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Abstract 1 Introduction

We propose an efficient framework for enabling secure  We consider the problem of performing a joint numeri-
multi-party numerical computations in a Peer-to-Peer net- cal computation of some function over a Peer-to-Peer net-
work. This problem arises in a range of applications such as work. Such problems arise in many applications, for ex-
collaborative filtering, distributed computation of truemtd ample, when computing distributively trust [18], ranking
reputation, monitoring and numerous other tasks, where the of nodes and data items [10], clustering [5], collaborative
computing nodes would like to preserve the privacy of their filtering [6, 27], factor analysis [12] etc. The aim eé-
inputs while performing a joint computation of a certain cure multi-party computatioiis to enable parties to carry
function. out such distributed computing tasks in a secure manner.

Although there is a rich literature in the field of dis- Whereas distributed computing classically deals with ques-
tributed systems security concerning secure multi-party tions of computing under the threat of machine crashes and
computation, in practice it is hard to deploy those meth- other inadvertent faults, secure multi-party computatson
ods in very large scale Peer-to-Peer networks. In this work, concerned with the possibility of deliberate malicious be-
we examine several possible approaches and discuss theihavior by some adversarial entity. That is, it is assumet tha
feasibility. Among the possible approaches, we identify aa protocol execution may come under attack by an exter-
single approach which is both scalable and theoretically se nal entity, or even by a subset of the participating parties.
cure. The aim of this attack may be to learn private information

An additional novel contribution is that we show how to or cause the result of the computation to be incorrect. Thus,
compute the neighborhood based collaborative filtering, a two central requirements on any secure computation proto-
state-of-the-art collaborative filtering algorithm, wianof col are privacy and correctness. The privacy requirement
the Netflix progress prize of the year 2007. Our solution states that nothing should be learned beyond what is ab-
computes this algorithm in a Peer-to-Peer network, using a solutely necessary; more exactly, parties should learin the
privacy preserving computation, without loss of accuracy. designated output and nothing else. The correctness re-

Using extensive large scale simulations on top of real quirement states that each party should receive its correct
Internet topologies, we demonstrate the applicabilitywf o output. Therefore, the adversary must not be able to cause
approach. As far as we know, we are the first to implementthe result of the computation to deviate from the function
such a large scale secure multi-party simulation of network that the parties had set out to compute.
of millions of nodes and hundreds of millions of edges. In this paper, we consider only functions which are built

using the algebraic primitives of addition, substractiod a
_ multiplication. In particular, we focus on numerical meth-
9y “The work on this paper was done when DB was a Ph.D. studer#atth ., yq \hich are computed distributively in a Peer-to-Peer net
ebrew University of Jerusalem. Supported by The Israelrfseié-oun- . _ . . .
dation (grant No. 0397373). work, where in each iteration, every node interacts with
T Supported by The Israel Science Foundation (grant No. 80/0 a subset of its neighbors by sending scalar messages, and




computing a weighted sum of the messages that it receivesthe previous work, we have performedvary large scale

Examples of such functions are belief propagation [22], EM simulation using real Internet topologies, to show our ap-

(expectation maximization) [12], Power method [18], sepa- proach is applicable to real network settings.

rable functions [20], gradient descent methods [25] and lin  As an example for applications of our framework, we

ear iterative algorithms for solving systems of linear equa take the neighborhood based collaborative filtering [6jsTh

tions [9]. As a specific example, we describe the Jacobialgorithm is a recent state-of-the-art algorithm. There ar

algorithm in detail in Section 5.1. two challenges in adapting this algorithm to a Peer-to-Peer
There is a rich body of research on secure computation,network. First, the algorithm is centralized and we propose

starting with the seminal work of Yao [26]. Part of this re- a method to distribute it. Second, we add a privacy pre-

search is concerned with the designgehericsecure pro-  Serving layer, so no information about personal ranking is

tocols that can be used for computing any function (for ex- revealed during the process of computation.

ample, Yao’s work [26] for the case of two participants, and ~ The paper is organized as follows. In Section 2 we for-

e.g. [8, 16] for solutions for the case of multiple partici- mulate our problem model. In Section 3 we give a brief

pants). There are several works concerningithglemen- background of cryptographic primitives that are used in our

tation of generic protocols for secure computation. For ex- schemes. Section 4 outlines our novel construction. We

ample, FairPlay [19] is a system for secure two-party com- give a detailed case study of collaborative filtering as an ex

putation, and FairPlayMP [7] is a different system for secur ample application in Section 5. Large scale simulations are

computation by more than two parties. These two systemspresented in Section 6. We conclude in Section 7.

