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Abstract. Clustering is an important mechanism in large multi-hop
wireless sensor networks for obtaining scalability, reducing energy con-
sumption and achieving better network performance. Most of the re-
search in this area has focused on energy-efficient solutions, but has not
thoroughly analyzed the network performance, e.g. in terms of data col-
lection rate and time.

The main objective of this paper is to provide a useful fully-distributed
inference algorithm for clustering, based on belief propagation. The algo-
rithm selects cluster heads, based on a unique set of global and local pa-
rameters, which finally achieves, under the energy constraints, improved
network performance. Evaluation of the algorithm implementation shows
an increase in throughput in more than 40% compared to HEED scheme.
This advantage is expressed in terms of network reliability, data collec-
tion quality and transmission cost.

Keywords: wireless sensor networks, clustering, belief propagation

1 Introduction

Organization of large multi-hop wireless networks into clusters is essential for
achieving basic network performance. In wireless sensor networks (WSN), the
clustering is primarily characterized by data aggregation by each cluster head,
which significantly reduces the traffic cost. The hierarchial model requires two
main methods: (1) periodic selection of cluster heads (CHs); and (2) assignment
of each node to one or multiple clusters.

Optimal clusters’ selection is equivalent to the minimum dominating set prob-
lem which is an NP-complete problem. The literature is extremely rich with many
approximation algorithms based on several heuristics. The reader is referred to
[1] and [2] for a review of previous work.

While most efforts thus far have focused on an energy-efficient clustering
scheme, the attention to the performance of the multi-hop network was quite
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limited. An energy-efficiency algorithm may select a few CHs for energy-saving,
but if these CHs do not have good connectivity or if they are not stable, the
retransmission and the dropped packets may significantly degrade the network
performance and the total energy wasted may end up to be higher. Therefore,
taking reliable communication into account is essential for any clustering algo-
rithm which aims to reduce the energy consumption in a network.

Moreover, the network lifetime should be measured not only by the time that
the first or the last node dies, but also by the period of time that the network is
available for providing services and operating appropriately. Since the network is
usually dense and many nodes are redundant, the death of a few nodes does not
affect the network. Thus, network lifetime is tightly coupled with the network
performance.

The work presented in this paper uniquely addresses the clustering problem
in multi-hop networks with a special focus on network performance, using the
belief propagation (BP) algorithm. BP is an iterative algorithm for computing
marginal probabilities on trees, by local message passing [3]. Mostly, it is used
for efficiently solving inference problems. BP is a popular method for distributed
inference because of its properties, such as fast convergence, accurate results, and
good performance in asynchronous environment etc.

The main advantage of this method over existing algorithms for clustering is
that BP considers not only local properties of a node, such as residual energy or
degree, but also takes into account joint characteristics of a group of nodes, such
as link quality and topology information. Utilization all available data, while
maintaining small constant message and time overhead, leads to considerable
increase in network performance and balanced power consumption among the
nodes.

The contribution of the paper is two-fold. First, it introduces a new algo-
rithm for efficient clustering that considers not only the power balancing among
the nodes, but also the total transmission power aggregated in the multi-hop
routing. The algorithm is fully decentralized and asynchronous, have fixed small
convergence time and scales to large networks. Extensive simulation of the algo-
rithm in environment of interferences, packet loss and node failures, which covers
other synchronization issues, such as active node’s duty cycle, demonstrates its
robustness as well. In contrast to many algorithms in this area, our algorithm
makes no a priori assumptions regarding the network size and distribution of
nodes, link symmetry or topology.

Moreover, the paper presents a scalable and practical implementation of BP
in WSN for inference goals. We propose a new broadcast variation that is tai-
lored to fit Min-Sum algorithm, efficient implementation in hardware and effec-
tive network transmission. The message passing routine is highly energy-aware
and provides distinctive combination of energy-efficient features. Our novel ap-
proach of using a broadcast communication paradigm and the use of only integer
calculations, without any scheduling or message ordering, considerably decrease
the general overhead relative to other BP frameworks that are used for WSN

([4], [5], and [6]).



The rest of the paper is organized as follows. Section 2 briefly presents rel-
evant previous work. Section 3 describes the network model and formalizes the
clustering problem. Efficient clustering, using belief propagation, is described in
Section 4. Section 5 analyzes the algorithm using simulation. Section 6 concludes
the paper with a discussion and directions for future work.

