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Abstract. – The ability to perform an efficient search in a complex network is of great
importance in real-world systems. We suggest a method for searching for nodes when the source
does not possess full information about the shortest path to the destination. By assigning new
short names to nodes we are able to reduce significantly the amount of information stored at
the nodes, such that the required memory needed scales only logarithmically with the network
size; yet we succeed in finding the destination node through paths very close in distance to
the shortest ones. The method is shown to perform particularly well on scale-free networks,
exploiting its unique characteristics. This, together with other properties, makes our method
extremely useful for realistic systems such as the Internet.

Introduction. – Complex systems whose interactions can be described as networks have
captured much attention in recent years. In particular, understanding the structure of the
Internet is of great importance, due to its rapidly increasing effect on our everyday life [1–4].
Now that significant progress was made in understanding the structural properties of complex
networks, attention can be focused into developing novel methods and algorithms that exploit
those unique properties for a better utilization of the network resources. One of the most
important tasks in network science is searching, as follows. Assume that we are located at a
certain site, or node, and we want to send some signal to some other node. We usually know
the name of the destination node, but we do not necessarily know the shortest path to it. Each
node on the path of the signal has to make the decision through which link to forward the
signal so that it reaches the destination as quickly as possible. In the context of communication
networks, the problem of searching is known as routing, routers send information packets to
other routers. In social networks, people are looking to communicate with other people, who
are not necessarily their close friends. For example, in the famous Milgran’s experiment [5],
each individual was given a name of an unknown person, and had to reach him by sending
post to intermediate people. When dealing with transportation networks, one simply has to
reach some place, going through a network of flights or roads.
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In the case that every node is familiar with the topology of the entire network, signals
can be sent through shortest paths; this requires every node to calculate the shortest path
tree from it to the rest of the network. However, this is not a realistic situation in large-scale
networks, such as the Internet or social networks, due to limited amount of resources (e.g.,
memory or computation time). A trade-off must be made between the quality of the path and
the requirements at the nodes. Various aspects of search with limited information have been
investigated [6–10]. These include local search strategies in small-world lattices and networks
with broad degree distributions, analysis of the trade-off between network congestion and
search efficiency, model for the amount of information that a network needs to hold (globally)
to perform shortest path searching and applications to various networks and search strategies.
For the sake of convenience of notation to this end we concentrate on the problem of

routing in communication networks; this without loss of generality, as our methods can be
applied in other fields as well. We will present a new method for routing where no knowledge
of the location of the destination node is given. In the context of communication networks,
such methods are usually known as “compact routing” schemes (see below).
Our method belongs to a class of routing schemes that are known as “labeling schemes”.

These work by giving new short names (labels) to the nodes in the system, such that the
new names will contain information that will be useful in the process of navigation to or from
the nodes. The scheme is then responsible for providing a protocol that will exploit the new
names to make the best possible routing decision, i.e. decide, in each intermediate node of
the trajectory of the information packet, what is the best link to send it through such that
it reaches the destination on shortest path. To demonstrate this, let us consider the case of
navigating in a city. If the names of the streets are chosen arbitrarily, it is usually difficult to
seek an unknown location. But, if the streets’ names are not meaningless (e.g. numbered as
in Manhattan), navigation becomes much easier, as we know from everyday experience.
In order for a labeling scheme to obtain good results several variables should be considered:

– The stretch is defined as the ratio of the actual routing path to the shortest path between
two given nodes. The smallest the ratio the more efficient the communication in the
network.

– The table size is the number of entries kept in storage at each node. The smaller the
table the more efficient the scheme in terms of memory requirements.

– The label size is the number of bits representing the name (or address) of each node.
The smallest possible label size needed to distinguish between every pair of sites is
logarithmic in the system size. Most efficient routing schemes use larger labels in order
to represent more information about the nodes.

Note that in large-scale systems (such as the real Internet) it is almost always not possible
to use a scheme in which the amount of storage needed scales like any power of the system
size. It is thus desirable to design the routing scheme in a way that would require considerably
smaller tables, in the cost of allowing for higher stretch and larger labels.
Graph theoreticians have been investigating compact routing for quite a while. The first

work on generalized routing with a trade-off of table size vs. label size and stretch was given
by Peleg and Upfal [11]. This scheme has later been extended by Thorup and Zwick [12] and
by Cowen [13]. All those schemes suffer from having to use a rather large table whose size
scales like some power of the system size. (Order of N1/2 to ensure an upper bound of 3 for
the stretch, or in general, order of N