are based (like Yao's protocol) on reducing any function We use the following notationg: stands for a vector or

to a representation as a Boolean circuit and computing thematrix transpose, the symbads}; and{-};; denote entries

resulting Boolean circuit securely. Our approach is much of a vector and matrix, respectively. The spectral radius

more efficient, at the cost of supporting only a subset of the p(B) £ max; <i<4(|\;]), wherel,, ... X, are the eigenval-

functions the FairPlay system can compute. ues of a matrixB. N; is the set of neighboring nodes to
A different line of work studies secure protocols for com- N0dei.

puting specific functions (rather than generic protocots fo

computing any function). Of particular interest for us are 2 Our Model

works that add a privacy preserving layer to the computa-

tion of functions such as the factor analysis learning prob-  Gjven a Peer-to-Peer network graph= (V, E) with

lem (for which [12] describes a secure multi-party protocol |y/| = ,, nodes andE| = ¢ edges, we would like to per-

using homomorphic encryption), computing trust in a Peer- form a joint iterative computation. Each nodstarts with

to-Peer network (for which [18] suggests a solution using g scalar stafer? € R, and on each round, sends messages

a trusted third party), or the work of [25], which is closely to a subset of its neighbors. We denote a message sent from

related to our work, but is limited to two parties. nodei to node;j at roundr asm .
Most previous solutions for secure multi-party compu- Let NV, denote the set of néighboring nodesiof De-
tation suffer from one of the following drawbacks: (1) note the neighbors of nodeas n;,,ni,,...,n;,, where

they provide a centralized solution where all information k¢ = |N;|. We assume, wlog, that each node sends a mes-
is shipped to a single computing node, and/or (2) require sage to each of its neighbors. On each rounrd 1,2, - - -,
communication between all participants in the protocol, node: computes, based on the messages it received, a func-
and/or (3) require the use of asymmetric encryption, which tion f : R**1 — Rk+1,

is costly. In this work, we investigate secure computation i

a Peer-to-Peer setting, where each node is only connected to(z7, m; ., s+ M, ) = flaih, m:lfll,i, e 7m2;1,i)

some of the other nodes (its neighbors). We examine differ-

ent possible approaches, and out of the different appreacheNamely, the function gets as input the initial state anchail t

we identify a single approach, which is theoretically secur ~ received neighbor messages of this round and outputs a new
efficient, and scalable. state and messages to be sent to a subset of the neighbors

Security is often based on the assumption that there isat the next round. The iterative algorithms are run either
an upper bound on thglobal number of malicious partici- & predetermined number of rounds, or until convergence is

pants. In our setting, we consider the number of malicious détected locally. _ . _ .
nodes in eaclocal vicinity. Furthermore, most of the ex- In this paper, we are only interested in functighwhich

isting algorithms scale to tens or hundreds of nodes at theCOMpute weighted sums on each iteration. Next we show
most. In this work, we address the problem in a setting of g that there is a variety of such numerical methods. Our goal
|arge Peer'_tO_'Peer network, V_Vith_mi"i_ons of noqes and hun- 1An extension to the vector case is immediate, we omit it for thefgl
dreds of millions of communication links. Unlike most of of description.




is to add a privacy preserving layer to the distributed com- hope is that by adding random noise to the individual data
putation, such that the only information learned by a node points it is possible to hide the individual values.

is its share of the output.

The random perturbation model is limited. It supports

We use the semi-honest adversaries model: in this modelonly addition operations, and it was shown in [13] that this
(common in cryptographic research of secure computation)approach can ensure very limited privacy guarantees. We
even corrupted parties are assumed to correctly follow theonly demonstrate this method as a lightweight protocol,
protocol specification. However, the adversary obtains themainly for comparing its running time with the other pro-
internal states of all the corrupted parties (including the tocols.

