
Distributed Kalman Filter
via Gaussian Belief Propagation

Danny Bickson
IBM Haifa Research Lab

Mount Carmel, Haifa 31905, Israel
Email: dannybi@il.ibm.com

Ori Shental
Center for Magnetic
Recording Research

UCSD
9500 Gilman Drive

La Jolla, CA 92093, USA
Email: oshental@ucsd.edu

Danny Dolev
School of Computer Science

and Engineering
Hebrew University of Jerusalem

Jerusalem 91904, Israel
Email: dolev@cs.huji.ac.il

Abstract—Recent result shows how to compute distribu-
tively and efficiently the linear MMSE for the multiuser
detection problem, using the Gaussian BP algorithm. In
the current work, we extend this construction, and show
that operating this algorithm twice on the matching inputs,
has several interesting interpretations. First, we show
equivalence to computing one iteration of the Kalman filter.
Second, we show that the Kalman filter is a special case of
the Gaussian information bottleneck algorithm, when the
weight parameter β = 1. Third, we discuss the relation to
the Affine-scaling interior-point method and show it is a
special case of Kalman filter.

Besides of the theoretical interest of this linking esti-
mation, compression/clustering and optimization, we allow
a single distributed implementation of those algorithms,
which is a highly practical and important task in sensor
and mobile ad-hoc networks. Application to numerous
problem domains includes collaborative signal processing
and distributed allocation of resources in a communication
network.

I. INTRODUCTION

Recent work [1] shows how to compute effi-
ciently and distributively the MMSE prediction for
the multiuser detection problem, using the Gaussian
Belief Propagation (GaBP) algorithm. The basic
idea is to shift the problem from linear algebra
domain into a probabilistic graphical model, solving
an equivalent inference problem using the efficient
belief propagation inference engine. [2] compares
the empirical performance of the GaBP algorithm
relative to other linear iterative algorithms, demon-
strating faster convergence. [3] elaborates on the
relation to solving systems of linear equations.

In the present work, we propose to extend the pre-
vious construction, and show, that by performing the
MMSE computation twice on the matching inputs
we are able to compute several algorithms. First,
we reduce the discrete Kalman filter computation
[4] to a matrix inversion problem and show how
to solve it using the GaBP algorithm. We show
that Kalman filter iteration which is composed from
prediction and measurement steps can be computed
by two consecutive MMSE predictions. Second,
we explore the relation to Gaussian information
bottleneck (GIB) [5] and show that Kalman filter is
a special instance of the GIB algorithm, when the
weight parameter β = 1. To the best of the authors
knowledge, this is the first algorithmic link between
the information bottleneck framework and linear dy-
namical systems. Third, we discuss the connection
to the Affine-scaling interior-point method and show
it is an instance of the Kalman filter.

Besides of the theoretical interest of linking com-
pression, estimation and optimization together, our
work is highly practical since it proposes a general
framework for computing all of the above tasks
distributively in a computer network. This result can
have many applications in the fields of estimation,
collaborative signal processing, distributed resource
allocation etc.

A closely related work is [6]. In this work, Frey et
al. focus on the belief propagation algorithm (a.k.a
sum-product algorithm) using factor graph topolo-
gies. They show that the Kalman filter algorithm
can be computed using belief propagation over a

factor graph. In this contribution we extend their
work in several directions. First, we extend the
computation to vector variables (relative to scalar
variables in Frey’s work). Second, we use a different
graphical model: an undirected graphical model
which results in simpler update rules, where Frey
uses factor-graph with two types of messages: factor
to variables and variables to factors. Third and
most important, we allow an efficient distributed
calculation of the Kalman filter steps, where Frey’s
algorithm is centralized.

Another related work is [7]. In this work the link
between Kalman filter and linear programming is
established. In this work we propose a new and
different construction which ties the two algorithms.

The structure of this paper is as follows. In
Section II we describe the discrete Kalman filter.
In Section III we outline the GIB algorithm and
discuss its relation to the Kalman filter. Section
IV presents the Affine-scaling interior-point method
and compares it to the Kalman filter algorithm.
Section V presents our novel construction for per-
forming an efficient distributed computation of the
three methods.