2
s+1 for an odd stretch s.) A numerical study of the actual

stretch for Internet-like networks is presented in [14], showing that the actual performance of
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the above routing schemes, in terms of the average stretch, is much better than the worst case
guarantee.
In this work we discuss a class of routing schemes with a parameter H (1 ≤ H ≤ N), which

is proportional to the memory requirement at the nodes. We give arguments showing that the
ratio of the average routing distance to the average shortest path is below 2 with high probabil-
ity, no matter whatH is. For networks with power law degree distribution (scale-free networks)
such as the real Internet, the stretch is usually much lower, and we show analytically and nu-
merically that even when H scales only logarithmically with the system size H ∼ logν N for
ν ≥ 0, the actual stretch is very close to 1. Thus, a routing scheme that requires substantially
smaller tables and poly-logarithmic labels (see below) may lead to a very efficient routing.
When comparing properly, our scheme is found to be more efficient than previous ones; more-
over, as we will show, our scheme is simpler and more intuitive (e.g. it does not involve ran-
domization), and the trade-off between performance and memory requirements is controllable.

The scheme. – The proposed routing scheme consists of two stages: the preprocessing
and the actual routing.

Preprocessing. The H highest degree nodes are designated as the “hubs”. (Ties in the degree
are broken arbitrarily.) For each site i the closest hub hi is searched (ties are broken by
degree). Designate the shortest path from site i to its hub hi by vi0, vi1, vi2, . . . , vi,ni

,
where i = vi,0 and vi,ni

= hi. The label for site i will be Li = 〈i, vi,1, vi,2, . . . , vi,ni−1, hi〉.
The routing table for each node in the network contains the link leading to the shortest
path for each of the hubs, as well as a list of all of its immediate neighbors.

Actual routing. Assume a packet is sent from some initial node towards the destination node t.
As the packet reaches some intermediate node x, it is handled by the following algorithm:

1) If x = t then stop.

2) If t is a neighbor of x, then send the packet directly to t.

3) Otherwise, if x ∈ Lt, i.e. x = vt,j for some j, then move the packet to vt,j−1.

4) Otherwise, search for ht in the table and send the packet through the appropriate
link.

Analysis. – Let us first look at the average running time. It can be easily shown that the
preprocessing step can be performed in time linear in the system size (times the number of
hubs H), whereas the actual routing decision can be performed in practical cases in constant
time. This makes our scheme efficient by means of running times.
To analyze the performance of the scheme by means of the actual routing path length, we

will consider the Configuration Model of [15] as our random network model. The networks in
this model are created by the following process: given a network with N nodes, and a degree
sequence ki,1≤i≤N , create a list containing ki copies of each node i, and choose a random
matching on this list to create the edges of the network. We ignore self-loops and multiple
edges, which are statistically insignificant [16].
The main degree sequence we will discuss is of scale-free networks: P (k) ∼ k−γ , (with

k ≥ kmin). Networks with the above degree sequence have been extensively investigated in
recent years, due to the fact that they were found to be abundant in Nature [2]. Such networks
were found to describe various systems such as biological, ecological, social and technological
systems. In particular, the Internet [1] and P2P networks are scale-free [17]. Another degree
sequence which we will use for comparison is the one of the Erdös-Rényi (ER) random network
model, P (k) = e−γγk

k! .
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We now look at the average distance traveled by a packet relative to the average shortest
path in the network. The average is taken over all pairs and all configurations of the network
in the network model presented above.
We use the following lemma. Let a1 and a2 be nodes with respective degrees ka1 ≥ ka2 ,

and b be any other random node. Denote by d(a, b) the length of the shortest path between
nodes a and b, then we claim that

P (d(a1, b) ≤ l) ≥ P (d(a2, b) ≤ l) (1)
for all l’s.
To see this, we consider only cases in which the paths a1 → b and a2 → b exist (otherwise

the distance is not defined). Now fix the connections in the sub-network formed by deleting a1

and a2 from the original network, and consider the links between this sub-network and {a1, a2}.
Assume that p of the links lead to paths of length l, which is the length of the shortest path to b.
If the network is with high probability fully connected (as in random networks in which

all degrees are at least 3 [18], and the case of the Internet), then the ratio of matchings for
which d(a1, b) = l and d(a2, b) > l to those where d(a1, b) > l and d(a2, b) = l is

(
ka1
p

)
/
(
ka2
p

)
,

and therefore the distance is a non-increasing function of the degree.
In cases where the network is not fully connected, we must condition the relevant matchings

on the demand that both a1 and a2 are connected to b. It can be shown that also in these
cases eq. (1) is valid. Therefore we conclude that, 〈d(a, b)〉, for some random node b, is a
non-increasing function of ka:

∀a1, a2, b, ka1 ≤ ka2 ⇒ 〈d(a2, b)〉 ≤ 〈d(a1, b)〉 (2)