2 Related Work

Many research projects in the last few years have explored clustering in WSN
from different perspectives. LEACH [7], is the first clustering algorithm that
was proposed for reducing power consumption. In LEACH, the clustering task
is rotated among the nodes, based on duration. Direct communication is used
by each CH to forward the data to the base station (BS).

HEED [8] extends the basic scheme of LEACH by using residual energy
and node degree or density as a metric for cluster selection to achieve power-
balancing. It operates in multi-hop networks, using an adaptive transmission
power in the inter-clustering communication.

Both schemes are fully-distributed, terminate in constant number of itera-
tions and incur low message overhead. However, the cluster selection deals with
only a subset of parameters, which can possibly impose constraints on the sys-
tem. These methods are suitable for prolonging the network lifetime rather than
for the entire needs of WSN.

VCA [9] is a voting-based clustering algorithm that enhances the criteria
for cluster selection and combines load balancing consideration together with
topology and energy information. VCA addresses inefficient cluster formation
using a voting scheme, which enables the nodes to exchange information about
their local network view. This method assumes a synchronization among the
nodes. Similar to WCA [10], the time required for the nodes to gather information
about all other nodes depends on the network size and is not constant.

In EEUC [11], the hot-spot problem in multi-hop networks is solved using
clusters with unequal size. CHs that are closed to the BS tend to die faster,
because they relay much more traffic than remote nodes. Setting smaller cluster
sizes to the close CHs preserves their energy. Additional improvement for multi-
hop networks is presented in [12], using a separation between the data gathering
and aggregation task and the forwarding task.

All these algorithms try to prolong the network lifetime and to balance the
load among the nodes, using some metrics for cluster selection and maintenance.
Network performance of a multi-hop network is beyond the scope of these papers.
A broader perspective is presented in [13], where three fundamental character-
istics of multi-hop networks are clarified: power consumption distribution, the
effect of the distribution on data collection rate, and data collection time. This
work examines the network performance of direct communication, LEACH and
HEED. It provides new metrics for measuring the quality of a clustering algo-
rithm in multi-hop WSN. These metrics are used for evaluation of our algorithm
as well.



3 System Modeling and Problem Formulation

We model the sensor network as a directed graph G = (V, E), where V is a
set of nodes, where each one is assigned a local unique identifier. E is a set of
wireless links connecting two adjacent nodes. Nodes are defined as adjacent if
and only if they are within each other’s transmission range. The links may be
asymmetric. A special node, vy, is defined to be the base station (BS). The BS
is distinguished from other nodes by its unlimited energy supply. The network is
multi-hop, where nodes closer to the BS relay traffic of other remote nodes and
probably consumes much more energy [11]. There are no assumptions about the
distribution of the nodes, their homogeneity, location information etc.

The challenge of a clustering scheme is to efficiently form and maintain a
connected disjointed groups of nodes in a local and distributed manner. Each
group contains a single leader and several ordinary nodes.

The connectivity requirement may be achieved using one of two basic method-
ologies: either by an adaptive transmit power, where the CH increases its trans-
mission power to reach the next CH or by the assignment of a set of nodes,
covered by several CHs, to be gateway nodes. In this work, the second approach
is used. This approach is more general because it does not assume any distribu-
tion of the nodes and it also takes into consideration interferences in the area.

An efficient scheme is used to select CHs that: (1) minimize the total trans-
mission power aggregated over all nodes in the selected path; (2) balance the
load among the nodes to prolong the network lifetime. These two requirements
may contradict; e.g. a long path that consumes more energy than a short path
may be selected in order to avoid battery depletion at some nodes. The network
performance itself is obtained, in part, by the first requirement, where minimiz-
ing the total transmission cost results in a decrease of retransmissions as well as
the data transmission time.

In order to achieve a scalable and feasible framework, the overhead of the
scheme should have a constant message and time complexity per node, with
low maintenance cost. Additionally, it should work well under constraints as
topology changes, asynchronous environment, failures and duty cycle.