II. KALMAN FILTER

A. An Overview

The Kalman filter is an efficient iterative al-
gorithm to estimate the state of a discrete-time
controlled process x ∈ Rn that is governed by the
linear stochastic difference equation 1:

xk = Axk−1 + Buk−1 + wk−1, (1)

with a measurement z ∈ Rm that is zk =
Hxk +vk. The random variables wk and vk that rep-
resent the process and measurement AWGN noise
(respectively). p(w) ∼ N (0, Q), p(v) ∼ N (0, R).
We further assume that the matrices A,H, B, Q, R
are given2.

The discrete Kalman filter update equations are
given by [4]:

1In this paper, we assume there is no external input, namely xk =
Axk−1 + wk−1. However, our approach can be easily extended to
support external inputs.

2Another possible extension is that the matrices A, H, B, Q, R
change in time, in this paper we assume they are fixed. However,
our approach can be generalized to this case as well.

The prediction step:

x̂−k = Ax̂k−1 + Buk−1, (2a)
P−

k = APk−1A
T + Q. (2b)

The measurement step:

Kk = P−
k HT (HP−

k HT + R)−1, (3a)
x̂k = x̂−k + Kk(zk −Hx̂−k), (3b)
Pk = (I −KkH)P−

k . (3c)

where I is the identity matrix.
The algorithm operates in rounds. In round k the

estimates Kk, x̂k, Pk are computed, incorporating
the (noisy) measurement zk obtained in this round.
The output of the algorithm are the mean vector x̂k

and the covariance matrix Pk.

B. New construction
Our novel contribution is a new efficient dis-

tributed algorithm for computing the Kalman filter.
We begin by showing that the Kalman filter can
be computed by inverting the following covariance
matrix:

E =



−Pk−1 A 0

AT Q H
0 HT R


 , (4)

and taking the lower right 1× 1 block to be Pk.
The computation of E−1 can be done efficiently

using recent advances in the field of Gaussian belief
propagation [1], [3]. The intuition for our approach,
is that the Kalman filter is composed of two steps.
In the prediction step, given xk, we compute the
MMSE prediction of x−k [6]. In the measurement
step, we compute the MMSE prediction of xk+1

given x−k , the output of the prediction step. Each
MMSE computation can be done using the GaBP
algorithm [1]. The basic idea, is that given the joint
Gaussian distribution p(x,y) with the covariance

matrix C =

(
Σxx Σxy

Σyx Σyy

)
, we can compute the

MMSE prediction

ŷ = arg max
y

p(y|x) ∝ N (µy|x, Σ
−1
y|x) ,

where

µy|x = (Σyy − ΣyxΣ
−1
xx Σxy)

−1ΣyxΣ
−1
xx x ,

Σy|x = (Σyy − ΣyxΣ
−1
xx Σxy)

−1 .

This in turn is equivalent to computing the Schur
complement of the lower right block of the matrix
C. In total, computing the MMSE prediction
in Gaussian graphical model boils down to a
computation of a matrix inverse. In [3] we have
shown that GaBP is an efficient iterative algorithm
for solving a system of linear equations (or
equivalently computing a matrix inverse). In [1]
we have shown that for the specific case of linear
detection we can compute the MMSE estimator
using the GaBP algorithm. Next, we show that
performing two consecutive computations of the
MMSE are equivalent to one iteration of the
Kalman filter.

Theorem 1: The lower right 1 × 1 block of
the matrix inverse E−1 (eq. 4), computed by two
MMSE iterations, is equivalent to the computation
of Pk done by one iteration of the Kalman filter
algorithm.

Proof of Theorem 1 is given in Appendix A.

In Section V we explain how to utilize the
above observation to an efficient distributed
iterative algorithm for computing the Kalman filter.

III. GAUSSIAN INFORMATION BOTTLENECK

Given the joint distribution of a source variable
X and another relevance variable Y, Information
bottleneck (IB) operates to compress X, while pre-
serving information about Y [8], [9], using the
following variational problem:

min
p(t|x)

L : L ≡ I(X; T)− βI(T ; Y)

T represents the compressed representation of X
via the conditional distributions p(t|x), while the
information that T maintains on Y is captured by
the distribution p(y|t). β > 0 is a lagrange multiplier
which weights the tradeoff between minimizing
the compression information and maximizing the
relevant information. As β → 0 we are interested
solely in compression, but all relevant information
about Y is lost I(Y ; T) = 0. When β → ∞ where
are focused on preservation of relevant information,
in this case T is simply the distribution X and we
obtain I(T ; Y) = I(X; Y). The interesting cases

are in between, when for finite values of β we are
able to extract rather compressed representation of
X while still maintaining a significant fraction of
the original information about Y.

