SIAM J. COMPUT. © 1989 Society for Industrial and Applied Mathematics
Vol. 18, No. 5, pp. 990-1012, October 1989 010

THE DISTRIBUTED FIRING SQUAD PROBLEM*

BRIAN A. COANY{, DANNY DOLEVi, CYNTHIA DWORKSY, AND LARRY STOCKMEYER$

Abstract. The distributed firing squad problem is defined in the context of a synchronous distributed
system where the cotrect processors operate in lock-step synchrony but do not share a global clock. If one
or more correct processors receive a command to start a firing squad synchronization, then at some future
time all correct processors must “fire” (formally, enter a special state} at exactly the same step. For various
fault models, upper and lower bounds are proved on the number of faulty processors that can be tolerated
and on the number of rounds of communication required between the reception of the start command and
firing. For example, if a firing squad protocol is resilient to ¢ fail-stop faults, then at least 1+ 1 rounds are
necessary and sufficient. For the case of Byzantine faults with authentication where the faulty processors
can take steps in between the synchronous steps of the correct processors, the firing squad problem can be
solved in t+5 rounds, provided that n> 3t, where n is the number of processors and ¢ is the number of
faults, and the problem cannot be solved at all if n =31 Moreover, in the case that n =3¢, the impossibility
of a firing squad protocol holds even for a weaker “timing fault model” where all processors generate
messages correctly according to the protocol, but the faulty processors can affect the system by slightly
slowing down or speeding up messages.

Key words. firing squad problem, Byzantine generals problem, synchronization, coordination, fault
tolerance, distributed computing

AMS(MOS) subject classifications. 68M10, 68M15, 68Q

1. Introduction. Many fault-tolerant distributed algorithms assume a synchronous
system, in which processing is divided into synchronous unison “steps” separated by
rounds of message exchange (see, e.g., [11], [20], [25]). A message sent at step s from
a correct processor p to a correct processor g is received by g at step s+1. This
assumption is motivated by the impossibility results of [15] and [8], which show that
if the system is asynchronous then there is no protocol for distributed agreement
tolerant to even one benign processor failure. There are various ways to maintain
synchronous steps in an unreliable distributed system. For example, one can have
hardware that sends a periodic signal to all processors. Another common assumption
is that all processors begin the algorithm simultaneously, i.e., at the same step. Typically,
however, an algorithm is executed in response to a request from some specific processor
that may in turn be responding to some external request. If the given processor is
correct then all correct processors learn of the request simultaneously, so they can
indeed begin the algorithm in unison. However, if the processor is faulty then the
correct processors may learn of the request at different steps.

* Received by the editors July 23, 1986; accepted for publication (in revised form) October 17, 1988.
A preliminary and abridged version of this paper appeared in the Proceedings of the 17th ACM Symposium
on Theory of Computing, Providence, Rhode Island, 1985.

1 Bell Communications Research, MRE 2P-252, 445 South St., Morristown, New Jersey 07960. This
work was performed in part while the author was at the Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts. It was supported by the National Science Foundation
under grant DCR-8302391, by the U.S. Army Research Office under contracts DAAG?29-79-C-0155 and
DAAG29-84-K-0058, and by the Advanced Research Projects Agency of the Department of Defense under
contract N00014-83-K-0125.

+ IBM Research Division, K53/802, 650 Harry Road, San Jose, California 95120, and Computer Science
Department, Hebrew University, Jerusalem, Israel. This work was performed in part while the author was
a Batsheva de Rothschild Fellow.

§ IBM Research Division, K53/802, 650 Harry Road, San Jose, California 95120.

4 This work was performed in part while the author was a Bantrell Postdoctoral Fellow at the Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.

990

Ayl

THE DISTRIBUTED FIRING SQUAD PROBLEM 991

In this paper we justify the design assumption of simultaneous starts. Specifically,
we provide algorithms to solve the associated synchronization problem that we call
the distributed firing squad problem. An algorithm for the distributed firing squad
problem has two properties:

(1) If any correct processor receives a message to start a firing synchronization,
then at some future time all correct processors will “fire” (formally, enter a special
state); and

(2) The correct processors all fire at exactly the same step.

Our principal results, which are summarized in this Introduction, are for the case in
which the processors, although operating in lock-step, are not assumed to share a
common view of the current “global” time. We also present a simpler algorithm for
the case in which such a common view is assumed.

The two complexity measures we study are fault tolerance, the maximum number
of faulty processors that can be tolerated, and time, the maximum number of rounds
of message exchange taken by the algorithm, starting with the step at which some
correct processor receives a message to start a firing synchronization and ending with
the step at which all correct processors fire. We are also interested in the communication
complexity of an algorithm, that is, the total number of message bits sent by correct
processors, but only to the extent of distinguishing polynomial from exponential
communication complexity. Below, n denotes the number of processors in the system;
t denotes the maximum number of faults that can be tolerated by a particular algorithm,
and any such algorithm is said to be t-resilient.

In the case of fail-stop faults (the most benign type of fault usually studied, in
which a faulty processor follows its algorithm correctly but simply stops at some point),
it is easy to find a f-resilient distributed firing squad algorithm for any number t=n
of faults that halts in ¢+ 1 rounds. This was observed independently by Burns and
Lynch [3]. By reducing the Weak Byzantine Agreement (WBA) problem to the dis-
tributed firing squad problem, we can use a lower bound of Lamport and Fischer [18]
on the time complexity of the WBA problem to show that any t-resilient algorithm for
the distributed firing squad problem requires ¢-+1 rounds for faii-stop faults, and
therefore also for more malicious types of faults. Thus, the situation for fail-stop faults
is well understood. Burns and Lynch [4] give a distributed firing squad algorithm for
the case of Byzantine faults without authentication (the most serious type of fault
usually studied, where faulty processors can exhibit arbitrary behavior); we say more
about this case below. The main results in this paper concern Byzantine faults with
authentication. Byzantine processors can exhibit arbitrary behavior, but we assume
that every processor can sign messages in such a way that the signature of a correct
processor cannot be forged by a faulty processor (see, e.g., [11]), and the signatures
are common knowledge. ‘

In trying to determine the maximum fault tolerance of the distributed firing squad
problem in the authenticated Byzantine case, we found it necessary to distinguish
between several types of faulty behavior, since these distinctions affect the fault
tolerance. In rushing, a Byzantine faulty processor can receive, process, and resend
messages “between” the synchronous steps of other processors. Figure 1(a) shows a
normal communication round involving three correct processors A, B, and C, with A
sending messages to B and C. Fig. 1(b) shows a similar round in which processor C
is faulty, takes a step between the steps of the correct A and B, computes its response
to the message it received from A, and then “rushes’ this response to B in the same
round. A special case of rushing is the ziming fault model, where faulty processors
never fail and always follow their algorithms correctly, but may take steps at irregular

992 B. A. COAN, D. DOLEV, C. DWORK, AND L. STOCKMEYER

A B C
Times ™ ° °
Timest+l o ° ()

Time s o, °

Timest+1l o ®
(b)

F1G. 1. (a) A communication round with three correct processors. For simplicity, only the messages sent
by A at time s are shown. (b) The processor C rushes.

times and may experience slight delays or accelerations in communicating with the
other processors. Rushing and timing faults are realistic types of faults whenever there
is sufficient uncertainty in message transmission time. The length of a communication
round must be chosen as large as the maximum possible transmission time between
correct processors, but if a message happens to be delivered to a faulty processor in
time less than this maximum, the faulty processor has the opportunity to rush.

We must also distinguish the case where faulty processors can sign messages using
the signature functions of other faulty processors, which we call collusion, and the case
where a faulty processor has only its own signature function. Collusion is unlikely to
occur as a result of a random failure, but it could occur if the faulty processors were
controlled by a malevolent intelligence that allowed faulty processors to share signature
keys.

Table 1 summarizes our results and the results of [4] for the different fault models.
Each entry gives A, the smallest number n (n=2) of processors for which there
exists a t-resilient distributed firing squad algorithm (¢ = 1). Unless otherwise indicated,
all algorithms require at most ¢+ c rounds, where ¢ =35 is a constant independent of
n and t, and the total number of bits of communication sent by correct processors is
polynomial in n. In proving lower bounds on the minimum n, we make the usual
assumption that the receiver of a message knows the identity of the sender; however,
this assumption is not needed by our algorithms because the necessary deductions
about the sender’s identity can be made in the fault models we consider.