4 Efficient Clustering using Belief Propagation

The idea of using BP for clustering was recently introduced in [14]. The affinity
propagation method was set in that paper in a very general context and not in
a practical manner for WSN. In this section we construct a novel BP framework
for WSN and describe the algorithm for clustering.

4.1 Belief Propagation

In a probabilistic graphical model, an undirected graph G = (V, E) is a set of
nodes V and arcs F which represent dependencies among random variables. We
denote by x; the variable representing the set of possible states of a node 4. ¥;(x;)



corresponds to a local (prior) distribution function of node ¢ and v, (x;, ;) refers
to a joint function of two connected nodes ¢ and j. These functions are also called
potential functions.

In the BP method [15], [16], the inference is carried out in a local and dis-
tributed manner by each node, using a message passing technique. m;;(x;) is
a message from node i to node j about the state that node j should be. Node
1 calculates the massage using previous messages it receives from its adjacent
neighbors N (7). The message update rule performed by a node ¢ in round ¢ is:

mij ()" =Y i) (s ay) [ mwi)™"
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The update rule refereing to state x; of node j is a sum over all the possible
states z; of node i. On each state, three elements are incorporated together:
the local prior information ;(x;), the joint function 4;;(z;, ;) and the direct
neighbors information my;(x;)' 1.

Upon termination, after round ¢, the belief at a node ¢ (the marginal of the
variable) is the product of the local evidence together with all the incoming
messages and a normalization constant «:

bz(xz) = C“bz‘(ifi) H mki(xi)f .
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The BP algorithm for trees is an exact inference algorithm, which means
that the belief converges to the correct marginal values in a finite number of
iterations equals to the diameter of the tree.

Min-Sum Algorithm For energy efficiency, a variation of the original BP
algorithm, known also as the Min-Sum (MS) [17], is used. This algorithm uses
only addition and subtraction operations, so it works well with integer values
and saves the overhead of floating-point calculations. Additionally, the algorithm
uses broadcast messages [18], in order to preserve communication resources.

The MS algorithm computes inference in the negative log domain, which
can be equivalently viewed from the physics point of view as an energy, or cost
minimization. According to this viewpoint, the goal of the MS algorithm is to
minimize the overall cost over all the nodes in the network, based on the local
cost functions and the constraints between the nodes. The algorithm is intuitive.
Each node transmits to its neighbors a message with its local and joint costs.
Each neighbor that receives the message updates its own belief accordingly and
transmits the new belief, so gradually the information is propagated through the
network until the nodes converge to a common belief. This convergence point
minimizes the overall cost in the network. The algorithm, in its broadcast form
has three basic steps:

1. Message Passing
Each node ¢ transmits its local evidence on the initial round, and its belief,



based on incoming messages, on the successive rounds. Every broadcast mes-
sage m;, from node ¢ includes a combined information for all its neighbors,
replacing multiple unicast messages. The receivers extract the information
intended for them.

i (23)° = ¥i(x;)
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2. Message Update Rule
Upon a reception of message m;.(z;)" from node j € N(i), node i updates its
local belief by extracting the unicast information from the broadcast message
of node j, using the following calculation:

myi(2:)" = min{ey; (i, 25) +mys ()" —ma ()"}
J
The value of every message at round t < 0 is 0.

3. Belief Calculation
At the end of round ¢, where £ can be chosen to be the network diameter or
any other predefined limit, node ¢ determines its final state x; to be the one
which minimizes the total cost.

b(zi) = argn;iin{wi(x,-) + > m(w)'}

kEN(i)

4.2 Cost Metrics

Basic metrics for energy-efficient and reliable communication are formulated in
[19] for minimum energy path and maximum lifetime. Their analysis shows that
an incorporation of the link error rates is required for reliable packet delivery,
in both constant-power and variable-power scenarios. Using a similar method,
two cost functions are defined. These cost functions consider residual energy,
degree, topology and link quality, distance from BS (in terms of hops) and overall
transmission cost, as the following.

A self cost of a potential CH is denoted by C; = %, which is basically
defined by the expected energy consumption in a period F; and it’s residual
battery power B;. The expected energy consumption is an estimation of the
power used in the routing if that node becomes a CH. The estimation is based on
the network topology: the degree of the node determines the expected reception
and transmission; the distance from the BS in terms of hop count estimates the
further transmission cost to the BS.

