-
works is the first to simultaneously achieve the three
goals of perfect secrecy, perfect resiliency, and worst
case time linear in the diameter of the network (the
constant is at most 3). This contrasts with the sim-
ilarly fast protocol of Rabin and Ben-Or, based on
the idea of “check vectors,” which has unconditional
gecrecy but has small probability of error [12]. Ben-
Or, Goldwasser, and Wigderson showed that every
function of p inputs can be efficiently computed by a
complete network of p processors even in the presence
of t < p/3 Byzantine faults so that no set of ¢ faulty
processors gets any information other than the func-
tion value [1]. Using our protocol for secret message
transmission we can immediately extend these results
to any p processor network of connectivity 2t + 1, at
no cost in secrecy or correctness. The analogous re-
sult obtained by Rabin and Ben-Or in [12] for general
networks suffers a small probability of error. In this

low probability case, because the entire computation
can go awry, the privacy of correct processors is not
guaranteed, even though messages sent between cor-
rect processors enjoy perfect secrecy. Our solution
does not suffer from this weakness, and pays no price
in time.

The bounds on connectivity needed for (o, p)-SMT
vary according to whether or not the solution must be
1-way, in that information flows only from Sender to
Receiver, or 2-way, where Sender and Receiver “con-
verse.” The bounds are also strongly affected by the
extent to which Ap can communicate to Ay its view
of the communication on the wires in D. One possibil-
ity is that the two adversaries share a “back channel”
allowing them explicitly to communicate. A more in-
teresting case is when there is no such channel. Here
Ap can communicate information to Ay if the sets
D and L intersect (by placing messages on the shared
wires). More subtly, even if the two sets are disjoint,
Ap may be able to transmit information to AL by
disrupting the protocol so as to elicit certain behav-
ior on the part of Sender or Receiver that AL can
recognize. One situation in which Ap clearly cannot
communicate useful information to Af is, informally,
when it disrupts obliviously, independent of the infor-
mation on the wires in D. As an example, we propose
the relatively weak fault model in which communica-
tion is disrupted only by random noise.

The case in which Ap and Aj are constrained
so that D C L or L C D is an important one,
and in this case we say the containment assump-
tion holds. In this case there is effectively one ad-
versary. This is the worst-case assumption made in
previous papers treating secrecy and resiliency simul-
taneously [1, 2, 3, 8, 12]. Generally, we assume ¢ > p
and derive our bounds for this case. Our lower and
upper bounds match under the containment assump-
tion; moreover, under containment, if o > p then the
bounds are independent of the extent of communica-
tion between the adversaries. Under the containment
assumption, there is a solution to the 1-way Secret
Message Transmission problem if and only if n, the
number of wires connecting Sender and Receiver, sat-
isfies n > o +2p + 1. The solution requires computa-
tion and message length polynomial in n. However, if
communication is 2-way, in that Sender and Receiver
converse, then n > max{c + p + 1,2p+ 1} wires are
necessary and sufficient (the latter term arises even
in the case o = 0, that is, we require correctness but
no secrecy). A phase is a send from Sender to Re-
ceiver or vice versa. Surprisingly, the 2-way protocol
requires only three phases.

For this value of n we have even obtained a 2-phase
protocol (beginning with a transmission from Re-

37

ceiver to Sender), but, unlike our 1-phase and 3-phase
golutions, the computation and communication costs
of the two-phase solution are not polynomial in n.
Our 3-phase solution uses two new techniques. The
first is a simple fault detection technique. The second
is a method of parallelizing our first technique, per-
mitting us to collapse loop iterations in a ©(p)-phase
algorithm to obtain the 3-phase algorithm. Both of
these have already been applied to variants of secret
sharing [4].

If the two adversaries can communicate explicitly
during the execution of the protocol, say, through
some auxiliary “back channel,” but the containment
assumption does not hold, then the (lower and upper)
bounds on n increase by exactly p for both the 1-way
and 2-way cases. This is because when Ap can com-
municate with Ag it is as if there are o + p listeners,
of which at most p are disruptors. This is the con-
tainment assumption with secrecy parameter o + p
and resiliency parameter p, and the bounds increase
accordingly over the case with only o listeners.

Even if the two adversaries cannot communicate
through a back channel, it may be possible for the
disrupting adversary to elicit certain behavior from
Sender or Receiver that communicates some extra in-
formation to the listening adversary. In fact, at least
an additional p — 1 wires must be added for both
the l-way and 2-way cases. These last results are
tight for the 1-way case and leave a gap of a single
wire in the 2-way case. However, we also show that
in this case any 3-phase algorithm requires exactly p
additional wires, even if the disruptors and listeners
cannot move between phases. This bound is tight,
and our algorithm permits these sets to move. All
our protocols tolerate adversaries of unlimited com-
putational power.