There are several interesting things to note about these results. First we should
emphasize that the lower bound n=3¢+1 holds for the timing fault model in which
all processors follow the algorithm correctly. The only way faulty processors can aftect
the system is by taking steps at irregular times and unknowingly delaying and speeding
up certain messages by small amounts. Second, even though our bounds on the

THE DISTRIBUTED FIRING SQUAD PROBLEM 993

TABLE 1
Fault N for t-resiliency Remarks

fail-stop t 1
Byzantine with authentication

no rushing, no collusion t 1

collusion, no rushing 5t/3< N pn=21+1 2

rushing, no collusion 3t+1

rushing and collusion 3t+1
timing faults 3t+1
Byzantine without authentication 3t+1 3

Remarks. (1) Due independently to Burns and Lynch [3]. (2) Lower bound 5t/3 <
Ain proved only for t=3; algorithm with 2t+1 processors takes 2t+1 rounds. (3)
Algorithm due to Burns and Lynch [4]; algorithm uses either exponential communication
or more than t+ O(1) rounds. Except as noted in 2 and 3, running time of all algorithms
is t+¢, ¢ =5, and communication complexity is polynomial in n.

minimum # in the case of collusion but no rushing are presently not tight, the bounds
are sufficient to show that collusion does decrease fault tolerance when compared to
the case of no collusion and no rushing, and rushing alone admits less fault tolerance
than collusion alone. The distinction thus shown between these three fault models is
(to us) an unexpected result of this work.

Burns and Lynch [4] solve the distributed firing squad problem in the unauthenti-
cated Byzantine case essentially by adapting an agreement protocol. Since all known
unauthenticatéd agreement protocols either use exponential communication, use more
than ¢+ O(1) rounds, or require n>> 8t [2], [5], [9], [10], [20], [24], their distributed
firing squad solution has the same property. Recently, Moses and Waarts [24] have
devised a new unauthenticated agreement protocol; together with the work of Burns
and Lynch, this gives an unauthenticated distributed firing squad protocol using
polynomial communication, n> 8¢ processors, and the optimal time ¢+ 1. By using
signatures, we achieve polynomial communication, time ¢+5, and the maximum
resiliency ¢t = |(n—1)/3]. Our lower bounds n>3¢ (n>5¢/3) for rushing (collusion)
suggest that the approach of directly adapting agreement protocols to the distributed
firing squad problem will not work in the authenticated case, since there are authenti-
cated agreement protocols tolerant to any number of failures [11]. For the same reason,
the distributed firing squad problem seems to be diftferent from the clock synchroni-
zation problem studied in [16], [19], [21], [26], where the object is to bring the clocks
of correct processors “close” together: in the authenticated Byzantine case, there is a
clock synchronization algorithm tolerant to any number of failures [16]. Our problem
is also different from the version of the firing squad problem that was proposed in the
late 1950s [23]. That version of the problem was interesting because the processors
were finite state machines which were connected in a linear array so each processor
could count only to some fixed constant independent of n; however, faults were not
considered. In our version of the problem, the difficulty arises not from limitations on
the processors or communication network (we assume a completely connected system
of powerful processors) but rather from the possibility of processor and timing faults.

In § 2 we give definitions. Section 3 contains results (firing squad algorithm and
lower bound) for the case of no collusion and no rushing, § 4 gives results for rushing
and timing faults, and § 5 considers the case of collusion but no rushing. In § 6 we
mention some related results, such as the application of firing squad ideas to the

994 B. A. COAN, D. DOLEV, C. DWORK, AND L. STOCKMEYER

problem of Byzantine Agreement in the case that the processors do not all start at the
same round, and results concerning the distributed firing squad problem where the
processors share a common view of global time.

2. Definitions. For simplicity we give definitions for a single occurrence of a firing
squad synchronization. Let p,, p,, -, p, denote the processors in the system. For
technical reasons we introduce another “processor” w, whose only purpose is to start
a synchronization; w does not receive messages from the p;’s. In reality w might be
another process running within one of the p;,. Formally a distributed firing squad
algorithm is specified by an infinite set of messages M and for each processor p; an
infinite set of states Q;, a state transition function oy, and a sending function S3;, where

o QixM" > Q,
Bi: Qi xM™" > M.
The inputs to o; and S; are the current state and an (n+1)-tuple of received messages,
one from each processor p;, - -+, p., w. The function o; gives the new state, and B,
gives an n-tuple of messages (m,, - - -, m,) such that m; is sent to p; for each j. There
are special messages J, the null message, and “Awake”, the awake message, which
is sent by w to start a synchronization. For each i there are states g, and g, in Q;, the
quiescent state and the firing state, respectively, where g, # q,. In addition,
0(q0, D, -+, D)= qo,
Biqo, D, -, D)=(D, -+, D).

We introduce the concept of global time as an expositional convenience. The
individual processors have no knowledge of global time. We assume that processors
take steps at global times specified by nonnegative real numbers. A run is specified
by giving, for each processor p;, -, p,, w (including both correct and faulty pro-
cessors), a list of nonnegative real numbers that specifies the times at which the
processor takes steps. A message sent from a processor p to a processor g at time s is
received by ¢ at time s’, where s’ is the smallest.s'> s such that g takes a step at s'.
(If g receives more than one message from somé p at some step, then the message
sent at the latest time is used by the transition functions; since this occurs only if either
p or q is faulty, this convention is not critical.) Whenever w takes a step, it sends the
awake message to some (possibly empty) subset of the p;’s and it sends the null message
to the rest.

A processor p; is correct in a run R if

(1) p; takes its first step at time 0 in state g, receiving messages (&, &, - + -, &),
and thereafter takes steps at successive integer times 1, 2, 3,-- -

(2) p; executes its algorithm (transition functions) correctly; and

(3) if authentication is assumed (see below), then no other processor p; signs any
message using the signature function of p;.

A run R is active if some correct processor receives a non-null message at some
step; define awake(R) to be the earliest such time (necessarily integer). If a correct p;
receives a non-null message for the first time at time s, we say that p; awakens at time
s. Define fire;(R) to be the time of the first step in R during which p; makes a transition
into state g, (undefined if p; does not enter gy).

A distributed firing squad algorithm is t-resilient with respect to a given type of
faulty behavior if for any active run R in which at most ¢ of the processors p,,- - -, pn
are faulty and in which the faulty processors conform to the given type of faulty
behavior, there is a (necessarily integer) time fire{R) = awake(R) such that fire,(R) =
fire(R) for all i such that p; is correct in R. The time complexity of the algorithm is

THE DISTRIBUTED FIRING SQUAD PROBLEM 995

the maximum of fire(R) — awake(R) over all such runs R. (Note that w is not counted
among the ¢ faulty processors no matter how it behaves.)

Since the definitions above consider a processor to be faulty throughout a run if
it fails at any time in the run, the definitions would seem to allow a scenario S where
some processor p; first fails after time fire(R); thus, the definitions do not require p;
to fire with the other processors even though it is actually “‘correct” throughout
execution of the algorithm. It is sufficient to note, however, that any such scenario can
be modified to a scenario S’, where p; is correct throughout the entire (infinite) run,
and all processors behave exactly as they do in S from time 0 through time fire(R).
In the modified S', p; violates the definition of correctness. We find it convenient, both
for definitions and for proofs of correctness, to consider a processor to be either correct
or faulty throughout an entire run rather than to define the first time when a faulty
processor actually exhibits faulty behavior.

We now define various types of faulty behavior. A faulty processor p; is fail-stop
if it operates as a correct processor up to some time s, at time s some nonempty subset
of the messages p; is supposed to send are replaced by null messages, and for all
subsequent steps p; sends only null messages. A processor is Byzantine if its behavior
can deviate in any way from the behavior specified by its transition functions. A special
case of Byzantine faultiness is Byzantine faults with authentication, where each pro-
cessor p can sign messages using a private signature function E, in such a way that
the signature of a correct processor cannot be forged by any other processor. In this
case, if processor g receives a message E,(m) from a third processor 7, then ¢ knows
that if p is correct then p actually sent the message E,(m) at some previous time. We
also let E; denote the signature function of processor p;. A Byzantine faulty processor
rushes if it takes some step at a noninteger time. In this case, messages to and from
faulty processors may take less than one round to be delivered. Faulty processors p
and g collude if p signs a message using the signature function of ¢. In this case ¢ is
considered faulty, even though the messages it sends may be correct.

Finally we define the timing fault model. Runs in this model have the following
properties:)

(1) all processors execute the algorithm correctly;

(2) correct processors take steps at times 0,1,2,- - -

(3) faulty processors take steps at times 3,3,5,

(4) messages between two correct processors or between two faulty processors
take one unit of time to be delivered; and

(5) messages between a correct and a faulty processor take either 3 unit of time
or 3 units of time to be delivered.

It is not hard to see that the timing fault model is a special case of authenticated
Byzantine faultiness with rushing (but no collusion). The model with rushing can
simulate a delivery time of 3 simply by having a Byzantine processor either delay
sending or delay receiving the message. For example, if in the timing fault model the
faulty processor p sends a message m at time 2 which the correct g should receive at
time 3, then in the model with rushing the (now Byzantine) p simply holds m and
sends it to g at time 3. Therefore, giving an algorithm for the model with rushing yields
a result for both models, as does proving a lower bound on n for the timing fault model.