Transmission cost among two nodes or along a path is a function of the radio
power level and the number of transmitted bits. Previous work [20], [21] has
shown that the overall transmission cost cannot be estimated by the distance
between the nodes, e.g. because of interferences, nor can be estimated by the re-
ceived signal strength indicator (RSSI), due to in-correlation between low RSSI



and reception rate. Link quality can evaluate the expected number of transmis-
sions along the path. Each node estimates the quality of the links by observing
packet success and loss events. Accordingly, the transmission cost between two
neighbors C;; = %?' is defined as a function of the energy consumption over the
link E;; and the relmaining battery power of the transmitting node B;.

4.3 Algorithm Description

Let z; be a CH candidate of node 4, i.e. x; =i or z; € N(i) and x; has a valid
route to the BS and appropriate link quality.
We define ¢;(x;) to be a local cost function of connecting node ¢ to CH x;.

G forxi=1
Wi(w:) = {C’ij for each x; =j € N; .

1;;(x;, x;) represents the constraints between two neighbors ¢ and j to elimi-
nate improper assignment of CH association. The constraints are: (1) two neigh-
bors cannot be both CHs; (2) a node can select another node to be its CH only
if that node announces that it is a CH.

_ | oo one of the constraints is applied
Wi (@i, 5) = {O otherwise .

Cluster selection is possible at each node after a period of initialization, when
a route to the BS is constructed. The process is asynchronously triggered by two
events: (1) when a regular node does not find a CH among its neighbors, e.g.
because of topology changes; and (2) periodically, by a CH, to balance the power
among the nodes in a local area. The second event also ensures that the number
of CHs will not be too large, by preventing a CH from assuming that role if it
is not re-selected.

The message passing algorithm is performed on a tree structure, which is a
sufficient condition for convergence. The algorithm is executed in a restricted
region of a 1-hop neighborhood, and as a result, it requires a constant number of
messages. It stabilizes when the entire network is not affected by local changes
anymore. The tree is a subtree of the general routing tree that is used in the
network. In the first event, once a node triggers a clustering process because of
no CH, it announces itself as a temporary CH and its 1-hop neighbors, which get
its message and find it as an appropriate CH, selects it as a parent and performs
the message passing on the resulting 1-hop tree. In the second event, the node is
already a CH, so the message passing tree is already constructed, where all the
children of that node participate in the message passing.

Each node i starts the process by broadcasting the message m;.(z;)°. This
message contains its cost for being a CH (infinite if it is not a valid CH) and
the cost to connect other CH candidates among its neighbors. These costs are
transmitted as 16-bit integer numbers together with 16-bits of identification.

The rest of the packet processing is performed according to the MS algorithm
described above, where unordered messages are stored in a buffer until compu-
tation. The timer between the rounds is large enough to support asynchronous



operation, but not too large, for not to adversely impact effective operation.
Topology changes during the message passing are taken into consideration as
follows: (1) Cost of new neighbors is not added in the middle of the message
passing operation; (2) Node who loses its parent during the message passing
cannot converge with its new parent, so all its messages are ignored. The node
should wait until the end of the process to find out a new CH; (3) Link breaks
are marked by updating the joint cost to be infinite. A node determines which of
its neighbors are in its routing subtree by inspection the messages of its parent
and its descendants. A node discards cost information of nodes that are not in
its subtree, because it does not have complete information about them. Messages
with errors or those which are not synchronized with the messages of the node,
are discarded as well.

One round before termination, a node calculates the belief about its final state
- a CH or an ordinary node, and attaches the appropriate announcement to the
message. After the last round a node operates according to its announcement;
If it has previously announced itself as a CH it becomes a CH. Otherwise, it
joins the cluster that minimizes the overall cost, according to the information it
holds. In case of errors or convergence problem, it is possible that no node would
declare itself as a CH. In such a scenario, nodes that do not have any alternative
CH in their area start the clustering process again.

In contrast to the cost messages, which are propagated over the routing tree
to avoid loops, the decision of a selected cluster is made by the information
spread in the entire 1-hop neighborhoods, i.e. a node can select a CH that does
not appear in its current subtree. Each node updates its clusters map according
to all the broadcast messages it gets.

