COORDINATION PROBLEMS IN DISTRIBUTED SYSTEMS
. {Extended Abstract)

Danny Dolev

Ray Strong

IBM Almaden Research Center

Abstract: In this paper we provide a framework
for understanding and comparing various lower
bounds and impossibility results concerning the

solution to coordination problems like atomic '

commit for distributed transactions and other
consensus problems. The key to our treatment
is the distinction between information that is
transferred by (datagram) messages and infor-
mation that can be deduced from the existence
of other synchronization mechanisms. We pro-
vide an axiomatic theory of distributed systems
in which such distinctions can be made; and, in
the context of this theory, we describe a single
paradigm involving the isolation of one process
from the effects of another process in a distrib-
uted system, Using this paradigm we obtain se-
veral well known impossibility results including
the impossibility of a synchronous system with a

safe and timely (nonblocking) atomic commit in .
the presence of a possible communication parti- -

tion, the impossibility of an asynchronous system
that reaches consensus in the presence of at most
one crash fault, and the impossibility of a sol-
ution to the Chinese Generals’ Problem. We ex-
plain how these impossibility results imply the
impossibility of a nonblocking consensus or
atomic commit in a synchronous or asynchro-
nous system in which all faults are eventually
repaired but synchronous communication is not
guaranteed.

Having established this family of limits on dis-
tributed systems, we discuss the feasibility of
achieving with high probability goals that are
impossible to guarantee. We suggest a family of
simple atomic commit protocols that guarantee
safety (consistency of data) and provide timeli-
ness (absence of blocking) with high probability
(depending on the probabilities of communi-
cation link faults and processor faults). We pro-
pose the adoption of such protocols for atomic
commit and similar coordination problems when
safety is necessary but timeliness and high avail-
ability are of very high priority.

1. Introduction.

In this paper we focus on some of the key prob-
lems of fault tolerant distributed systems and
what makes them hard to solve. In fact we offer
a unified theory that allows interpretation and
comparison of many of the most important
known limits on distributed systems. Among the
demands placed on the designer of a distributed
system, there is a competition between opposing
demands for safety (consistency) and timeliness.
We will argue that systems that require timeli-
ness are generally subject to a paradigm we call
vulnerability. Our notion of vulnerability is an at-
tempt to capture at a very high level of ab-
straction the possibility that faults or delays may
force some processes in a distributed system to
make decisions and take actions that are not en-
tirely coordinated with those of other processes
that remain functioning. Our results are ob-
tained by carefully distinguishing between the
relation of causality that holds between events in
a distributed system because of message passing
and that implied by the existence of special
multiprocess atomic operations or synchronizing
events. By focussing on incompatibilities among
actions taken by distinct processes, we capture
part of the intuitive notion of a messageless in-
formation transfer in the presence of multiproc-
ess synchronization mechanisms. We explain
why messages alone are not sufficient to provide
both safe and timely coordination protocols and
what properties of multiprocess mechanisms are
required.

The most heavily studied coordination problem
is the problem of atomic commit for distributed
database transactions [BHG, G]. In the atomic
commit problem, participants are data manage-
ment processes residing at various sites and
communicating by messages. When a distributed
transaction involves modification of data at



more than one site, the participants must coordi-
nate whether and when to commit these
changes. For reasons independent of faults and
beyond the scope of the problem, any participant
may unilaterally decide that the transaction
should be aborted. But participants may give up
their right to such a unilateral decision and guar-
antee that they will make the appropriate mod-
ifications if the transaction is committed. This
guarantee is typically accompanied by expensive
transmissions to some stable storage device and
by the locking of resources that cannot be
touched by other transactions until the decision
to commit or abort is reached.

 Presumably most of the time all participants
agree to commit. The problem is to devise a
protocol so that once all participants have made
their unilateral decisions, the transaction is ei-
ther committed or aborted by all processes, that
continue to function correctly, within a bounded
time, despite communication and process fail-
ures. Furthermore, when any failed process re-
covers it must be able to ascertain whether the
modifications should be made or not as part of
its recovery procedure. The well known two
phase commit protocol solves most of the prob-
lem, but the failure of a single process can force
others to wait indefinitely in what is called a
blocking state, neither committing nor aborting
the changes. Three phase commit protocols have
been developed that tolerate process crash fail-
ures but cannot tolerate partition of communi-
cation between functioning processes [S,5S,DS].
We will show that it is the multivalent nature of
the outcome together with the necessity to de-
cide, even in isolation, that makes a complete
solution to the atomic commit problem impossi-
ble.

Note that this result does not contradict the re-
sults of [SS], the difference resides in the impor-
tant distinction between information transfer
and messages. In [SS] an "optimistic" model is
explored in which communication is synchro-
nous and a message is guaranteed delivered or
returned (but not both). This model provides a
good example of messageless information trans-
fer: both processes know when a message that
was sent has not been received. In this model
single partitions can be tolerated but if multiple
partitions are possible, then a safe and timely
commit becomes impossible.

The earliest discussed glimpse at this phenome-
non and one of the most intuitive comes in the
form of the Chinese Generals’ Problem [G]. In
this problem, we are given a situation with two
generals of allied armies encamped on opposite
hills above a valley full of the enemy. The gen-
erals’ problem is to coordinate a time of attack.
However, the only way they can communicate
is by messenger through the valley of the enemy.
The probliem is to devise a protocol for this com-
munication that guarantees that they either both
attack (at the same time) or they both retreat (at
the same time). The difficulty is that the sender
cannot know if a given message arrived unless an
acknowledging message is returned. As part of a
solution protocol, the generals may have prear-
ranged that if no messages get through by a given
time, then they will both retreat; but there must
be some possibility of attack. We will show that
it is the multivalent nature of the outcome to-
gether with the possibility that a decision may
have to be made in isolation that makes a sol-
ution to the Chinese Generals’ Problem impossi-

ble.