The communication complexity of an algorithm is the maximum total number of
message bits sent by correct processors, between the time when a correct processor
first awakens and the time when all correct processors fire. The communication
complexity is expressed as a function of n. Of course, there is no way to bound the
number of bits sent by Byzantine faulty processors. For each of our algorithms it is

996 B. A. COAN, D. DOLEV, C. DWORK, AND L. STOCKMEYER

easy to see that exceedingly long messages sent by faulty processors never cause a
correct processor to send exceedingly long messages. This is true because each correct
processor has, at each step of the algorithm, a bound on the length of messages it
expects to receive. Once the length of a message exceeds that bound, the message can
be ignored.

As the firing squad problem is defined above, any single Byzantine faulty processor
can initiate a firing synchronization. One way to limit the ability of faulty processors
to start extraneous synchronizations in models with authentication is to have w sign
the awake message with its own unforgeable signature. A correct processor considers
as null any received message that does not contain w’s signature. The necessary changes
to our algorithms are trivial (in algorithms that count the number of signatures on a
message, the signature of w is not counted). This still allows a faulty w to start
extraneous synchronizations, but this is unavoidable in any model where we allow a
single processor or an external agent to start a synchronization.

Processors as defined above are deterministic. Coan and Dwork [6] have studied
probabilistic protocols for firing squad synchronization and have found that probabilis-
tic protocols are essentially no better than deterministic ones for the firing squad
problem.

3. No rushing and no collusion.

3.1. Upper bound. We begin with a simple algorithm that tolerates any number
of fail-stop or authenticated Byzantine faults. It does not tolerate rushing, timing faults,
or collusion. This algorithm was discovered independently by Burns and Lynch [3].
The basic idea is that since any processor, faulty or otherwise, can add at most one
signature per round, we can use the number of signatures on a message as a clock,
giving a lower bound on the time elapsed since the protocol was initiated. A correct
processor fires as soon as it knows that at least 1+ 1 rounds have elapsed. The details
of the algorithm and its proof of correctness are similar to those of the Dolev-Strong
algorithm for authenticated Byzantine agreement [11].

THEOREM 3.1. In the model with authenticated Byzantine failures (but no rushing
or collusion) there is a t-resilient distributed firing squad algorithm for any number n = {
of processors. The algorithm has time complexity of t+1 rounds, and it uses an amount
of communication polynomial in n.

Proof. Each processor p participating in the protocol has a private clock ¢, that
is completely under the control of p. Initially, ¢, =—1. A message m is proper if it has
the form

m= Ei,(Eiz(' e E,-k(Awake))

where E, is the signature function of p;, and the k signatures are by distinct processors.
The length of the proper message m, denoted |m|, is the number of signatures appearing
in m (i.e., k above). The awake message has length 0. A proper message m is acceptable
to p if and only if |m|> ¢,. A proper message m is new to p if and only if p’s signature
does not appear in m.

Upon first awakening, p sets its clock to [m|, where m is any acceptable message
of maximum length received by p. If ¢, =t +1, then p fires; otherwise, p signs m and
broadcasts the result E,(m). If all messages received by p in this first step are
unacceptable, then p sets its clock to 0 and broadcasts E,(Awake).

At each subsequent step, if p receives any acceptable message, p arbitrarily chooses
one such message m of maximum length and sets ¢, to |m|. If ¢,Z t+1, then p fires;
if ¢,<t+1and m is new to p, then p signs m and broadcasts the result E,(m). If no
acceptable message is received, p increments ¢, by one. Again, if ¢, = ¢+ 1 then p fires.

THE DISTRIBUTED FIRING SQUAD PROBLEM 997

This completes the description of the protocol for a correct p.

LeEMMA 3.1.1. For all k with k=0 and for any message m, at least k rounds are
required to add k distinct signatures to m.

Proof. Each processor knows at most one signature function and there is no
rushing. |

LEMMA 3.1.2. In any execution of the protocol resulting in a firing, all correct
processors fire simultaneously.

Proof. Let r be the earliest step at which some correct processor fires, and let p
be a correct processor that fires at step r. We will show that for all correct processors
g, ;= t+1 by the end of step 7, so g fires at r.)

There are two cases to consider, according to whether or not p receives
an acceptable message at step r. If p receives an acceptable message m at step
then m has at least t+1 signatures. Without loss of generality, let m=
E.(E,_,(-- - E,(Awake) - - -)), where k=|m|=t+1. Clearly, if p is correct then all
correct processors receive m at r, and so all correct clocks have value at least +1 by
the end of step . If p, is faulty, then let p; be the last correct processor whose signature
appears in a substring m; = E,(- - - E,(Awake) - - -} of m, and let s —1 be the step at
which m; is sent by p;. By Lemma 3.1.1 at most one signature can be added to m; in
each step, so r—s = |m| —|m,|. Furthermore, since p; is correct, the clocks of all correct
processors have value at least |m;| by the end of step s. Since the clock of a correct
processor is incremented by at least 1 at each step, by the end of step r the clocks of
all correct processors will have value at least

[mi| +(r —s) = |my|+ (|m|—|m|) =|m|z= 1 +1

so all correct processors will fire at step r.

In the second case where p receives no acceptable message at step r, let i be such
that step r—i is the last step at which p broadcasts. (Since this happens when p first
awakens, i is well defined.) Let E,(m) be the message broadcast by p at r—i Since
this message has length |m|+ 1 and since all correct processors receive this message at
step r—i+1, by the end of step r —i+1 all correct processors have clock value at least
|m|+ 1. Therefore, the clocks of all correct processors have value at least [m|+i by the
end of step . We now want to argue that p increments its clock by exactly 1 at each
step j with r —i+1=j=r. Suppose otherwise that p increments its clock by more than
1 at step j, and let m’ be the acceptable message received at step j which causes this
increment. Since p receives no acceptable message at step r, we must have j<r. If m’
is not new to p at step j, then using Lemma 3.1.1 as in the preceding paragraph, it is
easy to show that m' could not cause p to increment its clock by more than 1. If m’
is new to p, then by definition of the algorithm p would broadcast at step j, contradicting
the choice of i. Therefore, such a j and m’ cannot exist. Having bounded p’s clock
increment at each step j with r—i+1=j=r, it follows that ¢, =|m|+i at the end of
step r. Since p fires at r, we have |m|+i=r+1. Thus all correct processors fire at
step r. a

LEMMA 3.1.3. Let R be any active run and let s be the earliest time when some
correct processor p awakens in R. Then p fires at time s+t +1 or earlier.

Proof. Upon awakening, p sets its clock to some value ¢, = 0. At every step ¢, is
incremented by at least one, and p fires when ¢, = 1+ 1. 0

It is now easy to complete the proof of Theorem 3.1. By Lemma 3.1.3, if any
correct processor awakens there is a firing, and by Lemma 3.1.2 all correct processors
fire simultaneously. Lemma 3.1.3 also implies that the time complexity of the algorithm

998 B. A. COAN, D. DOLEV, C. DWORK, AND L. STOCKMEYER

is at most £+ 1 rounds. Furthermore, at each step each correct processor broadcasts
at most one message. Since this message is proper, it requires only polynomial in n
bits. Thus the communication required is polynomial in . t

Obviously, the algorithm of Theorem 3.1 also works for fail-stop faults: instead
of signing a message m with the signature function E,, the processor p simply attaches
its name to m.

3.2. Lower bound. We now show that the time complexity of this algorithm is
optimal by reducing the Weak Byzantine Agreement problem (WBA) [17] to the
distributed firing squad problem. Optimality follows from the fact that WBA requires
at least t+1 rounds [18].

In the WBA problem, all processors start the algorithm at the same global time
(say, time 0), and each processor has a binary initial value. By maintaining a counter,
all correct processors have a common notion of global time. A protocol solves WBA
if (1) every correct processor eventually reaches a decision; (2) no two correct processors
reach different decisions; and (3) if all initial values are the same, say v, and there are
no failures, then v is the value decided. The following result shows that WBA reduces
to distributed firing squad at no cost in running time.

THEOREM 3.2. Let A be a distributed firing squad algorithm that is t-resilient to
fail-stop faults (respectively, unauthenticated Byzantine faults) and that requires k rounds
between awakening and firing in the execution in which all the processors awaken simul-
taneously and no failure occurs (note that k is unique since the system is completely
deterministic in this case). Then there exists an algorithm for WBA that is t-resilient to
fail-stop faults (respectively, unauthenticated Byzantine faults) and that always halts in
k rounds.

Proof. Consider an instance of WBA in which processor p; has initial value v;. If
v; =0, then p; begins simulating A at time 0. That is, p; acts as if it received the awake
message from w and null messages from the rest. If v; =1, then p; begins simulating
A at time 1. That is, p; sends null messages during the first round and acts as though
it received the awake message from w at time 1 (p; could receive non-null messages
from other processors at time 1 in this case if other processors had initial value 0). If
the simulation of A causes p; to fire at time k or earlier, then p; decides 0 at time k;
otherwise, p; decides 1 at time k.