An iterative algorithm for solving the IB problem
is given in [9]:

P k+1(t|x) = P k(t)
Zk+1(x,β)

·
· exp(−βDKL[p(y|x)||pk(y|t)]),(5a)

P k(t) =
∫

x
p(x)P k(t|x)dx, (5b)

P k(y|t) = 1
P k(t)

∫
x
P k(t|x)p(x, y)dx. (5c)

where Zk+1 is a normalization factor computed in
round k + 1.

The Gaussian information bottleneck (GIB) [5]
deals with the special case where the underlying dis-
tributions are Gaussian. In this case, the computed
distribution p(t) is Gaussian as well, represented by
a linear transformation Tk = AkX+ξk where Ak is a
joint covariance matrix of X and T , ξk ∼ N (0, Σξk

)
is a multivariate Gaussian independent of X. The
outputs of the algorithm are the covariance matrices
representing the linear transformation T: Ak, Σξk

.
An iterative algorithm is derived by substituting

Gaussian distributions into (5), resulting in the fol-
lowing update rules:

Σξ+1 = (βΣtk|y − (β − 1)Σ−1
tk

), (6a)
Ak+1 = βΣξk+1Σ

−1
tk|yAk(I − Σy|xΣ

−1
x). (6b)

TABLE I
SUMMARY OF NOTATIONS IN THE GIB [5] PAPER VS. KALMAN

FILTER [4]

GIB [5] Kalman [4] Kalman meaning
Σx P0 a-priori estimate error covariance
Σy Q Process AWGN noise
Σtk R Measurement AWGN noise

Σxy, Σyx A, AT process state transformation matrix
ΣxyA, AT Σyx HT , H measurement transformation matrix

Σξk Pk posterior error covariance in round k
Σx|yk

P−k a-priori error covariance in round k

Since the underlying graphical model of both
algorithms (GIB and Kalman filter) is Markovian
with Gaussian probabilities, it is interesting to ask
what is the relation between them. In this work
we show, that the Kalman filter posterior error
covariance computation is a special case of the

Y
 X
 T

(a)

X
k
-1
 X
k
X
k
-

(b)

Z
k
-1
 Z
k

X
k
-1
 X
k
X
k
-

(c)

(d)

Fig. 1. Comparison of the different graphical models used. (a)
Gaussian Information Bottleneck [5] (b) Kalman Filter (c) Frey’s
sum-product factor graph [6] (d) Our new construction.

GIB algorithm when β = 1. Furthermore, we show
how to compute GIB using the Kalman filter when
β > 1 (the case where 0 < β < 1 is not interesting
since it gives a degenerate solution where Ak ≡ 0
[5].) Table I outlines the different notations used
by both algorithms.

Theorem 2: The GIB algorithm when β = 1 is
equivalent to the Kalman filter algorithm.
The proof is given in Appendix B.

Theorem 3: The GIB algorithm when β > 1 can
be computed by a modified Kalman filter iteration.
The proof is given in Appendix C.

There are some differences between the GIB
algorithm and Kalman filter computation. First, the
Kalman filter has input observations zk in each
round. Note that the observations do not affect the

P(t)

(a)

P(y|t)
 P(t|x)

(b)

X
k-1
 X
k
X
k

Affine-

mapping

Measure-

ment

(c)

X
k-1
 X
k

Gradient

descent

Translation

Inverse

affine

mapping

Prediction

V
k

-

Fig. 2. Comparison of the schematic operation of the different
algorithms. (a) iterative information bottleneck operation (b) Kalman
filter operation (c) Affine-scaling operation.

posterior error covariance computation Pk (eq. 3c),
but affect the posterior mean x̂k (eq. 3b). Second,
Kalman filter computes both posterior mean x̂k and
error covariance Pk. The covariance Σξk

computed
by the GIB algorithm was shown to be identical
to Pk when β = 1. The GIB algorithm does
not compute the posterior mean, but computes an
additional covariance Ak (eq. 6b), which is assumed
known in the Kalman filter.