transcript of all the messages received), and attemptseto us
this information to learn information that should remain pr
vate? In Section 7 discuss the possibility for extending our
construction to the “malicious adversary”, which can be-

have arbitrarily.
We define a configurable local system parametgr

3.2 Shamir’s Secret Sharing (SSS)

Secret sharing is a fundamental primitive of crypto-
graphic protocols. We will describe the secret sharing

scheme of Shamir [23]. The scheme works over a fiéld

which defines the maximum number of nodes in the local and we assume the secketo be an element in that field.

vicinity of nodei (direct neighbors of nodg which are cor-

In a k-out-of-n secret sharing the owner of secret wishes to

rupt. Whenever this assertion is violated, the security of ou distribute it betweem players such that any subsetiobf
proposed scheme is a_ffected. This i_s_a stronger requirementhem is able to recover the secret, while no subsét-efl
from our system, relative to the traditional global bound on players is able to learn any information about the secret.

the number of adversarial nodes.

3 Cryptographic primitives

In order to distribute the secret, its owner chooses a
random polynomialP() of degreek — 1, subject to the
constraint that?(0) = s. This is done by choosing ran-
dom coefficientsiy, . . ., ax—1 and defining the polynomial
asP(x) = s+ Zf;f a;z'. Each player is associated

We compare several existing approaches from the liter-yith an identity in the field (denoted., . ...z, for play-
ature of secure multi-party computation and discuss their ;g n, respectively). The share that playeeceives
RN O .

relevance to Peer-to-Peer networks.

3.1 Random perturbations

is the valueP(z;), namely the value of the polynomial eval-
uated at the point;. It is easy to see that artyplayers can
recover the secret, since they havealues of the polyno-
mial and can therefore interpolate it and compute its free

The random additive perturbation method attempts to COefficients. Itis also not hard to see that any setot- 1

preserve the privacy of the data by modifying values of the

players does not learn any information abeusince any

sensitive attributes using a randomized process (see [4, 13value Ofs has a probability ol /| F'| of resulting in a poly-

14]). In this approach, the node sends a valuye v, where
u; is the original scalar message, amnés a random value
drawn from a certain distributio. In order to perturb
the data,, independent samples, vy, - - - ,v,, are drawn

from a distributionV. The owners of the data provide the

perturbed values; + vy, us + vo, - - - , u, + v, and the cu-
mulative distribution functiorF"V (r) of V. The goal is to

nomial which agrees with the values that the players have.
3.3 Homomorphic encryption
A homomorphic encryption scheme is an encryption

scheme which allows certain algebraic operations to be car-
ried out on the encrypted plaintext, by applying an efficient

use these values, instead of the original ones, in the com-operation to the corresponding ciphertext (without knayin
putation. (It is easy to see, for example, that if the expkcte the decryption key!). In particular, we will be interested

value of V' is 0, then the expectation of the sum of thetv;
values is equal to the expectation of thevalues.) The

2Security against semi-honest adversaries might be justifibé par-
ties participating in the protocol are somewhat trustedf are trust the
participating parties at the time they execute the protdmdl suspect that
at a later time an adversary might corrupt them and get holdeofrim-
script of the information received in the protocol.

We note that protocols secure against malicious adversareson-
siderably more costly than their semi-honest counterparts.ekample,
the generic method of obtaining security against maliciougesdries is
through the GMW compiler [16] which adds a zero-knowledgeopfor
every step of the protocol.

in additively homomorphic encryption schemes: Here, the
message space is a ring (or a field). There exists an effi-
cient algorithm+-,;, whose input is the public key of the
encryption scheme and two ciphertexts, and whose output
is Epk(ml) +pk Epk(mg) = pk(ml + mg). (Namely,

this algorithm computes, given the public key and two ci-
phertexts, the encryption of the sum of the plaintexts of two
ciphertexts.) There is also an efficient algorithyg, whose
input consists of the public key of the encryption scheme, a
ciphertext, and a constantn the ring, and whose output is

¢ pk Epp(m) = Epg(c -pp m).



We will also require that the encryption scheme has se-valuem;; + r; ; to the other node. As the number of neigh-
mantic security. An efficient implementation of an addi- bors increases, the computed noisy SE}EM (mji+754)
tive homomorphic encryption scheme with semantic secu-converges to the actual squENi M.
rity was given by Paillier [21]. In this cryptosystem the When the node computes a weighted sum of the mes-
encryption of a plaintext fronfil; N], where N is an RSA  sages it received as in equation 1, it multiplies each incom-

modulus, requires two exponentiations modiNG. De- ing message by the corresponding weight. The computed
cryption requires a single exponentiation. We will use this noisy sumy ., aij(myi + 75,:) converges to the actual
encryption scheme in our work. SUMD ey, @imyji.