1-way SMT has an interesting relation to Verifi-
able Secret Sharing (VSS), a problem first defined by
Chor, Goldwasser, Micali, and Awerbuch [3]. VSS
plays a central réle in implementing a global coin [7],
as well as in the more general results of [1, 2, 12]%.
Ben-Or, Goldwasser, and Wigderson remark that se-
cure computation is impossible with 2¢ + 1 proces-
sors, even in the presence of a broadcast channel [1].
We prove that even the more fundamental task of
Verifiable Secret Sharing cannot be achieved in this

1Roughly speaking, t-VSS permits a (possibly faulty) dealer
to commit to a secret in such a way that the secret can later
be uniquely reconstructed despite the interference of up to i
faulty processors, possibly including the dealer. Moreover, if
the dealer is correct then the faulty processors cannot learn
any information about the secret until the correct processors
execute a reconstruction protocol.

model.2 Qur approach is to reduce a weakened ver-
sion of 1-way SMT to VSS so that each processor in
the VSS protocol corresponds to a wire in the SMT
protocol. We then prove a lower bound on connec-
tivity of 3t + 1 for this weakened version of SMT. In-
terestingly, our lower bound of 3t + 1 also applies to
a weak version of VSS called Unverified Secret Shar-
ing (2-USS). This is essentially VSS without Verifi-
cation. Thus, the cost of Verifiable Secret Sharing
comes from the conflicting requirements of secrecy
and reconstructability of correctly distributed secrets,
rather than from the ability to verify that the secret
was correctly dealt out.

Rabin and Lehmann showed that in a distributed
environment there exist problems with randomized
solutions but with no deterministic solution [11].
There exist error-free and small-error solutions to t-
USS requiring 3¢ + 1 and 2¢ + 1 processors, respec-
tively [1, 12]. The lower bound of 3t + 1 processors
for error-free t-USS yields a new kind of separation
result: within the class of problems admitting no de-
terministic solution, the cost of an error-free solution
may necessarily significantly exceed the cost of a so-
lution with even very small probability of error. In
a certain model it is therefore possible to separate
error-free randomized computation from randomized
computation with error.

The full paper also explores the problem of secure
communication in graphs of bounded degree. Tech-
niques of Dwork, Peleg, Pippenger, and Upfal [5)
for (nonsecret) communication in size n networks of
bounded degree can be extended to show that for sub-
stantial (as a function of n) o and p, no matter which
o nodes or edges are chosen by Az, and no matter
which p nodes or edges are chosen by Ap, there is a
large set of nodes that can communicate secretly and
correctly among themselves, even though the network
is of bounded degree.

The rest of the paper is organized as follows. Sec-
tion 2 describes our adversary models. Section 3 con-
tains the definition of the Secret Message Transmis-
sion problem. Section 4 contains our 3-phase solution
to SMT. Additional results for the containment case
appear in Section 5. Qur results about Verifiable Se-
cret Sharing and the separation result for problems
with no deterministic solution appear in Section 6.
A complete version of this paper is available as IBM
RJ 7496 (5/23/90).

2The lower bound for ¢-VSS with a broadcast channel was
obtained independently by Rabin and Ben-Or, and appears
without proofin [12]. An informal argument is also given in [2].

38

2 Adversaries

An adversary is an algorithm that takes as input
transmissions on certain wires, random bits, and the
phase number, and produces a choice of additional
wires together with either (faulty) traffic on the cho-
sen wires, in the case of the disrupting adversary Ap,
or a guess of the message being transmitted, in the
case of the listening adversary, AL. A wire tapped
or under the control of an adversary is said to be
compromised.

For our algorithms, our adversaries may be adap-
tive, in the sense that information (communication
traffic) obtained from a set of compromised wires can
affect the choice of the next wire to be compromised.
Our lower bounds hold even if the adversaries are not
adaptive.

Our algorithms have a special form: the first phase
uses a low quality “secret” channel, while all subse-
quent phases use a perfect “public” channel. With-
out going into detail here of how we implement these
different types of channels, we point out that the is-
sue of choosing wires to compromise in subsequent
phases as a function of traffic in the first phase is
moot for these algorithms. Similarly moot is the is-
sue of whether Ap even exists after the first phase,
since by definition it cannot interfere with the per-
fect public channel. Of course, Ar may use all the
information it has gleaned over the entire execution
of the protocol for making its guess as to which mes-
sage is transmitted. The lower bounds hold even for
static adversaries that choose which wires to compro-
mise before execution begins. We therefore assume
the sets D and L of disrupting and listening wires
are chosen by the end of the first phase.

In this paper, we assume in general that Ay and
Ap work together to defeat the algorithm. If the
adversaries can communicate explicitly during execu-
tion of the algorithm, say, through some “back chan-
nel,” then we simply say that Ay and Ap commu-
nicate. Here, a back channel is some channel other
than the wires connecting Sender and Receiver. In
this case, for example, the adversaries might converse
while choosing which wires to compromise. If there
is no “back channel” we say Ap and A do not com-
municate. Even in this case, some communication is
possible. For example, if the sets D and L intersect,
then Ap can convey information to A by putting
this information onto the shared wire(s) or disrupt-
ing communication on a shared wire. Even if D and
L are disjoint, the protocol may require Sender and
Receiver to send over wires in L information reflect-
ing the choice of D. This too could be meaningful to
Ar.