Once the clustering process is done, the routing tree is changed, where CHs
operate as parents of the nodes who join them. Using the gateway approach to
connect two clusters, a CH may choose a regular node to be its parent, if it does
not have any CH that could operate as its parent. The hop metric is used to
detect and avoid cycles, so after the process there is a new routing tree.

Convergence Time BP has a fast convergence property, but when too many
errors are involved, it is likely that the convergence will be more slow and into
a wrong value. WSN are exposed to a large amount of communication and node
failures, so the convergence to a correct state is not guaranteed. Therefore, in
order to avoid impact of the physical and the MAC layers as well as other envi-
ronment factors, we limit by design the number of rounds until termination to
be a predefined small fixed value. On ideal environment, the convergence of the
algorithm to a common belief, not including the CH announcement, is 2 rounds,
equal to the diameter of the 1-hop vicinity graph. Actually, the predefined round
number was set to 5. This value is robust against some synchronization and
packet loss and it is sufficient in most of the cases to reach a convergence via
three steps: detection of the nodes in the routing tree for correct cost calcula-
tions, computation of the belief based on cost functions and publication of the
CH announcement. This number of rounds is very small in compared to other



schemes and is not affected by the network size, therefore providing a scalable
solution in large networks. Moreover, the limitation on the number of messages
means low delay and small message overhead.

Main

(1) If CH and timer expires or if ordinary node with no CH
. tart clustering process with propagation limit of 1;
1.1) S 1 i ith ion limit of 1
pon reception a first-roun message from parent or from candidate
2) U ti first d BP fi t or fi CH didat
and when the propagation limit is 1
. pdate your parent to be the sender node for the message passing;
2.1) Upd be th d de for th i
(2.2) Start clustering process with propagation limit of 0;

Clustering Process

(1) Compute local cost function and joint cost function of all the neighbors;
(2) Run the MS algorithm with the following rules:
(2.1) Unordered messages will be stored in a buffer until computation;
(2.2) Upon topology changes update the cost;
(2.3) Messages with errors or synchronization problems are discarded;
(3) One round before termination attach the belief about final state to the message;
(4) Ending steps:
(4.1) Set the power level according to the final state and update timers;
(4.2) Select a parent: if ordinary node, select CH that minimizes the cost;
if CH, select other CH if possible, otherwise choose an ordinary node
as a gateway.

Fig. 1. Sketch of the Algorithm

5 Performance Evaluation

To evaluate the performance of clustering using BP, it has been compared with
the clustering process of HEED [8], in a network model that uses gateway nodes
to connect between the clusters, when two CHs cannot communicate directly.

In HEED, a node initially sets its probability to become the CH according
to its residual energy. During each iteration, a node arbitrates among the CHs
announcements it has received to select the lowest cost CH. If it has not received
any announcements, it elects itself to become a CH with probability it has.
If successful, it sends an announcement indicating its willingness to become
CH. The node then doubles its probability, waits for a short iteration interval,
and begins the next iteration. A node stops this process one iteration after its
probability reaches the value of 1. Simulation results have shown that HEED
is effective in prolonging the network lifetime and in supporting scalable data
aggregation.
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5.1 Simulation Model

TOSSIM, TinyOS simulator [22], was used for the analysis of the clustering algo-
rithm. Link Estimation and Parent Selection (LEPS) [21] was used as the routing
protocol in the multi-hop network. In this method, each node monitors all traffic
received within the single hop range, including route updates from neighbors.
Using shortest path heuristic, it manages the nearest available neighbors and de-
cides the next hop. The Surge application was used for data aggregation, where
every nodes periodically takes light sensor readings and sends them over the
network to the BS. The simulator provides an environment which includes real-
istic properties of a network, like interferences and collisions, asymmetric links,
changes in the link quality, nodes death and failure etc.

Evaluation of the communication cost, as well as the estimation of the re-
maining energy, were done based on the power information about Berkeley Mica2
mote [23] and using the credit point system, proposed by [24]. In this system,
every node is assigned some number of points that reflect its residual energy.
Each packet reception or transmission reduces points from the node, based on
the packet size and the transmission power level.

Every plot was taken as an average of 27 different runs. In all the experiments,
250 nodes including a single BS were run. The simulated time was 20000 seconds,
to observe the network in a stable state until it collapses when the major of the
nodes die.