Next we use the notation d(a, b) for the length of the shortest path between nodes a and
b, and r(a, b) for the distance traveled by a packet sent from a to b using the above algorithm
(notice that r(a, b) need not be symmetric, as opposed to d(a, b)). We argue that in the
proposed routing scheme, the expected average stretch S ≡ 〈r(a,b)〉

〈d(a,b)〉 ≤ 2.
Denote the source node as s, the destination as t, the hub of t as ht, and the lengths of

the direct paths between them d(s, t), d(s, ht), d(t, ht). By the construction of the scheme:

S =
〈r(s, t)〉
〈d(s, t)〉 ≤ 〈d(s, ht) + d(ht, t)〉

〈d(s, t)〉 =
〈d(s, ht)〉
〈d(s, t)〉 +

〈d(ht, t)〉
〈d(s, t)〉 . (3)

Consider first the case that the hub ht is just a random node, call it r. Because of
symmetry, there no reason why any of the distances d(s, t), d(s, r), d(r, t) would be larger
than the other, therefore on average the total routing distance d(s, r)+d(r, t) is just twice the
shortest distance d(s, t), or the average stretch is 2.
This is true for any random node being a hub, but we are choosing the hubs as nodes with

high degree. Since eq. (2) states that the average distance between a random node and a hub
is smaller than the distance between two random nodes, we expect the average distances to
and from the hub to be small, i.e. we expect d(s, ht) ≤ d(s, t) and d(ht, t) < d(s, t), thus we
expect that the average stretch S ≤ 2.
(The cases in which ks, kt > kht

are treated easily. Since ht is the hub of t, then even if s
is a hub then by the definition of the scheme ht is closer to t than s, and d(ht, t) ≤ d(s, t); if t
is a hub the routing is through the shortest path by construction. Thus we can assume that
s and t are not hubs and ks, kt ≤ kht

.)
Note that direct application of eq. (2) is not possible since in the derivation we assumed

the three nodes {a1, a2, b} are fixed, while in our case rewiring might cause ht not to be the
hub closest to t anymore. Nevertheless, there is no reason to assume the inequalities will
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be invalid for the reduced configuration space where we force ht to be the hub closest to t.
Paradoxically, if there is only one hub, then the three nodes are fixed and we can apply eq. (2)
directly, to prove S ≤ 2. It is however obvious, and confirmed by simulations, that increasing
H would decrease the stretch.
Few more properties follow directly from the proposed scheme. a) The label size (in bits)

for the proposed scheme is at most (D + 1) log2 N , where D is the diameter of the network.
b) The table size at every node contains H +k entries, where k is the degree. c) The contents
of the packet need not be changed through the routing process. Another important property
is that the scheme is a shortest-path routing for a tree. This follows since in a tree there is
only one path between any two nodes, so either the hub is on the path, or the destination is
on the path to the hub, or there exists some node on the path to the hub which is also on the
path to the destination.
For scale-free networks we can show some better bounds on the label size and the stretch.

It has been shown [19,20] that with high probability the average distance between nodes scales
like 〈d〉 ∼ log logN and the diameter like dmax ∼ logN (for kmin ≥ 2 the diameter is also
expected to be of order log logN). Therefore, it can be concluded that the maximum label
size is of order |L|max ∼ log2 N and the average label size is 〈|L|〉 ∼ logN log logN . For
scale-free networks with γ < 3, tighter bound for the stretch can be obtained. The radius of
the core (the location of all high-degree nodes) is of order log logN , and almost all the mass is
concentrated outside the core (see, e.g., [19,21]). Now, looking at a ball around a random site
with a radius a little smaller than the radius of the network, it is expected that the ball will
not include the largest hub (since most sites are outside the core). Since the size of the largest
hub is of order N1/(γ−1) � N1/2 [22] for γ < 3, it is expected that the ball has less than
N1/2 outgoing links (since any two balls with more than N1/2 outgoing links are connected
with high probability). Any two such balls are not expected to be connected between them,
since the product of their “degree” (number of outgoing links) is less than N , so the distance
between any two random sites is expected to be almost twice the radius (for a rigorous proof
of this see [21]). Thus the path through the hubs is almost optimal with high probability, and
the stretch between 2 randomly selected sites is expected to approach 1 for large N .