We also consider the special case in which Ap be-
haves obliviously, choosing D, communicating with
Ar, and disrupting communication along the wires
in D, without regard to the information placed along
these wires by Sender and Receiver. Such an adver-
sary can model the special case in which disruption is
due only to random noise. Clearly, an oblivious Ap
cannot give to Ay any information about the trans-
missions of Sender and Receiver not already avail-
able to Af. Not surprisingly, we obtain better up-
per bounds against this weaker adversary than in the
non-oblivious case.

3 Definitions

Sender and Receiver are modeled by communicat-
ing probabilstic Turing Machines that communicate
through the n wires connecting them. Randomization
is modeled by coin flipping (bounded branching).

Throughout, our messages m are drawn from a fi-
nite field Q of prime cardinality at least n, where n is
always the number of wires between Sender and Re-
ceiver in Secret Message Transmission or the number
of participants in a secret sharing protocol, whichever
is appropriate to the context. We let II denote the
underlying probability distribution on Q.

We use the notation [k] to denote the set of natural
numbers less than or equal to k. Note that 0 ¢ [k].
We let (k) = {0}U[k]. For any set S, we let S* denote
the set of j-subsets of S where 0 < j < 4.

For any alphabet X, for any vectors W,V € ",
the distance between W and V, denoted dist(W,V),
is the number of components on which the two vectors
differ.

Fix any secret message transmission protocol, P,
and let Ay be a listening adversary. Intuitively, we
require that for all messages m,m’ and for all dis-
rupting adversaries Ap, the probability distribution
on Ar’s view, given that the message transmitted is
m and the disrupting adversary is Ap, is identical to
the probability distribution on Ap’s view, given that
the message transmitted is m’ and the adversary is
still Ap. Here, the probability space is the space of
all coin tosses of A, Ap, Sender, and Receiver, and
the view, intuitively, is everything seen by Ayr.

More precisely, the View of a listening adversary
AL at any point in the execution of the protocol con-
sists of (1) the algorithms Ay and Ap, and the pro-
tocol P; (2) the random choices that Az has made so
far; (3) the “back channel” messages received up to
this point, if any (and if there is a back channel); (4)
for each wire £ in the subset of L chosen so far, conver-
sations between Sender and Receiver over £ from the

39

time the wire was compromised until this point; (5)
for each wire w in the subset of L N D chosen so far,
the changes by Ap to conversations over w from the
time w was compromised until this point. Sometimes
we combine the last two items in the view, calling the
combination the traffic over the wires in L.

None of our lower bound proofs use the assumption
that Az sees both the original data placed on wires in
LN D by Sender and Receiver, as well as the changes
Ap makes to these wires. Some proofs use the ability
of Az to detect that Ap has cut off communication
on a certain wire. However, our algorithms work
even if Ay, has access to all the traffic over the wires
in L.

For every message m € (), any pair of adver-
saries Az, Ap, and any protocol P for SMT, let
[I(AL, m, Ap, P) denote the probability distribution,
on the views of Ay at the end of the executions of P
when the message sent is m and the disrupting ad-
versary is Ap. The probability distribution is taken
over the coin tosses of Ap, AL, Sender, and Receiver.

Definition: (o, p)-Secret Message Transmis-
sion ((c,p)-SMT) The Sender begins with a mes-
sage m drawn from an arbitrary probability distribu-
tion II on Q. For every AL, Ap, compromising at
most ¢ and p wires, respectively, we require:

Secrecy: Vm' € @ fi(AL,m,Ap,P) =
(AL, m', Ap, P).

Resiliency: Receiver correctly learns m.

In particular, the secrecy requirement implies that at
any point in the execution Az has absolutely no in-
formation about which message is being transmitted.
It follows that the choice of L is independent of the
message being transmitted, as is the probability dis-
tribution on conversations over wires in L.

A solution to I-way (o, p)-SMT runs in exactly one
synchronous phase. A solution to 2-way (o, p)-SMT
is a solution to (o, p)-SMT of two or more phases. We
adopt the convention that if & = 0 then there is no
secrecy requirement, and if p = 0 then there is no re-
siliency requirement. If Ap and AL are constrained
so that D C L or L C D then we say the containment
assumption holds. Unless otherwise noted, we assume
o > p, and in this case the containment assumption
says that D C L. All our results for the containment
case are independent of the degree of communication
between Az and Ap when o > p. Under the con-
tainment assumption the secrecy condition above is
equivalent to the following condition:

Secrecy Under Containment VYm,m' € Q,
YAp, AL, VL € (n — 1)° compromised by AL,

VD € L? compromised by Ap, for all possible
traffic Ty over wires in L, the probability that
Ty, occurs, given that the message transmitted is
m and given Ap and AL, is equal to the proba-
bility that Tt occurs, given that the message is
m' and given Ap and Az. The probability space
is the set of coin tosses of Ap, AL, Sender, and
Receiver.

Note that for any fixed AL, Ap pair, the probabil-
ity that Az will compromise wire 0 is independent of
the secret message. Thus, the probability that AL
chooses any particular L not containing 0 is indepen-
dent of the message.