Every node starts with a random residual energy, ranges from 250 to 500
thousand points. The power level of a regular node was -20 dBm and the power
level of a CH was -13 dBm. A timer of 540 seconds was set for periodic cluster
selection triggered by each CH or by each node in BP and HEED, accordingly,
and a timer of 11 seconds was used between the rounds of the message passing.
Both the power levels and the timers are the default parameters used by HEED
in TinyOS. We adapted the transmission rate and the aggregation rate to the
network size, so the transmission rate by the application was increased to 6144
milliseconds. Every CHs that receives the packets aggregates them and transmit
them every 3 minutes. The other parameters are taken to be the defaults defined
in TOSSIM.

5.2 Network Performance

We first study the network performance of the two algorithms, in terms of data
packets received by the BS. Each node constantly transmits data points to its CH
which aggregates all the points into a single packet and forwards them toward
the BS.

As one can see in Figure 2, clustering with BP achieves more than 40%
higher throughput than HEED, where the data points received by the BS are
significantly greater. This higher throughput is expressed by both data collection
rate and time.

The trend of the data rate during the network lifetime is shown in Figure 3.
In Figure 3(a), there is an increase in the data rate over time, both because the
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network becomes more stable and also because nodes start to die, so the network
experiences less interferences. The number of live nodes in the system decreases
to about 150 nodes at time 10000, but the network is still well connected and
only the nodes’ redundancy is removed. From this time, the nodes die quickly,
so the connectivity of the network and its coverage rapidly decrease. Since the
data rate of BP is larger than HEED, the deterioration is steeper.

The advantage of BP can be explained by several network parameters, which
are all a result of the fact that BP selects CH better. The non-optimized routing
of HEED can be shown by the average hop count of HEED, as presented in
Figure 4 which is larger than BP. This means that the number of transmissions
in the network may increase, so the number of interferences and the dropped
packets increase as well.

Better deployment and network stability may be another reason for the ad-
vantage of BP over HEED. The estimated number of CHs in the system during
each period of time is presented in Figure 5. Each period is about 540 seconds,
with a single periodic clustering process. The figure shows the network state
from the beginning with 250 nodes, until about 150 nodes are left, at which
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point (in periods 11-13) nodes start to die. At the beginning, BP has less CHs
in the system which implies better aggregation, less transmission cost and in-
terferences. Once nodes start to die, the number of CHs selected by BP in the
system increases proportionally to the number of nodes that are alive and to the
number of CHs which are selected by HEED. The intersection of BP and HEED
in periods 11 and 12 is a result of the decrease in the number of CHs in HEED
and the increased number of CHs, in proportion to the number of alive nodes, by
BP. The increased number of CHs achieves better coverage and deployment and
improves the network connectivity. The network with BP performs better even
under conditions of topology changes, so as a result, less clustering processes are
performed and less route failures exist, as it shown in Figure 6 and Figure 7.
The number of clustering processes that are triggered in HEED increases
somewhat in period 11, which can be explained by the fact that nodes start to
die, and consequently some of the nodes lose their CHs. Nonetheless, with the
exception of that increase, during most of the duration, the number of clustering
processes that are triggered is quite similar, even during the periods when there
are much fewer nodes alive. This means that the network has proportionally more
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clustering processes and that it is not in a stable state. On the other hand, the
number of clustering processes that are triggered in the BP scheme decreases
over time, which shows better stability even when nodes die. The number of
packets that are dropped because of no route, correlates to number of clustering
processes that are triggered because of no CHs, and presents the same trend.

It is important to note that no retransmission is done in the simulation. When
retransmission is performed, HEED is expected to perform much worse than BP,
since retransmission means more interferences and more energy consumption.

5.3 Clustering Overhead

Although BP and HEED have both a constant and consistent number of rounds
in the clustering process, BP suffers from more overhead during the clustering
process. This is because the messages of BP are larger than HEED. BP messages,
at the extreme, might reach up to 74 Bytes (17 cost entries with identification of
total 4 Bytes plus header of about 6 Bytes), while HEED message have size of 29
Bytes at most. In fact, BP messages are usually not that long, and do not reach
that limit, but still the messages are longer than HEED, so the transmission cost
is higher.