Correctness of A immediately implies that all correct processors decide on the
same value, since either all correct processors simulate a firing at a time =k or none
do. If all processors begin with value 0 and there are no failures, then by choice of k
each processor will simulate a firing at time k, so the decision will be 0. However, if
all begin with 1 and there are no failures, then all processors will simulate a firing at
time k+1, so the decision will be 1. a

COROLLARY 3.3. (1) Let t=n—2. Any distributed firing squad algorithm resilient
fo t fail-stop faults requires at least 1 +1 rounds. Moreover, this is true even if the order
in which processors are sent to in a round is fixed a priori. It is also true even in all
executions in which all processors are correct.

(2) Any distributed firing squad algorithm resilient to t unauthenticated Byzantine
Sfaults requires at least 3t+1 processors.

Proof. The proof is immediate from the preceding theorem and the correspondiflg
bounds for WBA [13], [14], [17], [18], [22]. 0

Remark. To close the gap between Theorem 3.1 and Corollary 3.3(1) forn—1=t=
n, note that if we take = n —2 in the algorithm of Theorem 3.1, then the algorithm is
in fact n-resilient. If there is only one correct processor p, then p will fire within ¢+1

THE DISTRIBUTED FIRING SQUAD PROBLEM 999

(=n—1) steps after awakening, since ¢, is incremented by at least 1 at each step. If
there are no correct processors, then there is nothing to prove.

In the next section the lower bound of Corollary 3.3(2) is strengthened to hold
in the model with authentication and rushing.

4. Rushing and timing faults.

4.1. Upper bound. This section contains tight bounds on fault tolerance for timing
faults and authenticated Byzantine faults with rushing. The following result gives the
principal algorithm of the paper.

THEOREM 4.1. In the model with Byzantine failures and authentication, in which
Sfaulty processors can both rush and collude, there is a t-resilient distributed firing squad
algorithm requiring t+5 rounds, n =3¢+ 1 processors, and communication polynomial
in n.

Before giving the details of the algorithm and its proof of correctness, we begin
with an informal discussion of the principal ideas. Our protocol is composed of a set
of identical subprotocols executed independently and in parallel. A processor initiates
a subprotocol by broadcasting its signature. Let p be an arbitrary (possibly faulty)
initiator, and consider a set of processors all receiving p’s signature at the same step.
In some sense these processors are synchronized, in that they share a common idea
of when they first heard from p, although no processor in the set knows which other
processors are in the set. If the set of synchronized processors is sufficiently large, then
because they are synchronized these processors can run an agreement protocol similar
to the Dolev and Strong protocol [11] that assumes synchronous start. The processors
are essentially agreeing on the members of the set. If the agreed upon set is sufficiently
large, then correct processors will order a firing. In particular, a correct processor in
the set orders a firing only if there are at least n—t=2¢+1 processors in the agreed
upon set. Of these, at least ¢t +1 are correct, synchronized processors. Thus a correct
processor orders a firing only if at least £ +1 correct processors do so simultaneously.
Now, consider a processor g receiving at least £+ 1 commands to fire. Since g knows
at least one of these messages is from a correct processor, it knows at least ¢++1 are.
Thus g knows that every processor receives at least t + 1 commands to fire, and therefore
that every processor knows every processor has received these commands, and so on.
In short, it becomes common knowledge that every processor has received ¢+1 com-
mands to fire, so it is safe to fire.

Proof of Theorem 4.1. As stated above, the protocol is composed of a set of
identical subprotocols executed independently and in parallel. Specifically, as each
correct processor awakens it initiates a core protocol. If the core protocol is successfully
completed, then the correct processors fire upon completion. An execution of the core
protocol initiated by a correct processor will complete successfully, unless a firing
occurs earlier due to the completion of a different execution of the core protocol. An
execution of the core protocol initiated by a faulty processor may not cause a firing,
but if it does then all correct processors fire simultaneously. (Thus, it would be sufficient
to have any ¢+ 1 processors initiate the core protocol.) In the following, if a correct
processor receives the same message at different times, all receptions but the first are
ignored; this prevents a faulty processor from doing any damage by taking a message
that was broadcast by a correct processor and resending it at a later time.

A processor p initiates a core protocol by broadcasting its signature, E,(p). Each
processor (including p itself) that receives E,(p) signs it and broadcasts it. Each
processor g then attempts to form a core for p, that is, a list of the form

<Ei1(Ep(p))a T, Ezk(Ep(p))>

1000 B. A. COAN, D. DOLEV, C. DWORK, AND L. STOCKMEYER

where k=n —1 and each of the k copies of E,(p) is signed by a distinct processor.
The signatures E, , - - -, E; belong to the core, and the core contains these signatures.
Intuitively, a core is a set of processors which claim to have received E,{p) at the
same time.

A notarized core for p is a list of the form

<Ei1(cl)a T, Eik(ck)>

where k= n —t and the C’s are (possibly different) cores for p, each signed by a distinct
processor.

We now describe how a processor g participates in the core protocol initiated by
p. (Processor p participates in the core protocol initiated by itself.) Let s be the global
time when g receives E,(p). Then g tries to form a core for p at time s-+1. This is
done by looking for a set of messages {E; (E,(p)), -, E, (E,(p))} received at time
s+1 where k= n—1t and where each of the k copies of E,(p) is signed by a distinct
processor. This is the only time at which g tries to form a core for p, and g includes
in the core only messages received at time s+ 1. If g forms a core then g includes in
the core all messages of the form signature(E,(p)) received at time s+ 1. If a core is
formed, g signs it and broadcasts it. Processor g also tries to form a notarized core
for.p at time s+2. This is the only time when ¢ tries to form a notarized core for p.
A notarized core, if formed, contains all messages of the form signature(core for p)
received at time s+2. If a notarized core N is formed by g at this step, then N is
considered to have been “received” at this step. Starting with the second step after
E,(p) was received, each correct processor g does the following (regardless of whether
or not g formed a core for p or a notarized core for p).

If g receives message m, g checks if m is acceptable in the following sense:

(1) m=E;,(E,(--- E,(N)---)), where N is a notarized core for p and each of
the k signatures (k=0) is distinct (m is said to have length k, denoted |m|);

(2) g’s signature belongs to at least n — 21 of the cores in N (we say that g supports
N); and

(3) g first received E,(p) k+2 steps back (this condition implies that at any given
step of g, messages of only one particular length are acceptable).

An acceptable message m as in (1) is new to g if none of the signatures
E ,E,, -, E, is by q. If q finds one or more messages of length k that are new and
acceptable, g chooses one such message m arbitrarily and broadcasts E,(m), ignoring
the rest. Finally, if g receives an acceptable message m of length ¢+1, then g signs
and broadcasts “fire,”. A correct processor fires at step f if and only if at step f it
receives at least t+1 commands “fire,” signed by different processors.

Lemmas 4.1.1-4.1.4 show that the core protocol causes a firing if the initiator is
correct. For these lemmas, let p be a correct processor initiating a core protocol at
time r.

LemMMma 4.1.1. At time r+2 all correct processors can form a core for p containing
the signature of every correct processor, and at time r~+3 all correct processors can form
a notarized core for p.

Proof. Since p is correct, all correct processors receive E,(p) at time r+1. All
correct processors g broadcast E,(E,(p)) at time r+ 1, and these messages are received
at time r+2. Since there are at least n —{ correct processors, every processor receives
at least n—t messages of the form E,(E,{p)) signed by distinct processors. Thus all
correct processors can form a core at time r+2. Furthermore, since a correct processor
puts all messages E,;(E,(p)) received into the core, for every correct processor g the
message E,(E,(p)) appears in the cores formed by the correct processors.

THE DISTRIBUTED FIRING SQUAD PROBLEM 1001

A similar argument shows that every correct processor can form a notarized core
for p at time r+3. 0

LEMMA 4.1.2. Let N be any notarized core for p. Then every correct processor q
supports N.

Proof. A notarized core contains at least n—t cores, each signed by distinct
processors, so at least n—2¢t of the cores contained in N were formed by correct
processors. By Lemma 4.1.1 all these n — 2t cores contain the signature of every correct
processor. W

LEMMA 4.1.3. Foralli,0=i=t attimer+3+iatleast one correct processor receives
a new acceptable message of length i.

Proof. The proof is by induction on L

Basis i = 0. By the previous two lemmas every correct processor forms a notarized
core which it supports at time r+3. By convention, this notarized core is a new
acceptable message “‘received” at time r+3.

Assume the lemma is true inductively for i —1 (i= 1). Thus at time r+3+(i—1) =
r+i+2 some correct processor receives a new acceptable message of length i—1. It
signs this message and broadcasts the resulting message m of length i with notarized
core N. The message m is received at time r+i+3 by all correct processors. Since
there are n—t=2¢+1 correct processors, at most ¢ of which have signed m, and since
by Lemma 4.1.2 every cotrect processor supports N, m is acceptable to some correct
processor that has not yet signed it, so the induction holds. 0

LemmA 4.1.4. If a correct processor p initiates a core protocol at time r, then the
core protocol runs to completion and the correct processors fire at time r+1+5.