As described in the Introduction, we will study a
weakened form of 1-way SMT (under containment)
in which there is no secrecy requirement if Ay com-
promises wire 0. We call this weakened I-way SMT.
Specifically, we weaken the above definition to read
“Ym,m', Ap, Ar,L € (n—1)°,D € L?,if0 ¢ L, then
for all possible traffic Tz ...”

4 The Main Algorithm

In this section we present our 3-phase protocol for
2-way (0, p)-SMT. Let 7 = max{s,p}. The protocol
requires connectivity n > 7+ p + 1 under the con-
tainment assumption or in the case Ap is oblivious.
We prove in Theorem 5.2 that this is optimal. Ex-
tensions to the non-containment case appear in the
full paper. Communication and computation costs
are polynomial in ¢ and p.

We will develop the protocol in two stages, begin-
ning with a slow algorithm and modifying this to ob-
tain Algorithm FastSMT. Throughout this section we
take the field @ to be Z;, where g is a prime greater
than the connectivity n. Let T' = (1,12, . . .ts), where
t; €Q, 1 < i < n. If the points (4,%;) can be interpo-
lated by a polynomial of degree d we say simply that
T can be interpolated by a polynomial of degree d.

Since Sender and Receiver are n > 2p + 1 con-
nected, they are essentially connected by a fault-free
public channel. To send a message z over this pub-
lic channel, Sender can simply send « on every wire,
that is, z is replicated n > 2p + 1 times, and at most
p of these copies will be destroyed or modified. Thus
Receiver can simply see which message appears at
least p+ 1 times, and that is the message that Sender
sent. Similarly, Receiver can send things to Sender in
a fault-free, but public, fashion.

The slow protocol works as follows. Let m € @
be the secret message Sender wishes to send to Re-
ceiver. First, Sender chooses uniformly at random a
pad p € Q; p bears no relation to m. Sender attempts

secret transmission of p. If secret transmission of p
is successful, Sender will send Z = p+ m to Receiver
over the “public channel”. In this case Receiver com-
putes m = Z — p (all arithmetic is done in the field
Q). If secret transmission of p fails, then Sender and
Receiver will use the public channel to detect at least
one previously undetected faulty wire, and the entire
protocol is repeated but without the detected faulty
wires. During the error detection the secrecy of the
pad p is lost; however, since p was chosen indepen-
dently of m this yields no information about m.

There are two drawbacks to this general approach.
First, Sender may have to attempt to transmit up to
p+1 times. Second, the faulty wires D cannot change
between phases. Qur three phase solution overcomes
both of these drawbacks.

To obtain our error-free 3-phase algorithm we first
“strengthen” the random pad by sending, in addi-
tion to the shares of a random polynomial, some ad-
ditional “checking” information. This technique has
appeared several times in the literature in the context
of verifiable secret sharing (see, e.g., [1, 2, 6, 7, 12]).
After describing the stronger pads, we show that if
sufficiently many (pn+1) strong pads are sent then ei-
ther at least one succeeds (is understood by Receiver)
or it is possible for Receiver to choose a set of pn pads
to return to Sender such that all the faulty shares of
the one retained pad belong to wires whose faultiness
will be detected by Sender when it examines the re-
turned pads. Sender informs Receiver of the faulty
wires over the perfect public channel. Receiver re-
moves the shares of the retained pad received on the
wires identified as faulty, and the remaining shares
are interpolated.

To send a random pad to Receiver, Sender chooses
a random polynomial f(z) € Q(z) of degree 7 and
sets p = f(0). Foreach i, 1 < i < n, wecall f(i) a
principal share of the pad. Foreach 1 <i<n (recall
n =7+ p+ 1), Sender chooses an additional random
degree 7 polynomial h;(z) € Q(z) satisfying h;(0) =
f(3). Sender sends on wire i the entire polynomial
hi(-) together with a vector C;i = (c1i)C2i,. - -)Cni)
of checking pieces satisfying, for all 1 < 4,j < n,
¢ji = hj(3). (Tosend h;(-) Sender need only send the
T + 1 coefficients of h;.)

Throughout this discussion, we let h;, C; denote
the information placed by Sender on wire i, and we
let g;, D; denote the (possibly corrupted) information
received by Receiver on wire i. Consider attempted
transmission of a single strong pad. Let T be the
received information. If wire i is correct then g; = h;
and D; = C; (this just says that if wire i is correct
then what is received on wire i is the same as what is
sent on wire ¢). Thus, if i and j are both correct wires,

FastSMT(W, ,Q, private to S : m)

PHASES 1 and 2:

Sender: Send np + 1 strong pads Py, Py, ..., Py
Receiver: For 1 < i < np+1, let T; be received in the
attempted transmission of P;. Ignoring those wires
thrown out, if any T, succeeds then compute P, from
T, and publicly send “a,0K” to Sender. Otherwise,
find an 7 such that

{conflicts of T;} C Ujxi{conflicts of T;}.

Publicly send “” and all T}, j # 4, back to Sender.
PHASE 3:

Sender: If “a,0K” received over the public channel
in PHASE 2, then send Z = P, + m to Receiver
over the public channel. Else perform error detection
on all T} received from Receiver and publicly send
detected faults and Z = P; + m to Receiver, where
“i” was received from Receiver in PHASE 2.
Receiver: if “a, OK” sent to Sender in PHASE 2,
then compute m = Z — P,. Else correct the retained
T; to obtain P;; compute m = Z — P;.