We note again that this method is considered mainly for
a comparison of its running time with that of the other meth-
ods.
We describe in a nutshell the Paillier cryptosystem. Fuller
details are found on [21].

3.3.1 Palillier encryption

4.2 Homomorphic Encryption

e Key generation Generate two large primes p and q.

The secret keyk is A = lem(p — 1, — 1). The We chose to utilize the Paillier encryption scheme,
public keypk includesN = pg andg € Zy= suchthat ~ Which is an efficient realization of an additive homomor-
g=1 mod N. phic encryption scheme with semantic security.

e Encryption Encrypt a messager € Zy with ran- Key generation: We use the threshold version of
domness: € Z%. and public keypk asc = g™r¥ the Paillier encryption scheme described in [15]. In this
mod N?2. scheme, a trusted third party generates for each nhpde

vate and public key pairs.The public key is disseminated
e Decryption Decrypta ciphertext € Zy;,. Decryption  to all of nodei neighbors. The private key; = prok(i)
is done using:% mod N whereL(z) = ?s.kept _secrq from all node_s (including nq‘:}e Instead,
(z —1)/N. it is split, using secret sharing, to the neighbors of node
i. There is a threshold;, which is at most equal taV;|,
. the number of neighbors of node The scheme ensures
4 Our construction that any subset of; of the neighbors of nodé can help
it decrypt messages (without the neighbors learning the
The main observation we make is that numerous dis- decrypted message, or nodéearning the private key). If
tributed numerical methods compute in each node ad; = |N;| then the private key is shared by giving each
weighted sum of scalars:;, received from neighboring neighborj a random values;; subject to the constraint

nodes, namely ZjeNi sji = A; = pruk(i). Otherwise, ifd; < |N;| the
o 1 valuess;; are shares of a Shamir secret sharingofNote
@ijMyi, (1) j \
jEN: that fewer thani; neighbors cannot recover the key.

. - . Using this method, all neighboring nodes of node
where the weight coefficients; are known constants. This .. <ong encrypted messages usingk(i) to node i
simple building block, captures the behavior of multiple while nodei cannot decrypt any of these messages. It can,

numirlcgl methods. IBy sh?wmg wazs to compute this however, aggregate the messages using the homomorphic
V\;elg ted sum §ec|ure y,hogr rami\(vor can supp_ort r(‘;]"’myproperty and ask a coalition df or more neighbors to help
of those numerical methods. In this section we introduce decrypting the sum.

three possible approaches for performing the weighted sum
computation.
In Section 5.1 we give an example of the Jacobi algo-

rithm which computes such a weighted sum on each itera- Ho The third party creates for node public and private

The initialization step of this protocol is as follows:

tion. key pair, [pubk(i), prok(i)]. It sends the public key
pubk(i) to all of nodei’s neighbors, and splits the pri-
4.1 Random perturbations vate key into shares, such that each nodeighbors

gets a Shar@ji. If d; = ‘Nl| thein"L}k(i) =\ =

In each iteration of the algorithm, whenever a node needs
3t is also possible to generate the key in a distributed wahaut

to send a Valumﬁ toa nelghbormg node, the node gener- using any trusted party. This option is less efficient. Wenstiat even the

ates a rap_dom_ nu_mb:eﬁi uging the GMP ”brary [1], from usage of a centralized key generation process is not effierugh, and
a probability distribution with zero mean. It then sends the therefore we did not implement the distributed version of ghigtocol.



> jen, Sji- Otherwise the;; values are Shamir shares 4.3  Shamir Secret Sharing
of the private key.

We propose a construction based on Shamir's secret
sharing, which avoids the computation cost of asymmet-
ric encryption. In a nutshell, we use the neighborhood of
a node for adding a privacy preserving mechanism, where
only a coalition ofd; or more nodes can reveal the content
of messages sent to that node.