Proof. By Lemma 4.1.3, at time r+3+¢ at least one correct processor receives
a new acceptable message m. Thus by time r+4+1 every correct processor receives
an acceptable message of length t+1, so all correct processors broadcast “fire,”.
Since there are at least n—t>t+1 correct processors, every processor receives at
least t+1 commands to fire at time r+5+¢, so a firing will indeed take place at time
r+5+t O '

We now show that for an arbitrary initiator p, the core brotocol never causes two
correct processors to fire at different times. Let p be a possibly faulty processor initiating
a core protocol. If S is a set of processors, we say that S forms a core for p if any
processor in S forms a core for p. A group is a maximal set of correct processors
receiving E,(p) at the same time. Let G be a group and let s be the time at which the
members of G receive E,(p). Let H be the set of correct processors not in G.

LEmMA 4.1.5. If G forms a core for p, then H does not form a core for p.

Proof. First we observe that if G forms a core, then the core contains no signatures
of processors in H. Similarly, no signature of a processor in G is contained in a core
formed by any processor in H.

If G forms a core for p, then there exists some g in G that received at least n—1
messages of the form E,(E,(p)) at time s+ 1. Since none of those messages were sent
by processors in H, we have |[H|=t. Thus even if the processors in H form a group
and t faulty processors cooperate in helping H to form a core, the total number of
cooperating processors is 2f <n—t, so H cannot form a core. a

Lemma 4.1.6. If G forms a core for p and if any processor forms a notarized core
N for p, then every processor in G supports N.

Proof. Every notarized core N contains at least n — ¢ cores, at least n — 217 of which
were formed by correct processors. Since no processor in H forms a core at least n —2¢
of the cores in N were formed by processors in G and therefore contain all the
signatures of all the processors in G. |

1002 B. A. COAN, D. DOLEV, C. DWORK, AND L. STOCKMEYER

LeEMMA 4.1.7. Let N be a notarized core for p. If some g in G supports N then

(1) -all processors in G support N, and

(2) no processor in H supports N.

Proof. We will show that if g belongs to n—2t of the cores in N, then G forms
a core for p. It follows by Lemma 4.1.6 that every processor in G supports N. This
will give us (1). Furthermore, by Lemma 4.1.5 if G forms a core, then H does not.
Since neither processors in G nor in H form cores containing signatures of processors
in H, the only cores that contain processors in H are formed by faulty processors.
Thus, there can be at most < n -2t of them, so we have (2).

It remains to show that if g belongs to at least n—2¢> ¢t of the cores in N, then
G forms a core. This is immediate from the fact that no processor in H forms a core
containing elements of G. Thus, if g appears in more than ¢ cores, at least one of these
was formed by some processor in G.]

LEMMA 4.1.8. If any processor in G ever finds a message acceptable, then G contains
at least n —21 processors.

Proof. Let m be acceptable to some g in G and let N be the notarized core of
m. Of the n—2t=1t+1 cores in N containing g, at least one is signed by a correct
processor. Let g be such a correct processor and let C be the core in N signed by ¢;
ie., E,(C) has the form

E(C)=E (- -, E(E,(p)),~).

Of the n — f processors whose signatures belong to C, at least n —2t are correct. These
n —2t correct processors (one of which is g) all wrote to g at the same time, indicating
that they received E,(p) at that time. Since no processor in H received E,(p) at the
same time as g, no processor in H belongs to C. Since the correct processors are in
either G or H, it follows that G contains at least n—2¢ processors. O

LEMMA 4.1.9. Let m be a message that is new and acceptable to processor g in group
G at time z. Then E,(m) is acceptable to all processors in G at time z+1.

Proof. Let N be the notarized core of m. One of the conditions of acceptability
is that g supports N. By Lemma 4.1.7, every processor in G supports N. By condition
(3) of acceptability, g first received E,(p) at time z —|m|—2, as did all other processors
in G (by definition of a group), so every processor in G first received E,(p) at time
(z+1)=|E,(m)|—2. Thus every processor in G finds E(m) acceptable at time
z+1. 0

LEMMA 4.1.10. Let f be the earliest time at which some correct processor q fires (as
a result of the core protocol initiated by p). Then all correct processors fire at time f.

Proof. Since g fires only if it simultaneously receives at least 7+ 1 messages “fire,,”,
some correct processor g sent “fire,” at time f — 1. Therefore, g received an acceptable
message m of length ¢+1 at time f—1. Let G be the group of g. Without loss of
generality, let

m=E_(E(- - E(N)--)}
Let ¢ = p; be a correct processor among the 7+1 processors that signed N. Let
m'=E (- E(N)- -+,

Since ¢ finds m’ acceptable, ¢ supports N. Since g finds m acceptable, g supports N.
It follows from Lemma 4.1.7(2) that ¢ belongs to G. Let z be the time when ¢ receives
m'. By Lemma 4.1.9, all processors in G find E.(m') acceptable at time z + 1. Further-
more, by Lemma 4.1.8, G contains at least n—21=t+1 processors, so there will be

THE DISTRIBUTED FIRING SQUAD PROBLEM 1003

some processor in G that has not yet signed N, provided |E.(m’)|=t By repeated
application of Lemmas 4.1.9 and 4.1.8, all processors in G receive an acceptable
message of length ¢+ 1 at time f—1, so they all broadcast “fire,” at time f—1. Recall
that G contains at least ¢+ 1 processors. It follows from the definition of the core
protocol that all correct processors fire at time f, |

The proof of Theorem 4.1 follows directly from Lemmas 4.1.4 and 4.1.10. It is
clear from the definition of the protocol that the number of bits of communication is
polynomial in ». 0

4.2. Lower bound. We next give a matching lower bound, n = 3t +1, for the timing
fault model. As noted in § 2, the lower bound of Theorem 4.2 holds also for the fault
model of Theorem 4.1 (even without collusion).

THEOREM 4.2. In the timing fault model there is a t-resilient distributed firing squad
algorithm only if n=3t+1.

Proof. Consider first the proof that there is no algorithm for t=1 and n=3. We
consider four scenarios with three processors, A, B, and C, in each. Processor C is
faulty in Scenarios 1 and 4, B is faulty in Scenario 2, and A is faulty in Scenario 3.
It is possible to fix the wake-up times and the message transmission times (see Fig. 2)
so that the following lemmas hold.

LemMma 4.2.1. If A fires at time z in Scenario 1, then A fires at time z+1 in
Scenario 4.

Proof. This follows since Scenarios 1 and 4 are identical except that all processors

wake up exactly one time unit later in Scenario 4. 0
1/2 1/2
1/2[C] 1 (B 3/2
! 32
1 1/2
2
Scenarlo 1 Scenario 2
1 1/2

(B)2 3/2. '

R

Scenario 3 Scenarlo 4

F1G. 2. The scenarios used to prove Theorem 4.2. The number on the edge directed from processor X to
processor Y is the message transmission time from X to Y. The number written next to processor X is the time
when processor X wakes up. Correct (faulty) processors are drawn as circles (squares).

1004 B. A. COAN, D. DOLEV, C. DWORK, AND L. STOCKMEYER

For the next lemma it is convenient to introduce the “local step number” of a
processor. A processor executes its first local step at the time it wakes up, and the
local step number is incremented by one at each subsequent step. For example, in
Scenario 1 in Fig. 2, A is executing its first step at global time 2, whereas B is executing
its second step at global time 2. Letting p denote a processor, two scenarios are
p-equivalent if the message history of p, i.e., messages received and messages sent at
each local step of p, are the same in the two scenarios. Two scenarios are strongly
p-equivalent if they are p-equivalent and p wakes up at the same global time in both
scenarios.

LeMmaA 4.2.2. For i=1,2,3, Scenarios i and i+1 are strongly p-equivalent where
p is the processor that is correct in both scenarios.

Proof. By inspection of the scenarios in Fig. 2, one can easily verify that the
following two facts hold for all four scenarios and for all integers s = 1:

(1) for all messages sent from A to B, from B to C, or from A to C, the message
sent at local step s of the sender is received at local step s+2 of the receiver; and

(2) for all messages sent from B to A, from C to B, or from C to A, the message
sent at local step s of the sender is received at local step s of the receiver.

It follows easily from these facts (formally by induction on the local step number)
that any two scenarios are p-equivalent where p is any of the three processors. The
lemma then follows immediately from the choice of the wake-up times. 0

These lemmas easily give a contradiction. Say that A fires at time z in Scenario
1. By strong A-equivalence of Scenarios 1 and 2, A fires at time z in Scenario 2. Since
A and C are correct in Scenario 2, C also fires at z in Scenario 2. By a similar argument,
B fires at z in Scenario 3, and A fires at z in Scenario 4, which contradicts Lemma 4.2.1.