From the information theoretic perspective, our
work extends the ideas presented in [10]. Predictive
information is defined to be the mutual information
between the past and the future of a time serias. In
that sense, by using Theorem 2, Kalman filter can
be thought of as a prediction of the future, which
from the one hand compresses the information about
past, and from the other hand maintains information
about the present.

The origins of similarity between the GIB algo-
rithm and Kalman filter are rooted in the IB iterative
algorithm: For computing (5a), we need to compute
(5b,5c) in recursion, and vice versa.

IV. RELATION TO THE AFFINE-SCALING
ALGORITHM

One of the most efficient interior point methods
used for linear programming is the Affine-scaling
algorithm [11]. It is known that the Kalman filter
is linked to the Affine-scaling algorithm [7]. In this
work we give an alternate proof, based on different
construction, which shows that Affine-scaling is an
instance of Kalman filter, which is an instance of
GIB. This link between estimation and optimization
allows for numerous applications. Furthermore, by
providing a single distribute efficient implementa-
tion of the GIB algorithm, we are able to solve
numerous problems in communication networks.

The linear programming problem in its canonical
form is given by:

minimize cTx (7a)
subject to Ax = b, x ≥ 0. (7b)

where A ∈ Rn×p with rank{A} = p < n. We
assume the problem is solvable with an optimal x∗.
We also assume that the problem is strictly feasible,
in other words there exists x ∈ Rn that satisfies
Ax = b and x > 0.

The Affine-scaling algorithm [11] is summarized
below. Assume x0 is an interior feasible point to
(7b). Let D = diag(x0). The Affine-scaling is an
iterative algorithm which computes a new feasible
point that minimizes the cost function (7a):

x1 = x0 − α

γ
D2r (8)

where 0 < α < 1 is the step size, r is the step
direction.

r = (c− ATw), (9a)
w = (AD2AT)−1AD2c, (9b)
γ = max

i
(eiPDc). (9c)

Where ei is the ith unit vector and P is a projection
matrix given by:

P = I −DAT (AD2AT)−1AD. (10)

The algorithm continues in rounds and is guaranteed
to find an optimal solution in at most n rounds.
In a nutshell, in each iteration, the Affine-scaling
algorithm first performs an Affine-scaling with re-
spect to the current solution point xi and obtains

the direction of descent by projecting the gradient
of the transformed cost function on the null space of
the constraints set. The new solution is obtained by
translating the current solution along the direction
found and then mapping the result back into the
original space [7]. This has interesting analogy for
the two phases of the Kalman filter.

Theorem 4: The Affine-scaling algorithm itera-
tion is an instance of the Kalman filter algorithm
iteration.
Proof is given in Appendix D.

V. EFFICIENT DISTRIBUTED COMPUTATION

We have shown how to express the Kalman filter,
Gaussian information bottleneck and Affine-scaling
algorithms as a two step MMSE computation. Each
step involves inverting a 2× 2 block matrix. Recent
result by Bickson and Shental et al. [1] show that
the MMSE computation can be done efficiently and
distributively using the Gaussian belief propagation
algorithm. Because of space limitations the full
algorithm is not reproduced here.

The interested reader is referred to [1], [3] for
a complete derivation of the GaBP update rules
and convergence analysis. The GaBP algorithm is
summarized in Table II.

Regarding convergence, if it converges, GaBP is
known to result in exact inference [12]. Determining
the exact region of convergence and convergence
rate remain open research problems. All that is
known is a sufficient (but not necessary) condi-
tion [13], [14] stating that GaBP converges when
the spectral radius satisfies ρ(|IK − A|) < 1, where
A is first normalized s.t. the main diagonal contains
ones. A stricter sufficient condition [12], determines
that the matrix A must be diagonally dominant
(i.e. , |Aii| >

∑
j 6=i |Aij|,∀i) in order for GaBP to

converge.
Regarding convergence speed, [15] shows that

when converging, the algorithm converges in
O(log(ε)/log(γ)) iterations, where ε is the desired
accuracy, and 1/2 < γ < 1 is a parameter related
to the inverted matrix. The computation overhead in
each iteration is determined by the number of non-
zero elements of the inverted matrix A. In practice,
[16] demonstrates convergence of 5-10 rounds on
sparse matrices with several millions of variables.
[17] shows convergence of dense constraint matrices

TABLE II
COMPUTING x = A−1b VIA GABP [3].