In each round of the algorithm, when a ngdeould like

One round of computation: In each round of the algo-
rithm, when a nodg would like to send a scalar value;;
to nodei it does the following:

H1 Encrypt the message;, using node public key to
9etCj; = Epupk(iy(mji)-

H2 Send the result’;; to nodes:. to send a scalar value ;; to node; it does the following:
H3 Nodei aggregates all the incoming messé&ge, using S1 Generate a random polynomid); of degreed; — 1,
the homomorphic property to gét, (i) (D aijm;i) of the typeP;;(z) = m;; + Zf;}l a;z" (Whered; <

N;]).
After receiving all messages:Nodei’s neighbors assist it [N

in decrypting the result;, without revealing the private key =~ S2 For each neighbdiof node:, create a shar€;;; of the
prok(i). This is done as follows (for the cade = |V;|): polynomialP;;(x) by evaluating it on a single poin.
Recall that in a Paillier decryption nodeeeds to raise the

result computed in [H3] to the power of its private kiey S3 Send’j;; to nodel, which isi's neighbor.

H4 Nodei sends all its neighbors the result computed in 54 Each neighbak of node: aggregates the shares it re-

. ceived from all neighbors of nodeand computes the
3 o= By (0 aymy). value Sy; = ZjENigaijP,-i(xl). (Note that tFr)le result
H5 Each neighbor, computes a part of the decryption of this computation is equal to the value of a polyno-
w;; = C;’* wheres;; are nodei private key shares mial of degreed; — 1, whose free coefficient is equal
computed in step [HO], and sends the reayltto node to theweightedsum of all messages sent to nadey
i. its neighbors.)
H6 Node: multiplies all the received values to get: S5 Each neighbdrsends the sunfj; to node:i.

S6 Node: treats the value received from nodas a value

_ lGeN S~y
jenwji = C; =0t = Z aijmj; mod N. of a polynomial of degreé; — 1 evaluated at the point

7

If d; < |IV;] then the reconstruction is done using Lagrange 57 Nodei interpolates?; (z) for extracting the free coef-
interpolation in the exponent, where nodaeeeds to raise ficient, which in this case is the weighted sum of all
eachw;; value by the corresponding Lagrange coefficient, messages . @ijim;i-

J i

and then multiply the results.
Regarding message overhead, first we need to generate Note that the message;; sent by nodg remains hid-
and disseminate public and private keys. This operation re-den if less thani; neighbors ofi collude to learn it (this
quires2e messages, where= |E| is the number of graph  is ensured since these neighbors learn strictly less dhan
edges. In each iteration we send the same number of mesvalues of a polynomial of degre& — 1). The protocol re-
sage as in the original numerical algorithm. However, as- quires each nodg to send messages to all other neighbors
suming a security of bits, and a working precision af of each of its neighbors. We discuss the applicability o thi
bits, we increase the size of the message by a factgr of ~requirement in Section 7.
Finally, we adde messages for obtaining the private keys

parts in step H4. 4.4 Extending the method to support
Regarding computation overhead, for each sent message, multiplication

we need to perform one Paillier encryption in step H1. In

step H3 the destination node performs additignall mul- Assume that nodéneeds to compute the multiplication

tiplications, and one decryption in step H4. At the key gen- of the values of two messages that it receives from ngdes
eration phase, we add generationnofandom polynomial  andj;’. The Shamir secret sharing scheme can be extended
and their evaluation. In step H4 we compute an extrapo-to support multiplication using the construction of Ben-Or
lation of thosen polynomials. The security of the Paillier Goldwasser and Wigderson, whose details appear in [8].
encryption is investigated in [21, 15], where it was shown This requires two changes to the basic protocol. First, the
that the system provides semantic security. degree of the polynomials must be strictly less tha /2,



(c) (d)

Figure 1. Schematic message flow in the pro-
posed methods. The task of node i isto com-
pute the sum of all messages:  my; +m;; +my;
(a) describes a message sent from j to ¢ us-
ing random perturbation. (b) describes steps
[S3] in our SSS scheme, where the same
message m;; is split into shares sent to all of

1 neighbors. (c) describes steps [S4] in our
SSS scheme, where shares destined to i are
aggregated by its neighbors. (d) shows steps
[H6] in our SSS scheme, which is equivalent
(in term of message flow) to step [H2] in our
homomorphic scheme.

where| ;| is the number of neighbors of the node receiv-
ing the messages. (This means, in particular, that sedsirity
now only guaranteed as long as less than half of the neigh-
bors collude.) In addition, the neighboring nodes must ex-
change a single round of messages after receiving the mes-
sages from nodegand;’. We have not implemented this
variant of the protocol.