The impossibility proof for general n and ¢ with n =3¢ is done as usual (cf. [251)
by replacing each processor by a group of at least one and at most t processors. The
intragroup transmission times are all 1. The intergroup transmission times and the
wake-up times are chosen as in Fig. 2. This completes the proof of Theorem 4.2. a

5. Collusion. -

5.1. Upper bound. In this section we examine the distributed firing squad problem
in the authenticated Byzantine model, in which faulty processors may share signature
functions but they cannot rush messages. ‘

THEOREM 5.1. In the model with Byzantine failures and authentication where faulty
processors can collude but cannot rush, there exisis a t-resilient distributed firing squad
algorithm requiring n = 2t + 1 processors, 2t + 1 rounds, and an amount of communication
polynomial in n.

We describe the main ideas informally before giving the formal proof. As in the
other protocols, correct processors attempt to build messages signed by several pro-
cessors and to use the length of these messages to synchronize. Since faulty processors
can add several signatures at a given step, we wish to obtain a sort of “notarization”
for each signature in a string of signatures guaranteeing that a specific amount of time
was spent adding the signature.

In the straightforward approach, a processor p requests notarization of a signed
message E,(m) by broadcasting E,(m). Then all processors attempt to obtain at least
i+1 acknowledgments of the form E,(E,(m)). The list

m'=(E,(E,(m)),- -, E,, (E,(m)))

is the notarization of E,(m). If the length of a message is the number of notarizations

THE DISTRIBUTED FIRING SQUAD PROBLEM 1005

it has undergone, then a message of length k requires exactly 2k steps to be constructed,
even if the k signers of the message are faulty. Although conceptually simple, this
approach leads to an algorithm with communication complexity exponential in £, since
each notarization increases the size of a message by at least the factor t+1. Our
algorithm uses the idea of notarization with an implementation that is harder to prove
correct but that requires communication only polynomial in n. The basic idea is as
follows. Suppose that p has received a notarized message m in the form of at least
t+1 signatures of m by distinct processors. Then p “requests support” of E,(m) by
broadcasting E,(m) together with a “proof” that m was notarized. This proof consists
of 1+ 1 signatures of m by distinct processors. Any correct processor g receiving E,(m),
together with such a proof, “supports” E,(m) by signing E,(m) and broadcasting the
result. The key fact is that the proof that m was notarized can be thrown away by ¢
at this point, so message length does not grow exponentially. The idea of notarization
and its implementation below is similar to the fault-tolerant distributed clocks described
in [1], [12]. Similar ideas were also used in [27].

Proof of Theorem 5.1. We first define certain types of messages. A proper message
has the form '

Eil(Eiz(‘ e Ei,((pik) “))

where the k signatures are by distinct processors. Such a message is called an «,-message.

At various times in the protocol, processors may request support for a message
m. A processor p supports m by sending a support message of the form E,(support m).
We let S(m) denote a support message for m.

A proof of a message m is a list of ¢+ 1 support messages for m, each signed by
a distinct processor. We let P(m) denote a proof for message m.

A processor p requests support for a message E,(m) by broadcasting a message
of the form (E,(m), P(m)). We let R(E,(m)) denote a request for support of E,(m).
When E,(m) has the form oy, k> 1, we call this request an R,-message. An R,-message
has the form (E,(p), A), where A denotes the empty string::

We now describe the protocol for a correct processor p. At every step p may issue
both support messages and requests for support. In particular, after receiving at each
step, p does the following.

(1) p chooses the maximum i such that p can form an R;-message, R(E,(m)) =
(E,(m), P(m)), where E,(m) is proper and p could not form an R;-message at any
previous step. If such an i exists then p broadcasts an R;-message. If it can construct
several syntactically distinct R;-messages, then it arbitrarily chooses one to broadcast.

(2) For each processor g, p chooses the maximum j such that p receives an
R;-message (E,(m), P(m)) from q. If j<t+1, then p broadcasts the corresponding
support message E,(support E,(m)).

(3) If p receives an R;-message for some j=t¢+1, then p fires.

Viewing the number of signatures on a message as a clock, the two key lemmas
state that the faulty processors cannot increment the clock faster than by 1 within two
steps (Lemma 5.1.1) and that the correct processors can increment the clock at least
that quickly (Lemma 5.1.2).

LEMMA 5.1.1. Let R(m) be an R,-message and let s be the earliest time at which
some correct processor sends R(m). Let s' be the earliest time at which some (possibly
faulty) processor q sends R(m'), where m’ is an o-message of the form E,(E.(- - - (m)).
Then s'=s+2(j—i).

Proof. The proof is by induction on j—1i.

1006 B. A. COAN, D. DOLEV, C. DWORK, AND L. STOCKMEYER

Basis j—i=0. Since R(m) is sent by a correct processor, m is of the form E,(m")
for some correct processor p. Since m'=m in this case, and since g cannot forge p’s
signature, ¢ cannot construct R(m') before time s.

Assume the lemma inductively for j—i=k Let j=i+k+1. Let m"=E,(- - -(m))
be such that E,(m")=m’'. By the inductive hypothesis R(m") can be constructed no
sooner than step s+2(j—i—1).

If g constructs R{(m') at s', then g constructs P(m”) at s', so g receives t+1 S(m”")
messages no later than time s'. Thus some correct processor received R(m") at s'—1,
so R(m") was sent not later than s'—2. We therefore have s'—2=s+2(j—i—1) by
the inductive hypothesis, so s'= s+2(j —i) and the induction holds.]

LemMA 5.1.2. Fix a time s. Let i be the maximum i such that a correct processor
broadcasts an R;-message at time s, and let p be such a processor. If i<t+1, then by
time s +2 some correct processor q forms and broadcasts an R;-message for some j= i+ 1.

Proof. Without loss of generality, we may assume s is the first time at which p
can construct an R;-message. In this case p broadcasts R(E,(m))=(E,(m), P(m)) at

s ({E,(m), Ay if i=1), where E,(m) is an a,-message, and every processor receives
R(E,(m)) at time s+ 1. Since thls is the only request for support sent by p at s, every
correct processor responds by broadcasting S(E,(m)) at s+1. Thus all processors
receive n—t=t+1 S(E,(m)) messages at s+2, each signed by a distinct processor,
so at time s+2 every correct processor can construct a proof for E,(m). By signing
E,(m) to obtain an «;,,-message and combining this with the proof for E,(m), any
processor that has not already signed E,(m) can construct an R,,,-message. Because
i<t-+1, there is at least one such correct processor, say, g. If g has already broadcast
an R;-message for some j=i+1, then the lemma holds trivially. Otherwise, by Step 1
of the protocol and the fact that it can construct an R;;-message, g will broadcast
an R;-message for some j=i+1 at time s+2. 0

LeEmMMA 5.1.3. If any correct processor awakens, then every correct processor even-
tually fires. Moreover, if s is the earliest time when some correct processor awakens, then
every correct processor fires by time s+2t+1.

Proof. Upon awakening, each correct processor ‘forms and broadcasts an R;-
message, for some j=1, since the proof of an R,-message is the empty string. Let p
be the first correct processor to awaken, and let s be the time at which it awakens. By
t applications of Lemma 5.1.2, some correct processor constructs and broadcasts an
R;-message for some j=t+1 by time s+2t Thus every correct processor fires by
s+2t+1. 0

Lemma 5.1.4. In any execution of the protocol resulting in a firing, all correct
processors fire simultaneously.

Proof. Let p be the first correct processor to fire and let f be the time at which p
fires. If p fires at f then, for some k=1¢+1, p receives an R,-message at f. Let R(m’)
be such a message. Without loss of generality let m'= E, (- - - E,(E,(p,))). Let i be the
maximum i, 1 =i =k, such that p; is correct. (Since there are at most ¢ faulty processors,
some such p; exists.) If p;=p,, then all processors receive R(m’') at f so all fire
simultaneously at f.

If i <k, then at some round f'<f, p; broadcast an R;-message. This message was
received by all correct processors no later than round f'+1=f If i=¢+1, then by
Step 3 of the protocol all correct processors fire at f'+ 1. Since f is the first round at
which any correct processor fires, we have f'+1=f, and all correct processors fire
simultaneously.

We now consider the case i< t+1. Let s be the time at which p; broadcasts R(m),
where m = E;(- - - (E;(p,))). Since p; is correct, s is the earliest time at which R(m) is

THE DISTRIBUTED FIRING SQUAD PROBLEM 1007

sent. By Lemma 5.1.1, no processor can construct R(m') before step s +2(¢+1—1i), so
fSZs+2(t+1-1i)+1. By t+1—i applications of Lemma 5.1.2, some correct processor
constructs and broadcasts an R;-message for some j=t+1 by time s+2(¢t+1—1), so
every correct processor receives such an Ri-message by time s+2(¢+1—1i)+1. Thus
all correct processors fire by time s+2(z+1~1i)+1. Since p is the first correct processor
to fire and p fires at f, we have f=s-+2(f+1—1i)+ 1. Thus all correct processors fire
simultaneously at f. I

It is now easy to complete the proof of Theorem 5.1. By Lemmas 5.1.3 and 5.1.4,
the algorithm is ¢-resilient. By Lemma 5.1.3, every correct processor fires within 2¢+1
rounds after the first correct processor awakens. Finally, at each step a correct processor
broadcasts at most one request for support and n support messages, so at each step
the number of bits sent by any correct processor is polynomial in n. Since there are n
processors and O(n) steps, the total amount of communication is polynomialin 7.]