Simulation results. – To demonstrate the efficiency of the scheme, we present computer
simulation results. For all networks, we use the parameters N = 10000, γ = 2.3, and average
over many realizations. (The stretch of a network is calculated as an average over the stretch
of all pairs, as in [14]). To begin with, we verify that the labels are indeed small (fig. 1(a)).
Next we have tested the scheme with the most recent representation of the Internet at

the AS level [23]; the average stretch factor turned out to be as low as 1.067, with 79% of
paths being shortest (as opposed to 1.09 and 71% in [14]). In fig. 1(b) we show the cumulative
distribution of stretch values for routing between all pairs in a random realization of the
configuration model (with power law degree distribution), for different system sizes. It can
be seen that not only most of the routes are along the shortest path, but the number of
exceptionally high stretches becomes more and more rare as the system grows.
Figure 2(a) shows the average stretch value as a function of the network size, compared

for a few values of ν (in H ∼ logν N) in power law networks, and for H ∼ log3 N for ER
networks. It can be seen that the average stretch in the scale-free networks is significantly
better than in the ER case and is virtually independent of the network size. One can also see
that the stretch depends only weakly on the number of hubs; therefore, to achieve an efficient
routing, one need not use too many hubs.
In fig. 2(b) we study the variation in the stretch when the parameters of the power law

degree distribution are changed. We compute the stretch for kmin = 1, 2, 3 and for various
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Fig. 1 – (a) Label size distribution for scale-free networks. Typical label is extremely short, what
makes our scheme efficient also in terms of bandwidth utilization. (b) Stretch distribution for a scale-
free network (H ∼ log(N)). The (inverse) cumulative probability distribution is shown, i.e. for a
given stretch value, we plot the probability to have a larger stretch. In the case of N = 10000, 75%
of the paths are shortest paths.

values of γ. The behavior of the stretch can be explained, as when we move to higher values
of γ, the network becomes more sparse and tree-like. On the one hand, recall that the scheme
is optimal for the tree structure; on the other hand, when γ increases we have less and less
“real hubs”, the network becomes similar to an ER network, on which the scheme performs
worse, as shown above. For kmin = 1 the tree structure effect is much stronger; for kmin = 3
many loops remain thus the effect of losing the hubs is stronger; for kmin = 2 neither of the
effects is more significant.

Fig. 2 – (a) Average stretch vs. network size, for scale-free networks with different number of hubs,
H ∼ logν N , ν = 0, 1, 2, 3 and ER network (〈k〉 = 7) with ν = 3. In all simulations H was scaled
such that H(N = 10000) = 100. It can be seen that the performance of the scheme is much better
for the scale-free network, with virtually no dependence in the network size and the number of hubs.
(b) Average stretch vs. γ for a power law network with kmin = 1, 2, 3.
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Summary. – In summary, we have presented an efficient method for searching, or routing,
in an environment where full knowledge of the network topology is not available. Our scheme
works by changing the names of the nodes to more meaningful names, that contain the path
to the closest hub, where the hubs are chosen as nodes with highest degree.
In real-world systems it is important that the amount of information stored at the nodes

will scale no worse than logarithmically with the system size. We have shown, numerically
and analytically, that even with this constraint, our schemes perform very well. Our methods,
which are simple and intuitive, can thus be considered for application in scale-free networks,
such as the Internet, P2P networks, social networks or transportation networks.
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[8] Valverde S. and Solé R. V., Eur. Phys. J. B, 38 (2004) 245.
[9] Rosvall M., Grönkund A., Minnhagen P. and Sneppen K., Phys. Rev. E, 72 (2005) 046117.

[10] Trusina A., Rosvall M. and Sneppen K., Phys. Rev. Lett., 94 (2005) 238701.
[11] Peleg D. and Upfal E., J. ACM, 36 (1989) 510.
[12] Thorup M. and Zwick U., Proceedings of the Thirteenth Annual ACM Symposium on Parallel

Algorithms and Architectures 1 (ACM Press) 2001.
[13] Cowen L., J. Algorithms, 38 (2001) 170.
[14] Krioukov D., Fall K. and Yang X., IEEE INFOCOM (IEEE) 2004.
[15] Bollobas B., Eur. J. Combinatorics, 1 (1980) 311.
[16] Newman M. E. J., SIAM Rev., 45 (2003) 167.
[17] Ripeanu M. and Foster I., Lect. Notes Comput. Sci., Vol. 2429 (Springer) 2002, p. 85.
[18] Gkantsidis C., Mihail M. and Saberi A., ACM SIGMETRICS (ACM Press) 2003.
[19] Cohen R. and Havlin S., Phys. Rev. Lett., 90 (2003) 058701.
[20] Chung F. and Lu L., Internet Math., 1 (2003) 91.
[21] van der Hofstad R., Hooghiemstra G. and Znamenski D., math.PR/0502581, preprint

(2005).
[22] Cohen R., Erez K., ben-Avraham D. and Havlin S., Phys. Rev. Lett., 85 (2000) 4626.
[23] Shavitt Y. and Shir E., ACM SIGCOMM Computer Commun. Rev., 35 (2005) 71.