4.5 Working in different fields

The operations that can be applied to secrets in the
Shamir secret sharing scheme, or to encrypted values in
a homomorphic encryption scheme, are defined in a finite
field or ring over which the schemes are defined (for exam-
ple, in the secret sharing case, over a figldwherep is a
prime number). The operations that we want to compute,
however, might be defined over the Real numbers. Working
in a field is sufficient for computing additions or multipli-
cations of integers, if we know that the size of the field is
larger than the maximum result of the operation. If the ba-
sic elements we work with are Real numbers, we can round
them first to the next integer, or, alternatively, first multi
ply them by some constant(say,c = 10°) and then round
the result to the closest integer. (This essentially mezats t
we work with accuracy ol /c if the computation involves
only additions, or an accuracy af/¢? if the computation
involves summands composed of upitoultiplications.)

Handling division is much harder, since we are essen-
tially limited to working with integer numbers. One pos-
sible workaround is possible if we know in advance that a
numberz might have to be divided by a different number
from a setD (say, the numbers in the randkg 100]). In
that case we first multiply: by the least common multiple
(Ilcm) of the numbers iD. This initial step ensures that di-
viding the result by a number from® results in an integer
number.

5 Case Study: neighborhood based collabo-
rative filtering

To demonstrate the usefulness of our approach, we give
a specific instance of a problem our framework can solve,
preserving users’ privacy. Our chosen example is in the field
of collaborative filtering. We have chosen to implement
the neighborhood based collaborative filtering algorithm,
a state-of-the-art algorithm, winner of the Netflix progres
prize of 2007. When adapting this algorithm to a Peer-to-
Peer network, there are two main challenges: first, the al-
gorithm is centralized, while we would like to distribute it
without losing accuracy of the computed result. Second,
we would like to add a privacy preserving layer, which pre-
vents the computing nodes from learning any information



about neighboring nodes or other nodes rating, except ofEM (expectation minimization), Conjugate gradient, gradi

the computed solution.

ent descent, Belief Propagation, Cholskey decomposition,

We first describe the centralized version, and later we principal component analysis, SVD etc.

extend it to be computed in a Peer-to-Peer network. Given

a possibly sparse user ratings maliy, «,, wherem is the
number of users and is the number of items, each user
likes to compute an output ratings for all the items.

In the neighborhood based approach [6], the output rat-
ing is computed using a weighted average of the neighbor-

ing peers:

Tui = § Ty Wy

JEN;
Our goal is to find the weights matri®v wherew;; signi-
fies the weight nodéassigns nodg.

We define the following least square minimization prob-
lem for user :

H\l}/nZ(Tvi — Z wijrvj)2 .

vEU JEN;

The optimal solution is formed by differentiation and so-
lution of a linear systems of equatioRsw = b. The opti-
mal weights (for each user) are given by:

w = (RTR)"'RTb 3)

We would like to distribute the neighborhood based col-

laborative filtering problem to be computed in a Peer-to-

Peer network. Each peer has its own rating as input (the

matching row of the matriXR) and the goal is to com-
pute locally, using interaction with neighboring nodes th
weight matrixW, where each node has the matching row in

this matrix. Furthermore, the peers would like to keep their

input rating private, where no information is leaked during

Given a system of linear equatioAsx = b, whereA is
a matrix of sizen x n, V;a;; # 0 andb € R"”, the Jacobi
algorithm [9] starts from an initial gues®, and iterates:
b= Y e, 0y

i = (4)

Q5

The Jacobi algorithm is easily distributed since initially
each node selects an initial guesl and the values’

are sent among neighbors. A sufficient condition for the
algorithm convergence is when the spectral ragius —
D7'A) < 1, where[ is the identity matrix andD =
diag(A). This algorithm is known to work in asynchronous
settings as well. In practice, when converging, the Jacobi
algorithm convergence speed is logarithmiain

Our goal is to compute privacy-preservingrersion of
the Jacobi algorithm, where the inputs of the nodes are pri-
vate, and no information is leaked during the rounds of the
computation.

Note, that the Jacobi algorithm serves as an excellent ex-
ample since its simple update rule contains all the basic op-
eration we would like to support: addition, multiplication
and substraction. Our framework supports all of those nu-
merical operations, thus capturing numerous numerical al-
gorithms.