Figure 8 shows that at the start of the simulation, the overhead of BP is about
double the HEED overhead. Later, when the network becomes more stable, BP
performs less re-clustering than HEED. HEED performs more because nodes
die, so this difference significantly decreases.

5.4 Energy Characteristics

Network Lifetime BP achieves better network performance and reduces the
transmission cost as well. However, the network lifetime, measured by the num-
ber of alive nodes of BP and HEED are quite similar, with a marginally (very
small) advantage of HEED, as presented in Figure 9. This results from the fact
that the total number of packets that are forwarded in the network is signifi-
cantly greater in BP than HEED. This implies a higher total transmission cost.
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1 13 374933.48 11673.37

1.5 14 394017.97 12727.69

2 57 388017.87 13047.62

2.5 81 388938.62 12546.50

3 76 335469.51 9587.23

3.5 8 292071.86 7800.46

Fig. 10. Energy information about the nodes in BP

BP pays for transmission of a single packet much less than HEED pays, as a
result of the CHs’ selection but over the network lifetime the overall transmission
cost is similar.

When measuring the network lifetime as the time that the network is available
for providing services, we can see in Figure 3(b) that BP succeeds in achieving
better performance than HEED, until very close to the end. Only from time
18000, HEED has a slight advantage in the throughput, but this has no real
meaning because there are about 20 nodes in the network and anyway the net-
work does not operate appropriately. Therefore, from service availability point
of view, BP has better overall network connectivity than HEED and thus better
network lifetime.

Power and Load Balancing In multi-hop communication, the nodes closest
to the BS usually tend to be burdened with a heavy relay traffic load and to die
first. This is the hot-spot problem and many clustering algorithms suffer from
it. To verify that this problem does not occur in BP, we analyze the energy
characteristics of the nodes based on their distance from the BS.

A node with some physical distance from the BS can have different hop
distances over time. For example, a node with distance 1.5 from the BS, can
sometimes be connected directly to the BS and sometimes connected via a CH.
The different hop count is mostly a result of link quality, which is affected by
many network parameters.

We explore on the general concepts that arise from Figure 10 and not from
the specific values, since the nodes start with a random initial energy, which
definitely affects the network lifetime, even when power balancing takes place.

As shown, both, nodes that are very close to the BS, with distance 1-1.5
and more remote nodes, with distance 2-2.5 (that start with comparable ini-
tial energy) have similar lifetime. This means that the BP method succeeds in
achieving power-balancing in the core of the network and it does not suffer from
the hot-spot problem.

It is interesting to see that more remote nodes (distance 3-3.5) not only start
with significantly less residual energy, but their lifetime is shorter. The reason for
the initial low energy is that nodes with low residual energy usually would not
be selected as CH, and this means that their average distance is larger because
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they are constantly connected to a CH one hop farther. The explanation for the
short lifetime of those nodes, in general, is that they are located at the edge
of the network. Nodes at the edge, usually have less neighbors and less chance
for having CHs around, so they experience more topology changes and usually
perform further frequent clustering processes, which result in more overhead as
well. This overhead have a considerable effect on the nodes’ lifetime.

6 Conclusions and Future Work

This paper presents a novel distributed inference scheme, based on BP, for ef-
ficient clustering in multi-hop WSN. This inference scheme selects CHs that
minimize the overall transmission cost and at the same time balance the power
among the nodes, for a longer network lifetime. Utilization of all available in-
formation, is more optimal than current solutions, and leads to a significant
improvement in the network performance.

Using simulations, we show that the BP algorithm succeeds in improving the
data transmission time and rate, so at the same network lifetime as the HEED
scheme, the overall throughput of BP is increased by more than 40%. Moreover,
clustering using BP mitigates the hot-spot problem by providing power and load
balancing among the nodes.

The BP framework that has been proposed is a feasible and realistic inference
scheme, and can be effective for many other applications. The special attention
to energy constrains and the fact that no assumptions were made regarding the
network topology or size, differs this framework from other schemes for WSN
that are based on BP, and makes it more practical and scalable to large networks
with their dynamics.

Comparing the BP algorithm with an optimal clustering algorithm and ap-
plying methods in distributed inference to reduce the communication load, may
be a useful area for future work.
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