End of FastSMT

Figure 1: Algorithm FastSMT

then dj; = g;(i) (because: i correct implies dj; = cji;
j correct implies g; = h;; and by construction cj; =
hi(0).

If dj; # g;(i) we say the unordered pair (3, j) is a
conflict of T. Clearly in case of a conflict (%, j) at least
one of ¢ and j is faulty.

When Sender attempts to send a strong pad to Re-
ceiver, Receiver “throws out” (ignores) all wires j car-
rying syntactically incorrect messages. In particular,
if g; is not a polynomial of degree T, then Receiver
throws out wire j.

A strong pad is said to fasl if for all wires ¢ not
thrown out, the points (i, ¢;(0)) cannot be interpo-
lated by a degree T polynomial. Otherwise it succeeds,
regardless of conflicts.

Algorithm FastSMT appears in Figure 1. The pa-
rameters are the set of wires W over which Sender
and Receiver communicate, a secrecy parameter T,
the finite field @, and the Sender’s private input m.

The following lemma is proved by a pigeonhole ar-
gument.

Lemma 4.1 If allnp+1 strong pads fail, then there
ezists an i such that

{conflicts of T;} C U{conﬂicts of Tj}.
J#i

41

For every conflict (z, y) of the retained T, (z,y) isa
conflict of some returned T}, so Receiver learns of the
faultiness of at least one of z and y. Of course, both
may be faulty. Without loss of generality, suppose the
Sender detects that x is faulty, and publicly sends this
information to the Receiver. The next Lemma says
that even if y is faulty, if Sender did not also identify
y as faulty then the principal share of the retained
pad reported by y is the correct share of that pad.

Lemma 4.2 Let P be the retained pad (P; in the al-
gorithm, but we eliminate the subscripts for ease of
discussion). For every wire y that is neither thrown
out nor detected faully by Sender, gy = hy.

Proof: Let z3,..., 2,41 be nonfaulty wires. Let y be
a wire that is not thrown out (so gy is a polynomial of
degree 7). If for some 4, 1 < i < 7+ 1, gy(%i) # dya;
(= eyz; = hy(z:) because z; is good), then (y, z:) is
a conflict of T'. In this case, by choice of T' (T; in the
protocol), (y,z:) is a conflict of some other strong
pad T' # T, so Sender detects the faultiness of at
least one of y, z;. However, z; is nonfaulty, so Sender
detects the faultiness of y. Thus, if y is not thrown
out or detected faulty by Sender, gy = hy. [

That FastSMT satisfies the resiliency condition of
(o, p)-SMT follows from the last two lemmas. Se-
crecy is argued essentially by brute force, and uses
the containment assumption (or the fact that Ap is
oblivious). We therefore have

Theorem 4.1 Let 7 = max{c,p}. Under the con-
tainment assumption, or if Ap is oblivious, there is a
three phase error free protocol for (o, p)-SMT requir-
ing connectivity T+ p+1 and communication polyno-
mial in n.

5 Tight Bounds for the Con-
tainment Case

In this section we continue to restrict attention to
the containment case. Generally, we assume o > p.
When Ap is not oblivious, if p> o > 1and L C D,
then Ap can always inform Ag of all the traffic on
the wires in D, either by communicating explicitly to
Ay through a back channel or by writing its entire
view onto one of the jointly compromised wires. The
situation is then as if there were p listening wires, all
of which could be disruptors, and the lower and upper
bounds for (p, p)-SMT apply.

All the results of this section apply without the
containment assumption provided Ap is oblivious.
The upper bounds hold because Ap cannot communi-
cate to Az any information about the conversations

on wires not in L. The lower bounds hold because
even an Ap that disrupts completely at random could
generate the scenarios leading to erroneous outcomes
that will be used in those proofs.

Disruptor-free executions are critical to many of
our lower bound proofs. The proofs are by contra-
diction. We assume the existence of a protocol with
a certain amount of connectivity. The protocol must
work even against an empty disrupting adversary. We
study the protocol with this adversary to learn about
its structure and the types of messages Sender and
Receiver must send. We then define an Ap that is
chosen accordingly and force an erroneous outcome.

Lemma 5.1 Let P be any protocol for weakened 1-
way (o, p)-SMT. Then the information sent on any
n — 2p wires completely determines the secret.

Proof: Let n = a+f+7, where 1 < a < p,n—2p <
B <nand 0 <+v < p. Wesay an n-vector V encodes
a value m if in some execution of P, when Sender
begins with message m it places the ith component
of Vonwirei,0<i<n-1.

Suppose, for the sake of contradiction that the
Lemma is false. Without loss of generality, there ex-
ist values m # m’ € Q and vectors V,V’ encoding
m and m’, respectively, such that V = XY Z, where
XexXx,Yer andZ €% and V' = X'YZ,
where X’ € £* and Z’ € £7 (Y remains unchanged).
The point here is that Y is a subvector of at least
n — 2p components that does not determine the se-
cret, since Y occurs in an encoding of m and in an
encoding of m’. Moreover, since @ > 1, Y does not
contain the information sent on wire 0.