5.2 Using the Jacobi algorithm for solving
the neighborhood based collaborative
filtering problem

First, we perform a distributed preconditioning of the

the computation to neighboring or other nodes. The peersMatrixR. Each node divides its input row of the matrik

will obtain only their matching output rating as a result of
this computation.

We propose a secure multi-party computation frame-

work, to solve the collaborative filtering problem efficignt
and distributively, preserving users’ privacy. The conaput

by R;;. This simple operation is done to avoid the division
in 4, while not affecting the solution vectex.

Second, since Jacobi algorithm’s input is a squarsen
matrix, and our rating matriR is of sizem x n, we use
the following “trick”; We construct a new symmetric data

tion does not reveal any information about users’ prior rat- matxrix R based on the non-rectangular rating mafRixe
Rm

ings, nor on the computed results.

5.1 The Jacobi algorithm for solving sys-
tems of linear equations

n

I, RT

R 0 ©)

Rﬁ(

Additionally, we define a new vector of variableg =

) c R(ern) X (m+n) )

In this section we give an example of one of the simplest {w”,z”}T € R(™+t")x1 wherex € R™*! is the (to be

iterative algorithms for solving systems of linear equasio

shown) solution vector angl ¢ R™*! is an auxiliary hid-

the Jacobi algorithm. This will serve as an example for an den vector, and a new observation vedio* {07, b7}7 e

algorithm our framework is able to compute, for solving the

neighborhood based collaborative filtering problem. Note

R('rn-i-n) x1

4Computing the pseudo inverse solution (equation 2) itezbtivan be

that there are numerous numerical methods we can CompUtgone more efficiently using newer algorithms, for example [Edr the
securely using our framework, among them Gauss Seidel purpose of the clarify of explanation, we use the Jacobirétyn.



Now, we would like to show that solving the symmet- the main overhead in implementing our proposed mecha-
ric linear systenRw = b, taking the firstn entries of the nisms is the computational overhead, since the communi-
corresponding solution vecter is equivalent to solving the  cation latency exists anyway in the underlying topology,
original systemRw = b. Note that in the new construc- and we compare the run of algorithms with and without the

tion the matrixR is still sparse, and has at mastn off- added privacy mechanisms overhead. For that purpose, we
diagonal nonzero elements. Thus, when running the Jacobignore the communication latency in our simulations. This

algorithm we have at mo&tnn messages per round. can be justified, because in the random perturbations and
Writing explicitly the symmetric linear system’s equa- homomorphic encryption schemes, we do not change the
tions, we get number of communication rounds, so the communication
A - A latency remains the same with or without the added privacy

w+R7z=0, Rw = b. preserving mechanisms. In the SSS scheme, we double the

number of communication rounds, so the incurred latency

By extractingw we have is doubled as well.

w=(R"R)"'R”D. Table 2 compares the running times of the basic oper-
ations in the three schemes. Each operation was repeated
the desired solution of equation 3. 100,000 times and an average is given. As expected the
heaviest computation is the Paillier asymmetric encryptio
6 Experimental Results with a security parameter of 2,048 bits. It can be easily ver-

ified, that while the SSS basic operation takes around tens
of microseconds, the Paillier basic operations takes frac-
tions of seconds (except of the homomorphic multiplication
which is quite efficient since it does not involve exponentia

We have implemented our proposed framework using a
large scale simulation. Our simulation is written in C, con-

sists of about 1500 lines of code, and uses MPI, for running " :
the simulation in parallel. We run the simulation on a cluste 10n)- In a Peer-to-Peer network, when a peer has likely tens

of Linux Pentium IV computers, 2.4Ghz, with 4GB RAM of connections, sending encrypted message to all of them
memory. We use the open source Paillier implementationWi" take several seconds. Furthermore, this time estionati

of [3]. assumes that the values sent by the function are scalars. In

We use several large topologies for demonstrating thetn€ Vector case, the operation will be much slower.
applicability of our approach. The DIMES dataset [24] is _1aple 3 outlines the running time needed to run 8 iter-
an Internet router topology of around 300,000 routers and ations of the Jacobi algorithm, on the different topologies