5.2. Lower bound.

THEOREM 5.2. In the fault model of Theorem 5.1 (Byzantine faults with authentica-
tion, collusion, but no rushing), if t=3, there is a t-resilient distributed firing squad
algorithm only if n= |5¢/3] +1.

Proof. The general outline of the proof is similar to the proof of Theorem 4.2.
Consider the impossibility proof for t =3 and n =5. We consider six scenarios, with
three faulty and two correct processors in each. Figure 3 shows the message transmission

&’?\\i Pz

| /) \\ //

Scenano 1 Scenano 2
2 2

‘//@7\\; FZANY
WL @4 ; 2\\ N J

Scenarlo 3 Scenano 4

~— 1 >
Scenarro 5 Scenario 6

F1G. 3. The scenarios used to prove Theorem 5.2.

1008 B. A. COAN, D. DOLEV, C. DWORK, AND L. STOCKMEYER

times, wake-up times, and which processors are faulty in each scenario. A link that is
not drawn in these scenarios means that the faulty processor at one end of the link
does not communicate along that link; i.e., no messages are sent along that link by
the faulty processor, and messages received along that link are ignored. The link drawn
as a dotted line is used only by faulty processors. Therefore, in each scenario the
network is essentially a ring from the point of view of a correct processor. In each
scenario, two of the faulty processors simulate a “timing fault” where messages in one
direction take time 2 and messages in the other direction take time 0. The only
nonobvious part is simulating a transmission time of zero. To see how this is done
focus, for example, on Scenario 1, where messages from C to B take zero time. Note
that D is also faulty in Scenario 1. Whenever D takes a step at some time x in which
it should send the message m to C, it sends m to B also. At time x+1, B has enough
information to do the processing that C would do at time x+1 to find the message
m' that C should send to B at time x +1 (the ability of B to sign messages with C’s
signature is necessary here). But B has m’ during the step it is executing at time x+1,
thus simulating the transmission of m' from C to B in zero time. Message transmission
time of 0 is simulated similarly in the other scenarios.

By following the proof of Theorem 4.2, it is straightforward to show that analogues
to Lemmas 4.2.1 and 4.2.2 hold. (Formally, in defining equivalence of scenarios, only
messages sent along the ring links are included in message histories; the messages sent
over dotted links are not included.)

The proof for general n and ¢ is done by replacing each processor by a group of
at most |t/3]| or at most | /3] +1 processors in such a way that the total number of
faulty processors never exceeds ¢ in any of the scenarios. 0

Remark. Regarding the condition =3 in Theorem 5.2, by using the assumption
that the receiver of a message knows the identity of the sender, it is not hard to find
a 2-resilient distributed firing squad algorithm for any number n=2 of processors.
Briefly, the algorithm is a modification of the algorithm used to prove Theorem 3.1 in
the case of no collusion and no rushing. In the modified algorithm, whenever a processor
p sends a message m to a processor ¢, p attaches a header to m that says ‘“‘the next
signer of this message should be processor ¢”’. When checking acceptability of a proper
message

m=E,; (E,(- - E, (Awake) - -)

p also checks that m was received from processor p; and that each signature in m
matches the header of the message being signed. This effectively prevents two faulty
processors from adding two signatures in one step, even if they collude. Given this
observation, the correctness proof is identical to that of Theorem 3.1, and details are
left to the reader. (Note, however, that the modification does not prevent three faulty
processors from adding three signatures in two steps, so this method does not generalize
to t=3.)

Remark. We can close the fault-tolerance gap between Theorems 5.1 and 5.2 by
adding the requirement that each correct processor must broadcast one message at
each step (formally, if (m,, m,, - -+, m,) is in the range of some sending function S;,
then m;=m,=---=m,). Note that the algorithm of Theorem 5.1 meets this require-
ment. With this requirement, the proof of the lower bound, Theorem 5.2, can be done
with a ring of four processors, two of which are faulty, thus improving the lower bound
to n=2¢+1. This can be done because the broadcast condition prevents the correct
processors from hiding from the faulty processors signed text that these faulty pro-
cessors would otherwise have to forge. Details are left to the reader. (Note that this

THE DISTRIBUTED FIRING SQUAD PROBLEM 1009

result applies to communication systems like the Ethernet, in which eavesdropping
cannot be avoided.)

6. Related results.

6.1. Byzantine agreement with nonunison start. Suppose we want to solve authenti-
cated Byzantine agreement when the correct processors do not all awaken at the same
time and the faulty processors can rush. For simplicity, we consider the version of the
Byzantine agreement problem as in [11], where the protocol is initiated by a single
“sender”” processor p that wants to send a ““value” v to all the processors. If the sender
p is correct, then p sends E,(v) to all processors at exactly the same step; in this case,
we require that all correct processors eventually decide that v was the value sent by
p- If the sender p is faulty, it can initially send different values to different processors,
and it can send values at different times; in this case, we require that if any correct
processor decides on a value u, then all correct processors must decide on u. The
second type of faulty behavior, initiating the protocol at different times with respect
to different processors, is not considered in Dolev and Strong [11], and their efficient
(t+1 round) algorithm does not work in this case. An obvious solution would be to
first run the firing squad algorithm of Theorem 4.1 to synchronize the processors and
then run the Dolev-Strong algorithm for a total time of 2¢+6. This time can be
improved to ¢ + 5 by modifying the algorithm of Theorem 4.1 to solve agreement directly.

THEOREM 6.1. In the model with Byzantine fuailures and authentication, in which
Jaulty processors can both rush and collude, there is a t-resilient protocol for Byzantine
agreement with nonunison start, requiring t+35 rounds, n=3t+1 processors, and com-
munication polynomial in n.

Proof. The algorithm of Theorem 4.1 is modified by associating a value with every
core and with every notarized core. Let h be a function that maps a set of values to
a single value as follows: h({v})=wv; if S is not a singleton set, then h(S)=0. The
value associated with the core

(Eil(Ep(v]))’ T, Eik(Ep(vk))>
is h({vy, - - -, v }). The value of the notarized core
<Ei,(cl): Y, Ei,\(ck»

is h applied to the set containing the values of the cores C,, - - -, C,. Each processor
q remembers the set V, of values of notarized cores that it has seen in acceptable
messages. In addition to the previous algorithm for signing and forwarding acceptable
messages, whenever g receives an acceptable message m containing the notarized core
N, and if the value of N is not currently in V,, then that value is added to V, and ¢
signs m and broadcasts the result E,(m). At the point where g receives an acceptable
message of length t+1, g signs and broadcasts “decide, h(V,)”. A processor decides
v if it receives, at the same step, at least 1+ 1 messages ““decide, v” signed by different
processors. The correctness proof is very similar to the correctness proof given in § 4;
only Lemma 4.1.10 requires modification. Details are left to the reader. 0

A similar modification to the algorithm solves the version of the agreement problem
where each processor begins the algorithm with an initial value.

A drawback in modifying a distributed firing squad algorithm to solve agreement
is that it requires n>3t. By adapting an algorithm of Cristian, Aghili, Strong, and
Dolev [7] to the model used in this paper, there is a completely different solution, not
using firing squad ideas, which tolerates any number 7= n of faults but which takes

1010 B. A. COAN, D. DOLEV, C. DWORK, AND L. STOCKMEYER

2t+2 rounds. It is an open question whether arbitrary fault tolerance and time ¢+ O(1)
can be obtained simultaneously.

6.2. Distributed firing squad with a global clock. At this point, one might suspect
that the difficulty of the distributed firing squad problem is due to the processors
having no common notion of global time. We show now, however, that the problem
does not become trivial, even with a common clock, although for one fault model the
problem does become easier. Informally, a common clock means that at each integer
time s, all correct processors taking their unison step at time s know that it is time s.
(More formally, the state set Q; of p; is partitioned into sets Q,; for integer j =0, and
all transitions from a state in Q,; must go to states in Q,;.,. Each set Q;; contains a
copy g, ; of the quiescent state. The initial state of p; is qop. If p; is in state g, ; and
receives only null messages, then p; next enters state qq j4;.)

Let the clocked distributed firing squad problem be defined like the distributed
firing squad problem, but in the mode! with a common clock. We first give a reduction
similar to that of Theorem 3.2. As corollaries of this reduction, clocked distributed
firing squad still requires t+ 1 rounds for fail-stop faults, and n=3¢+1 is needed in
the unauthenticated Byzantine case.