Let W = XY Z’, where X isasin V,Y is asin both
V and V’, and 7’ is as in V’. Now, dist(W,V) < p,
so by the resiliency requirement if Receiver receives
W it must output m. However, dist(W,V’) < p, so
Receiver must output m’, a contradiction. |

Corollary 5.1 Weakened I-way (o, p)-SMT under
the containment assumption requires o < n—2p, i.e.,
n>c+20+1. |

The issue of containment did not arise in the proof
of the lower bound. Intuitively, this is because the
Sender does not know in advance which wires .4z and
Ap will compromise. Thus, it must simultaneously
protect against disruption on any p wires (in which
case we let L = D so D C L) and listening on any o
wires (in which case we let D = 0 so again D C L),
even if at most one of these adversaries attacks in any
single execution.

4

In the next section we show that any solution to
Verifiable Secret Sharing yields an algorithm for 1-
way SMT. Thus, combining Corollary 5.1 with results
in [1, 10] yields

Theorem 5.1 Under the containment assumption,
connectivity n = o + 2p + 1 is necessary and suffi-
cient for I-way (o, p)-SMT3 |}

We now turn to lower bounds on connectivity for
the 2-way case. We begin with a technical lemma that
hinges on our assumption that the random choices of
Sender and Receiver are made by coin flipping, which
yields only bounded branching. An alternative would
be to allow unbounded branching at each choice node
in the computation tree. While all our results hold in
this model as well, the proofs are more difficult.

Lemma 5.2 Let P be a protocol for 2-way SMT.
Then there exists an upper bound B on the number
of phases in any disruptor-free execution of P. |}

Theorem 5.2 Let P be any protocol for 2-way
(0,p)-SMT. Then P requires comnectivity n >
max{oc + p+1,2p+ 1}, even under the containment
assumption.

Proof: The condition n > 2p + 1 is needed for p-
resiliency, even if o = 0. Intuitively, we see that if
n = 2p then half the wires can “behave as if” the
input to Sender is some value m, and the other half
can “behave as if” the input is some m’ # m, and
Receiver cannot tell which is the true input.
Assume, for the sake of contradiction, that there
exists a protocol P for 2-way (0, p)-SMT requiring
connectivity 2p. Let m # m' € Q. We will construct
two executions E and E’ of P that, for every k, are
indistinguishable to Receiver after k phases: it has
the same coin flip sequence and sees exactly the same
messages in each execution. However, in E the se-
cret is m, while in E’ the secret is m’. Thus, these
executions cannot terminate, violating resiliency. We
define the executions in parallel, phase by phase. In
the following, the a’s, v’s, and z’s are always placed
on wires 0,1,...,p — 1, and the B’s, §’s, and y’s are
placed on wires p,...,2p— 1. In E, for all 0 < ¢, let
@2i+102i+1 be sent by Sender in Phase 2+ 1, and let
Y2i+162i4+1 be sent by Sender in Phase 2i + 1 of E'.

3If p > o > 1 and Ap is not oblivious, then, as explained
at the beginning of this section, the bound becomes 3p + 1. If
o = 0 then 2p + 1 wires suffice.

The executions begin

E: E .

a (B — 61) (1 — o) 8
T2 Y2 T2 Y2
azipr (Baig1 — b2ig1) (Y2i41 — a2i41) ba2ig1
T2(i+1) Y2(i+1) T2(i+1)

where the notation (z — y) means that z is placed on
the wires in D, but these wires (erroneously) trans-
mit y instead. Clearly, since Receiver cannot distin-
guish the two executions Sender must continue, and
the executions run forever, violating the resiliency re-
quirement.

The condition n > o + p + 1 is needed for o-
secrecy, even if p = 0. Specifically, an argument
similar to (but more straightforward than) the one
just presented shows that in a disruptor-free execu-
tion any n— p wires must contain enough information
to completely determine the secret. It follows that if
o > n — p, then listening to any o wires yields the
secret. Thus, 0 < n—p, whencen> o+ p+1.]

6 Perfect and Imperfect Secret
Sharing: A Separation Re-
sult

We now turn briefly to definitions of secret sharing
(cf. [3, 10, 13]). Due to lack of space, these defini-
tions are merely sketched. Secret sharing is actually
a class of problems, all having a similar form. The
model is a distributed system in which certain pro-
cessors may be disruptors and certain others may be
listeners. As above, the disruptors are controlled by
a disrupting adversary Ap, while the messages and
other inputs received by the listeners are available to
a listening adversary Ar. In this model, there is no
way to prevent the disruptors from sending messages
to the listeners, and hence Ap can communicate with
Ar. Thus either we work under the containment as-
sumption or we assume Ap is oblivious. In keeping
with the literature on secret sharing, the results in
this section are for the case in which the containment
assumption holds. We state our results for the case
o > p. The general results can be obtained by replac-
ing every occurence of “¢” by “max{c, p}.”