2.2 million communication links connecting them, captured FOUr modes of operations are listed: no privacy preserv-
in January 2007. The Blog network, is a social network, N9 means we run the algorithm without adding any privacy

web crawl of Internet blogs of half a million blog sites layer for baseline timing comparison. Next, our three pro-
and eleven million links connecting them. Finally, the Net- POSed schemes are shown. _ _
flix [2] movie ratings data, consists of around 500,000 users !N the Netflix dataset, we had to use eight computing
and 100,000,000 movie ratings. This last topology is a bi- nodes in parallell, .because our simulation memory require-
partite graph with users at one side, and movies at the otherment could not fit into one processor. _
This topology is not a Peer-to-Peer network, but relevantfo ~AS clearly shown in Table 3, our SSS scheme has sig-
the collaborative filtering problem. We have artificiallger ~ Nificantly reduced computation overhead relative to the ho-
ated a Peer-to-Peer network, where each user is a node, th@0morphic encryption scheme, while having an equivalent
movies are nodes as well, and edges are the ratings assigndgve! of security (assuming that the Paillier encryption is

to the movies. semantically secure). In a Peer-to-Peer network, with tens
of neighbors, the homomorphic encryption scheme incurs a
Topology Nodes Edges | Data Source high overhead on the computing nodes.
Blogs Web Crawl| 1.5M 8M IBM
DIMES 337,326| 2,249,832  DIMES 7 Conclusion and Future Work
Netflix 497,759| 100M Netflix

As is demonstrated by the experimental results section,
we have shown that the secret sharing scheme has the lowest
computation overhead relative to the other schemes. Fur-

We ignore algorithm accuracy since this problem was thermore, this scheme does not involve a trusted third party
addressed in detail in [6]. We are mainly concerned with as needed by the homomorphic encryption scheme for the
the overheads of the privacy preserving mechanisms. Basedhreshold key generation phase. The size of the messages
on the experimental results shown below, we conclude thatsent using this method is about the same as in the origi-

Table 1. Topologies used for experimenta-
tion



Scheme Operation Time (micro second) Msg size (bytes)

Random perturbation Adding noise 0.0783745 8
Receiver operation —

SSS Polynomial generation and evaluation 11.18382125 8
Polynomial extrapolation 6.13709025

Paillier Key generation 5016199.4 2048
Encryption 203478.62
Decryption 193537.97
Multiplication 99.063958

Table 2. Running time of local operations. As expected, the P aillier cryptosystem basic operations
are time consuming relative to the SSS scheme.

Topology | Scheme Time (HH:MM:SS) | computing nodes
DIMES None 0:33.36 1
Random Perturbations 0:35.27 1
SSS 10:53.44 1
Paillier 28:44:24.00 1
Blogs None 1:28.16 1
Random Perturbations 1:34.85 1
SSS 38:00.24 1
Paillier 101:52:00.00 1
Netflix None 5:31.14 8
Random Perturbations 5:54.69 8
SSS 21:40.00 8
Paillier - -
Table 3. Running time of eight iterations of the Jacobi algor ithm. The baseline timing is compared to
running without any privacy preserving mechanisms added. E mpirical results show that computa-
tion time of the homomorphic scheme is a factor of about 1,350 times slower then the SSS scheme.

nal method, unlike the homomorphic encryption which sig- to secure secret sharing against malicious participagts, b
nificantly increases message sizes. However, the drawbackerifying validity of polynomial shares.
of this scheme is that neighboring nodes to nodeed to Regarding the operation in synchronous communication
communicate directly between themselves (and each mesrounds, we have assumed, in order to simplify our exposi-
sage sent to nodeneeds to be converted to messages senttion, that the iterations of the peers are synchronized. -How
to all its neighbors). In Peer-to-Peer systems with logalit ever, in practice it is not valid to assume that the clocks
property it might be reasonable to assume that communi-and message delays are synchronized in a large Peer-to-Peer
cation between the neighbors of nodis possible. (There  network. Luckily, itis known that linear iterative algdrins
is a way to circumvent this requirement, by adding asym- such as the Jacobi algorithm converge in asynchronous set-
metric encryption. Each node will have a public key, where tings as well (meaning that some peers might have made
message destined to this node are encrypted using its publicore iterations than other peers but the resulting computa-
key. That way if nodei needs to send a message to node tion will still converge to the same optimal solution).
[, it can ask node do deliver it, while ensuring that node
does not learn the content of the message. We identify thisReferences
extension to our scheme as an area for future work.
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