THEOREM 6.2. Let A be an algorithm for clocked distributed firing squad that is
t-resilient to fail-stop faults (respectively, unauthenticated Byzantine faults) and that has
time complexity of k rounds. Then there exists an algorithm for WBA that is t-resilient
to fail-stop faults (respectively, unauthenticated Byzantine faults) and that always halts
in k rounds.

Proof. Given A, define the function f on the natural numbers as follows. For a
given integer r = 0, consider the run of A in which all processors wake up at (common)
time r and there are no faults; then f(r) is the (common) time when all processors
fire. Since f(r)=r for all r, there must be a time s such that f(s+1)> f(s).

Now consider an instance of WBA in which processor p; has initial value v;. If
v; =0, then p; begins simulating A as though it were time s. That is, at time 0 of the
WBA algorithm, p; acts as though it were in state g, ; receiving the awake message
from w and null messages from the rest. If v, =1, then p;, waits one step during the
WBA algorithm and begins simulating A as though it were awakened at time s+ 1.
(In general, time i in the WBA algorithm corresponds to time s+i in the simulation
of A.) Let m = f(s)—s. If the simulation of A causes p; to fire within m steps after the
beginning of the WBA algorithm, then p; decides 0 at time m; otherwise, p; decides 1
_ at time m. Since A has time complexity k, we have m = k. The correctness proof for
this WBA algorithm is very similar to the proof of Theorem 3.2 and is left to the
reader. o

The next result concerns the case of Byzantine faults with authentication and
rushing and shows that the clocked version of the problem is easier for this fault
model; specifically, the fault-tolerance improves to any t = n, and the time is optimal.

THEOREM 6.3. In the model with Byzantine failures and authentication, in which
Sfaulty processors can both rush and collude, there is a t-resilient clocked distributed firing
squad protocol requiring t+1 rounds, n =t processors, and communication polynomial
in n.

Proof. 1n this algorithm, a proper message has the form

m=E,(E (- E,(“fire at ¢”)- - -))

where ¢ is a natural number modulo ¢+1, where k=1, and where the k signatures
are by distinct processors; the length of m is k and the content of m is c¢. Such a

THE DISTRIBUTED FIRING SQUAD PROBLEM 1011

message is acceptable at common time r if and only if r = ¢+ k mod (¢ +1). This message
is new to p if p’s signature does not appear in m.

A processor p that is awakened by the Awake message at common time s computes
c=smod (t+1) and broadcasts E,(“fire at ¢’). If any processor g receives one or
more new acceptable messages with content ¢ at some time, g arbitrarily chooses one,
say m, and broadcasts E,(m). A processor g fires at common time z if g has received,
at time z or earlier, an acceptable message m with content ¢, where ¢=z mod (¢t+1)
such that message m has not caused g to fire at any time earlier than z.

It is clear that if some correct processor awakens at common time s, then all
correct processors fire on or before common time s+ ¢+ 1. To argue that all correct
processors fire together, we note that if m is new and acceptable to some correct p at
time r, then E,(m) is acceptable to all correct processors at time r+1. Let z be the
earliest time when some correct processor fires, and let p be a correct processor that
fires at z. Therefore, p received an acceptable message m with content ¢, where
c=zmod (t+1). If m was received before time z, then all correct processors receive
an acceptable message with content ¢ on or before time z, because p must have
broadcast such a message before time z. If m is received by p at time z then
z=c+kmod (t+1) where k is the length of m, because m is acceptable at time z.
Since ¢c=zmod (¢t+1) and k=1, it follows that k=¢+1. So m must contain the
signatures of 71+ 1 processors, at least one of which is correct, and again it is easy to
argue that all correct processors received an acceptable message with content ¢ by
common time z. 0

Acknowledgment. We are grateful to Nancy Lynch for saving an extra round in
our reduction of the WBA problem mentioned in § 3.2.

REFERENCES

[1] C. AtTiYA, D. DOLEV, AND J. GI1L, Asynchronous Byzantine consensus, Proc. 3rd ACM Symposium
on Principles of Distributed Computing, 1984, pp. 119-133.
[2] A.BAR-NoOY AND D. DOLEYV, Families of consensus algorithms, Proc. Aegean Workshop on Computing,
Greece, 1988, pp. 380-390.
[3] J. E. BURNS AND N. A. LYNCH, personal communication, 1984.
[4] , The Byzantine firing squad problem, in Advances in Computing Research: Parallel and Dis-
tributed Computing, Vol. 4, JAI Press Inc., Greenwich, CT, 1987, pp. 147-161.
[5] B. A. CoaN, A communication-efficient canonical form for fault-tolerant distributed protocols, Proc. 5th
ACM Symposium on Principles of Distributed Computing, 1986, pp. 63-72.
[6] B. A. CoaN AND C. DWORK, Simultaneity is harder than agreement, Proc. 5th IEEE Symposium on
Reliability in Distributed Software and Database Systems, 1986, pp. 141-150.
[7] F.CrisTIAN, H. AGHILI, R. STRONG, AND D. DOLEV, Atomic broadcast: From simple message diffusion
to Byzantine agreement, Proc. 15th International Conference on Fault Tolerant Computing, 1985,
pp- 1-7.
[8] D. DoLEv, C. DWORK, AND L. STOCKMEYER, On the minimal synchronism needed for distributed
consensus, J. Assoc. Comput. Mach., 34 (1987), pp. 77-97.
[9] D. DoLEV, M. J. FISCHER, R. FOWLER, N. A. LYNCH, AND H. R. STRONG, Efficient Byzantine
agreement without authentication, Inform. and Control, 52 (1982), pp. 257-274.
[10] D. DoLEvV, R. REISCHUK, AND H. R. STRONG, Eventual is earlier than immediate, Proc. 23rd IEEE
Symposium on Foundations of Computer Science, 1982, pp. 196-203.
[11] D. DoLev AND H. R. STRONG, Authenticated algorithms for Byzantine agreement, SIAM J! Comput.,
12 (1983), pp. 656-666.
[12] C.DwoRrk, N. LYNCH, AND L. STOCKMEYER, Consensus in the presence of partial synchrony, J. Assoc.
Comput. Mach., 35 (1988), pp. 288-323.
[13] C. DWORK AND Y. MOSES, Knowledge and common knowledge in Byzantine environments 1: Crash
failures, Proc. Conference on Theoretical Aspects of Reasoning About Knowledge, Morgan-
Kaufmann, Los Altos, CA, 1986, pp. 149-170.

1012 B. A. COAN, D. DOLEV, C. DWORK, AND L. STOCKMEYER

[14] M. J. FisCHER, N. A. LYNCH, AND M. MERRITT, Easy impossibility proofs for distributed consensus
problems, Distributed Computing, 1 (1986), pp. 26-39.

[15] M. J. FISCHER, N. A. LYNCH, AND M. PATERSON, Impossibility of distributed consensus with one
Sfaulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374-382.

[16] J. HALPERN, B. SiMoNs, H. R. STRONG, AND D. DOLEYV, Fault-tolerant clock synchronization, Proc.
3rd ACM Symposium on Principles of Distributed Computing, 1984, pp. 89-102.

[17] L. LAMPORT, The weak Byzantine generals problem, J. Assoc. Comput. Mach., 30 (1983), pp. 668-676.

[18] L. LAMPORT AND M. J. FISCHER, By:zantine generals and transaction commit protocols, Tech. Report
Op. 62, SRI International, Menlo Park, CA, 1982.

[19] L. LAMPORT AND P. M. MELLIAR-SMITH, Synchronizing clocks in the presence of faults, J. Assoc.
Comput. Mach., 32 (1985), pp. 52-78.

[20] L.LAMPORT, R. SHOSTAK, AND M. PEASE, The Byzantine generals problem, ACM Trans. Programming
Languages and Systems, 4 (1982), pp. 382-401.

[21] J. LUNDELIUS WELCH AND N. LYNCH, A new fault-tolerant algorithm for clock synchronization,
Inform. and Comput., 77 (1988), pp. 1-36.

[22] M. MERRITT, personal communication, 1984.

[23] E. F. MOORE, The firing squad synchronization problem, in Sequential Machines, Selected Papers,
E. F. Moore, ed., Addison-Wesley, Reading, MA, 1964.

[24] Y. Mosgs AND O. WAARTS, Coordinated traversal: (t+1)-round Byzantine agreement in polynomial
time, Proc. 29th IEEE Symposium on Foundations of Computer Science, 1988, pp. 246-255.

[25] M. PEASE, R. SHOSTAK, AND L. LAMPORT, Reaching agreement in the presence of faults, J. Assoc.
Comput. Mach., 27 (1980), pp. 228-234. :

[26] T. K. SRIKANTH AND S. TOUEG, Optimal clock synchronization, J. Assoc. Comput. Mach., 34 (1987),
pp. 626-645.

, Byzantine agreement made simple: Simulating authentication without signatures, Distributed

Computing, 2 (1987), pp. 80-94.

[27]

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23