Stage Operation
1. Initialize Compute Pii = Aii and µii = bi/Aii.

Set Pki = 0 and µki = 0, ∀k 6= i.
2. Iterate Propagate Pki and µki, ∀k 6= i such that Aki 6= 0.

Compute Pi\j = Pii +
∑

k∈N(i)\j Pki and µi\j = P−1
i\j (Piiµii +

∑
k∈N(i)\j Pkiµki).

Compute Pij = −AijP
−1
i\j Aji and µij = −P−1

ij Aijµi\j .
3. Check If Pij and µij did not converge, return to #2. Else, continue to #4.
4. Infer Pi = Pii +

∑
k∈N(i) Pki , µi = P−1

i (Piiµii +
∑

k∈N(i) Pkiµki).
5. Output xi = µi

of size up to 150, 000 × 150, 000 in 6 rounds,
where the algorithm is run in parallel using 1,024
CPUs. Empirical comparison with other iterative
algorithms is given in [2].

VI. EXAMPLE APPLICATION

The TransFab software package is a distributed
middleware developed in IBM Haifa Labs, which
supports real time forwarding of message streams,
providing quality of service guarantees. We plan
to use our distributed Kalman filter algorithm for
online monitoring of software resources and perfor-
mance. On each second each node records a vec-
tor of performance parameters like memory usage,
CPU usage, current bandwidth, queue sizes etc. The
nodes execute the distributed Kalman filter algo-
rithm on the background. Figure 3 plots a covariance
matrix of running an experiment using two TransFab
nodes propagating data. The covariance matrix is
used as an input the Kalman filter algorithm. Yellow
sections show high correlation between measured
parameters. Initial results are encouraging, we plan
to report them using a future contribution.

VII. CONCLUSION

In this work we have linked together several
different algorithms from the the fields of estimation
(Kalman filter), clustering/compression (Gaussian
information bottleneck) and optimization (Affine-
scaling interior-point method). Besides of the theo-
retical interest in linking those different domains, we
are motivated by practical problems in communica-
tion networks. To this end, we propose an efficient
distributed iterative algorithm, the Gaussian belief

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

−10

0

10

20

30

40

50

60

Fig. 3. Covariance matrix which represents vector data captured
from two Transfab nodes.

propagation algorithm, to be used for efficiently
solving these problems.

ACKNOWLEDGMENT

O. Shental acknowledges the partial support of
the NSF (Grant CCF-0514859). The authors are
grateful to Noam Slonim and Naftali Tishby from
the Hebrew University of Jerusalem for useful dis-
cussions.

REFERENCES

[1] D. Bickson, O. Shental, P. H. Siegel, J. K. Wolf, and D. Dolev,
“Gaussian belief propagation based multiuser detection,” in
IEEE Int. Symp. on Inform. Theory (ISIT), Toronto, Canada,
July 2008.

[2] ——, “Linear detection via belief propagation,” in Proc. 45th
Allerton Conf. on Communications, Control and Computing,
Monticello, IL, USA, Sept. 2007.

[3] O. Shental, D. Bickson, P. H. Siegel, J. K. Wolf, and D. Dolev,
“Gaussian belief propagation solver for systems of linear equa-
tions,” in IEEE Int. Symp. on Inform. Theory (ISIT), Toronto,
Canada, July 2008.

[4] G. Welch and G. Bishop, “An introduction to the
kalman filter,” Tech. Rep., 2006. [Online]. Available:
http://www.cs.unc.edu/ welch/kalman/kalmanIntro.html

[5] G. Chechik, A. Globerson, N. Tishby, and Y. Weiss, “Informa-
tion bottleneck for gaussian variables,” in Journal of Machine
Learning Research, vol. 6. Cambridge, MA, USA: MIT Press,
2005, pp. 165–188.

[6] F. Kschischang, B. Frey, and H. A. Loeliger, “Factor graphs
and the sum-product algorithm,” in IEEE Transactions on
Information Theory, vol. 47, Feb. 2001, pp. 498–519.