Definition: (o, p)-Secret Sharing A protocol for a
(o, p)-Secret Sharing problem is a pair of n-processor
protocols (P1,P2), run in sequence, and designed to
tolerate up to p faults in any execution of the pair.
One special processor, pg, is called the dealer. The

Yo(s+1)

43

dealer has a private input m. During P; the dealer
distributes shares of m in such a way that no set
of & processors not including the dealer, learns any
information about the secret during execution of Pi.
P, is a protocol for reconstructing the secret m from
the shares distributed during P;. Finally, if the dealer
po remains nonfaulty throughout Py, then the value
obtained by applying P is in fact the initial value
(input) of po, provided at most p processors fail in
total.

In analogy to the definition of SMT, we assume AL
compromises a set L of listening processors, and Ap
compromises a set D of disrupting processors. In this
case, the view of Ay is the complete history of every
processor in L, from the moment it is compromised
by Az until the beginning of the execution of Pa.

Definition: (o, p)-Unverified Secret Sharing For
every m € Q, if po has input m and remains nonfaulty
throughout execution of P; we require that for all AL
and Ap compromising sets L € (n—1)? and D € L,
respectively,

Secrecy: Ym' € Q, if po € L then the proba-
bility distribution on the views of Az, given Ag,
Ap, and given that pg has input m, is identical
to the probability distribution on the views of
AL given Az, Ap, and given that po has input
m'.
Resiliency: At the end of P3, every processor
not in D outputs m, regardless of the behavior
of the members of D.

Note that execution of P; need not immediately fol-
low execution of P;, but may be delayed, so even if
the dealer is correct throughout execution of P; it
may fail before execution of P;. When the secrecy
and resiliency parameters are the same, say, t, we
simply write £- Unverified Secret Sharing.

t-Verifiable Secret Sharing {3] is t-Unverified Se-
cret Sharing with additional correctness constraints
for the case in which the dealer is faulty during exe-
cution of P;. Specifically, even if the dealer is faulty
during execution of P;, VSS requires that the out-
come of P is uniquely determined by the states of
any subset of n — ¢ processors correct at the end of
P, provided at most ¢ processors fail in total during
execution of the two protocols. That is, once Py is
completed, the dealer is committed to the secret dealt
out.

In this section we show that (o, p)-Unverified Secret
Sharing requires o + 2p -+ 1 processors.* This bound

4We assume ¢ > 0, since secret sharing makes no sense if
there is no secrecy requirement.

can be achieved [1, 10]. Rabin and Ben-Or show that,
for any k, t-USS can be achieved with 2t + 1 proces-
sors with probability at most 2= of error [12]. This
generalizes to o +p+1 processors for (o, p)-USS with
small probability of error. Secrecy considerations im-
ply that (o, p)-SMT cannot be solved deterministi-
cally. It follows that, within the class of problems
that have no deterministic solution, error-free com-
putation comes at a price (in this case, an extra p
processors). It is therefore possible to separate error-
free randomized computation from small-error ran-
domized computation.

Our o + 2p + 1-processor lower bound for (o, p)-
USS holds even in the model with a broadcast chan-
nel. It follows that ¢-Verifiable Secret Sharing re-
quires at least 3t + 1 processors, even in the pres-
ence of a broadcast channel. This result has been
claimed elsewhere [2, 12]. Because our lower bound
applies to the weaker problem of ¢-USS, our result
is stronger. Moreover, it follows from our result that
the cost of Verifiable Secret Sharing has nothing to do
with verification, but rather comes from the conflict-
ing requirements of secrecy and resiliency of correctly
distributed secrets.

The following theorem describes the relationship
between (o, p)-USS and 1-way (o, p)-SMT under con-
tainment.

Theorem 6.1 Any n processor solution P =
(P1,P2) to (o,p)-USS with or without a broadcast
channel, yields a connectivity n solution to weakened
1-way (o, p)-SMT under containment.

Proof: (Sketch): A separate argument (omitted)
shows that P requires n > 2p + 1 processors, even
in the presence of a broadcast channel. Let the
wires be labelled 0,1,...,n — 1. Let the processors
be po,...,Pn—1. To send a message m, the Sender
first simulates a disruptor-free execution E of P; in
which po’s input is m. Letting v; denote the com-
plete history of p; in E, for 1 < i < n — 1, Sender
places v; on wire i. Let V = (vo,...,Un-1). Let
W = (wo, . .. wn—1) denote the vector of histories re-
ceived by the Receiver. By assumption, dist(V, W) <
p. To compute the message encoded by the vector
W, Receiver simulates that execution of P; in which
each processor p; begins in the state given by w; and
no further disruption occurs. This resuits in a set
of outputs, one for each p;. Receiver outputs that
value which is output by a majority of processors in
the simulation. Secrecy and resiliency are “inherited”

fromP. |
Combining this with Corollary 5.1 yields

Corollary 6.1 (o, p)-Unverified Secret Sharing re-
quires at least o + 2p + 1 processors, with or without
a broadcast channel. [l

Corollary 6.2 t-Verifiable Secret Sharing requires
3t + 1 processors, even in the presence of a broadcast

channel. |

Theorem 6.2 Within the class of problems having
no determistic solution, the cost of an error-free so-
lution can provably ezceed the cost of a solution with
arbitrarily small probability of error. |

7 Beyond Containment

In this section, mostly omitted from these Proceed-
ings, we study how the bounds obtained in Sec-
tion 5 change when the containment assumption is
removed, provided Ap is not oblivious. To obtain
upper bounds in this case is simple: any algorithm
for (o + p, p)-SMT, under the containment assump-
tion completely solves the general (o, p)-SMT prob-
lem, even if the adversaries are actually allowed to
communicate during execution of the protocol. This
yields an increase of p wires in both the 1-way and
2-way cases. We therefore have the following upper
bounds.