[7] S. Puthenpura, L. Sinha, S.-C. Fang, and R. Saigal, “Solving
stochastic programming problems via kalman filter and affine
scaling,” in European Journal of Operational Research,
vol. 83, no. 3, 1995, pp. 503–513. [Online]. Available:
http://ideas.repec.org/a/eee/ejores/v83y1995i3p503-513.html

[8] N. Tishby, F. Pereira, and W. Bialek, “The information bottle-
neck method,” in The 37th annual Allerton Conference on Com-
munication, Control, and Computing, invited paper, September
1999.

[9] N. Slonim, “The information bottelneck: Theory and appli-
cation,” in Ph.D. Thesis, School of Computer Science and
Enigeering, The Hebrew University of Jerusalem, 2003.

[10] W. Bialek, I. Nemenman, and N. Tishby, “Predictability, com-
plexity, and learning,” in Neural Comput., vol. 13, no. 11.
Cambridge, MA, USA: MIT Press, November 2001, pp. 2409–
2463.

[11] R. J. Vanderbei, M. S. Meketon, and B. A. Freedman, “A
modification of karmarkar’s linear programming algorithm,” in
Algorithmica, vol. 1, no. 1, March 1986, pp. 395–407.

[12] Y. Weiss and W. T. Freeman, “Correctness of belief propagation
in Gaussian graphical models of arbitrary topology,” in Neural
Computation, vol. 13, no. 10, 2001, pp. 2173–2200.

[13] J. Johnson, D. Malioutov, and A. Willsky, “Walk-sum interpre-
tation and analysis of gaussian belief propagation,” in Nine-
teenth Annual Conference on Neural Information Processing
Systems (NIPS 05’), 2005.

[14] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-
sums and belief propagation in Gaussian graphical models,” in
Journal of Machine Learning Research, vol. 7, Oct. 2006.

[15] D. Bickson, Y. Tock, D. Dolev, and O. Shental, “Polynomial
linear programming with gaussian belief propagation,” in the
46th Allerton Conf. on Communications, Control and Comput-
ing, Monticello, IL, USA, 2008.

[16] D. Bickson and D. Malkhi, “A unifying framework for rating
users and data items in peer-to-peer and social networks,”
in Peer-to-Peer Networking and Applications (PPNA) Journal,
Springer-Verlag, 2008.

[17] D. Bickson, D. Dolev, and E. Yom-Tov, “A gaussian belief
propagation solver for large scale support vector machines,”
in 5th European Conference on Complex Systems, Jerusalem,
Sept. 2008.

APPENDIX A
Proof: We prove that inverting the matrix E

(eq. 4) is equivalent to one iteration of the Kalman
filter for computing Pk.

We start from the matrix E and show that P−
k

can be computed in recursion using the Schur com-
plement formula:

D − CA−1B (11)

applied to the 2×2 upper left submatrix of E, where
D , Q, C , AT , B , A,A , Pk−1 we get:

P−
k =

D︷︸︸︷
Q

−︷︸︸︷
+

C︷︸︸︷
AT

−A−1︷︸︸︷
Pk−1

B︷︸︸︷
A .

Now we compute recursively the Schur comple-
ment of lower right 2 × 2 submatrix of the matrix
E using the matrix inversion lemma:

A−1 + A−1B(D − CA−1B)−1CA−1

where A−1 , P−
k , B , HT , C , H,D , Q. In

total we get:

A−1︷︸︸︷
P−

k +

A−1︷︸︸︷
P−

k

B︷︸︸︷
HT (

D︷︸︸︷
R +

C︷︸︸︷
H

A−1︷︸︸︷
P−

k

B︷︸︸︷
HT)−1

C︷︸︸︷
H

A−1︷︸︸︷
P−

k =
(12)

(I −
(3a)︷ ︸︸ ︷

P−
k HT (HP−

k HT + R)−1 H)P−
k =

=

(3c)︷ ︸︸ ︷
(I −KkH)P−

k = Pk

APPENDIX B
Proof: Looking at [5, §39], when β = 1 we get

Σξ+1 = (Σ−1
tk|y)

−1 = Σtk|y =

MMSE︷ ︸︸ ︷
Σtk − ΣtkyΣ

−1
y Σytk =

[5, §38b]︷ ︸︸ ︷
Σtk + BT Σy|tkB =

Σtk +

[5, §34]︷ ︸︸ ︷
Σ−1

tk
Σtky Σy|tk

[5, §34]︷ ︸︸ ︷
ΣytkΣ

−1
tk

=
[5, §33]︷ ︸︸ ︷

AT ΣxA + Σξ +

[5, §33]︷ ︸︸ ︷
(AT ΣxA + Σξ) AT Σxy·

·Σy|tkΣyxA

[5, §33]︷ ︸︸ ︷
(AT ΣxA + Σξ)

T =
AT ΣxA + Σξ + (AT ΣxA + Σξ)A

T Σxy·

·
MMSE︷ ︸︸ ︷

(Σy + ΣytkΣ
−1
tk

Σtky) ΣyxA(AT ΣxA + Σξ)
T =

AT ΣxA + Σξ + (AT ΣxA + Σξ)A
T Σxy·

(Σy +

[5, §5]︷ ︸︸ ︷
AT Σyx

([5, §5]︷ ︸︸ ︷
(AΣxA

T + Σξ)

[5, §5]︷ ︸︸ ︷
ΣxyA)·

·ΣyxA(AT ΣxA + Σξ)
T .

Now we show this formulation is equivalent to
the Kalman filter with the following notations:

P−
k , (AT ΣxA + Σξ) , H , AT Σyx, R , Σy,

Pk−1 , Σx, Q , Σξ.

Substituting we get:

P−k︷ ︸︸ ︷
(AT ΣxA + Σξ) +

P−k︷ ︸︸ ︷
(AT ΣxA + Σξ)

HT︷ ︸︸ ︷
AT Σxy ·

·(
R︷︸︸︷
Σy +

H︷ ︸︸ ︷
AT Σyx

P−k︷ ︸︸ ︷
(AT ΣxA + Σξ)

HT︷ ︸︸ ︷
ΣxyA)·

·
H︷ ︸︸ ︷

ΣyxA

P−k︷ ︸︸ ︷
(AT ΣxA + Σξ) .

Which is equivalent to (12). Now we can apply
Theorem 1 and get the desired result.

APPENDIX C

Proof: In the case where β > 1, the MAP co-
variance matrix as computed by the GIB algorithm
is:

Σξk+1
= βΣtk|y + (1− β)Σtk (13)

This is a weighted average of two covariance ma-
trices. Σtk is computed at the first phase of the
algorithm (equivalent to the prediction phase in
Kalman literature), and Σtk|y is computed in the
second phase of the algorithm (measurement phase).
At the end of the Kalman iteration, we simply
compute the weighted average of the two matrices
to get (13). Finally, we compute Ak+1 using (eq. 6b)
by substituting the modified Σξk+1

.

APPENDIX D

Proof: We start by expanding the Affine-
scaling update rule:

x1 =

(8)︷ ︸︸ ︷
x0 − α

γ
D2r = x0 − α

max
i

eiPDc
︸ ︷︷ ︸

(9c)

D2r =

= x0 − α

maxi ei (I −DAT (AD2AT)AD)︸ ︷︷ ︸
(10)

Dc
D2r =

= x0 − αD2

(9a)︷ ︸︸ ︷
(c− ATw)

maxi ei(I−DAT (AD2AT)−1AD)Dc
=

x0 − αD2(c−AT

(9b)︷ ︸︸ ︷
(AD2AT)−1AD2c)

maxi ei(I−DAT (AD2AT)AD)−1Dc
=

x0 − αD(I−DAT (AD2AT)−1AD)Dc
maxi ei(I−DAT (AD2AT)−1AD)Dc

Looking at the numerator and using the Schur com-
plement formula (11) with the following notations:
A , (AD2AT)−1, B , AD,C , DAT , D , I

we get the following matrix:
(

AD2AT AD
DAT I

)
.

Again, the upper left block is a Schur complement
A , 0, B , AD,C , DAT , D , I of the follow-

ing matrix:
(

0 AD
DAT I

)
. In total with get a 3×3

block matrix of the form:




0 AD 0
DAT I AD

0 DAT I


.

Note that the divisor is a scalar which affects the
scaling of the step size.

Using Theorem 1, we get a computation of
Kalman filter with the following parameters:
A,H , AD, Q , I, R , I, P0 , 0. This has an
interesting interpretation in the context of Kalman
filter: both prediction and measurement transforma-
tion are identical and equal AD. The noise variance
of both transformations are Gaussian variables with
prior ∝ N (0, I).