Theorem 7.1 Connectivity o + 3p + 1 is sufficient
for 1-way (o, p)-SMT, and connectivity o + 2p + 1
is sufficient for 2-way (o, p)-SMT, even without the
containment assumption.

Our results for the model in which the adversaries
cooperate but do not communicate are summarized
in the next two theorems.

Theorem 7.2 In the model in which Ar and Ap co-
operate but do not commaunicate, if ¢ > 1 then (o, p)-
SMT requires o+3p wires in the 1-way case and c+2p
wires in the 2-way case.’

Theorem 7.3 Let P be any protocol for 2-way (o, p)-
SMT in the model in which AL and Ap do not com-
maunicate and Ap is not oblivious. If every ezecu-
tion of P lasts ezactly 3 phases, beginning with a
transmission from Sender to Receiver, then P requires
n>o+2p+1 wires. |

The proof of this last theorem involves ten scenar-
ios. We see no way of generalizing it to protocols
requiring more than three phases.

5Y ¢ = 0 then connectivity 2p+1 is necessary and sufficient
for both the 1-way and 2-way cases.

8 Additional Remarks

The concept of two distinct adversaries, Az and Ap,
is an intriguing one. Generally, we have assumed in
this paper that the adversaries cooperate with the
goal of defeating the algorithm. However, it may be
the case that the adversaries do not cooperate. Es-
sentially, this is the case when .Ap simply disrupts
at random. As we have seen, without the contain-
ment assumption the upper bounds are better in this
case than when the adversaries cooperate. Are there
other models and problems in which it makes sense
to consider non-cooperating adversaries?

Acknowledgement: Many people have helped us by
listening to arguments, reading early drafts, and mak-
ing suggestions. In particular, we thank Hagit At-
tiya, Shafi Goldwasser, Silvio Micali, Stephen Ponzio,
Ruediger Reischuk, and Eva Tardos. Most of all, we
thank Larry Stockmeyer for many hours of invaluable
discussion.

References

[1] M. Ben-Or, S. Goldwasser, and A. Wigder-
son, Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed
Computation, Proc. 20th Symp. on Theory
of Computing, pp. 1-10, 1988.

{2] D. Chaum, C. Crepeau, and I. Damgard,
Multiparty Unconditionally Secure Proto-
cols, Proc. 20th Symp. on Theory of Com-
puting, 11-19, 1988.

3

—

B. Chor, S. Goldwasser, S. Micali, and B.
Awerbuch, Verifiable Secret Sharing and
Achieving Simultaneity in the Presence of
Faults, Proc. 26 Symp. on Foundations of
Computing, pp. 383-395, 1985.

[4] C. Dwork, Strong Verifiable Secret Shar-
ing, Proceedings, 4th International Work-
shop on Distributed Algorithms (WDAG-4),
Bari, Italy, September, 1990.

(5] C. Dwork, D. Peleg, N. Pippenger, E. Up-
fal, Fault Tolerance in Networks of Bounded
Degree, SiComp, 1989.

[6] P.Feldman, Optimal Algorithms for Byzan-
tine Agreement, PhD Thesis, Department of
Mathematics, MIT, 1988.

[7] P. Feldman, and S. Micali, Optimal Algo-
rithms for Byzantine Agreement, Proc. 20th

45

Symp. on Theory of Computing, pp. 148-
161, 1988.

[8] Z. Galil, S. Haber, and M. Yung, Primitives
for Designing Multi-Party Protocols from
Specifications, manuscript, 1989.

[9] O. Goldreich, S. Micali, and A. Wigderson,
How to Play Any Mental Game, sl Proc.
19th Symp. on Theory of Computing, pp.
218-229, 1987.

[10] R. McEliece and D. Sarwate, On Sharing
Secrets and Reed-Solomon Codes, CACM
24(9), pp. 583-584, 1981.

[11] M. Rabin and D. Lehmann, On the Ad-
vantages of Free Choice: A Symmetric and
Fully Distributed Solution to the Dining
Philosophers Problem, Proc. Symposium
on Principles of Programming Languages,
pp.133-138, 1981.

{12] T. Rabin, and M. Ben-Or, Verifiable Se-
cret Sharing and Multiparty Protocols with
Honest Majority, Proc. 21st Symp. on The-
ory of Computing, pp. 73-85, 1989.

[13] A. Shamir, How to Share a Secret, CACM
22, pp. 612-613, 1979.