One of the most famous recent impossibility re-
sults in computer science is the result of [FLP]
that it is impossible to reach consensus in an
asynchronous system in the presence of at most
one process crash failure, even when eventual
communication is guaranteed. The consensus
problem is a coordination problem in the sense
that all the processes that do not fail must agree
on a common output. Multivalence is introduced
because each process is given an input from a set
of at least two values, and if all inputs agree, then
all outputs must agree with the inputs. Note the
similarity to the atomic commit problem: each
process has some "input'' that allows it to make
a unilateral decision on whether to abort or al-
low commit; if all inputs allow commit then the
agreed on output must be commit. There are
only two essential distinctions between the two
problems. One is the constraint placed on proc-
esses recovering from failure in the atomic com-
mit problem. The consensus problem is easier to
solve because it puts no constraints on the
actions taken by processes once they have failed.
The other is the asynchronous environment as-
sociated with the consensus problem. A funda-
mental characteristic of an asynchronous
environment is that external information is only
conveyed to a process when it receives a mes-
sage, no information can be learned from the
absence of messages. We will show that



asynchrony plus the possibility of process failure
provides a multivalent system that is vulnerable
to isolation and that neither consensus nor safe
atomic commit is possible,

This negative result is easier than that of [FLP],
because our model of a completely asynchronous
system allows communication to be stopped for-
ever. The model of [FLP] provides for guaran-
teed eventual communication; but allows a
process to stop forever. We show how to adapt
the proof of [FLP] to our paradigm. Moreover,
we show that, even in a model with guaranteed
eventual communication and guaranteed even-
tual process repair, safety requires blocking. Our
contribution here is the conversion of the [FLP]
result to results in other models that fall within
the scope of our theory of distributed systems.
We can also take much simpler proofs of impos-
sibility in totally asynchronous systems and
translate them into results about systems with
eventual process repair.

Having discussed the negative results, we will
offer some positive alternatives, discussing the
feasibility of minimizing the probability of un-
wanted system behavior despite faults. It turns

out that the unwanted system behavior intro- -
duced by asynchrony in the [FLP] model can be’
eventually overcome with probability 1 ([BO,

R]). This means that even though there can be
no guarantee of termination within any fixed
amount of time, the probability of running for-
ever without termination can be reduced to 0.
However, the vulnerability introduced by re-
quiring timely decisions (as for atomic commit)
remains. We conjecture that the probability of
unwanted system behavior cannot be reduced to
zero without guaranteed communication.

Although we cannot reduce the probability of
unwanted system behavior to zero, we do pro-
vide a family of algorithms for atomic commit
that allows us to tune the probability somewhat.
In contrast to so-called nonblocking commit al-
gorithms like three phase commit ([S,DS}), our
family can be applied to models without guaran-
teed communication and with arbitrary kinds of
faults, although here we will concentrate on an
omission fault model.

Often algorithms for atomic commit are called
"nonblocking" if some subset of processes is not
blocked (as in quorum based approaches). The
algorithms in our family have this property; but

we believe it is misleading to label such algo-
rithms nonblocking,

Our algorithms are based on a simple notion of
decentralizing the commit decision to what we
call a2 jury. The jury consists of a set of ex-
tremely simple processes that operate concur-
rently with a more or less standard two phase
commit protocol and make recovery much sim-
pler than three phase commit since there is no
requirement to replace any given process or
choose a leader.

The remainder of the paper is organized as fol-
lows: in Section 2 we provide our formal theory
of distributed systems, in Section 3 we study
asynchronous systems and reproduce some fa-
mous impossibility proofs, in Section 4 we study
partially and completely synchronous systems
and provide our most general results about
blocking, in Section 5 we describe a jury con-
struction that is designed to reduce the probabil-
ity of blocking for synchronous systems, and in
Section 6 we conclude with some remarks about
the practicality of messageless information
transfer of the kind required to provide non-
blocking atomic commit.

2. Formal Model of Coordination.

We consider systems composed of independently
acting processes that can communicate with
each other. During an execution of a system,
each process takes an infinite' sequence of
actions. Associated with any action a is its se-
quence number s(a) and the process at which the
action takes place @(a). Thus, in any execution,
s is a function from actions to positive integers
and (@ is a function from actions to processes.
The function (@ applied on a set of actions will
be the set of processes at which the actions are
performed. In any execution there is a relation
called the send-receive relation on actions. We de-
note this relation - and say that if a-=b holds,

then a is a send action and b is a corresponding

receive action. We also distinguish a set of
actions called faulty actions. Thus, an execution
is a finite set of infinite (w ordered) sequences of
actions, together with a send-receive relation
and a possibly empty set of faulty actions. We
define a partial order <; on the actions of an ex-
ecution as the transitive closure of the relation
(@@)=@(b)&s(a)<s(b)) | (a+b).

Relation <; is often regarded as a relation of
causality and precedence [L, BD, NT, PT].



A prefix of an execution is a set of finite prefixes
of the sequences of actions of an execution with
the induced send-receive relation and a set of
faulty actions. If y is a prefix of an execution
and x is a prefix of y, then the extension of x by
y, denoted y-x, is the set of subsequences of
actions in y and not in x. If g is an extension of
prefix x, we denote by x+g the prefix such that
((x+g)-x)=g. Two prefixes are said to be com-
patible if they are prefixes of the same execution;
otherwise they are said to be incomparible. If
prefix x and prefix y are compatible, we denote
by x+y the prefix that consists of the union of
the actions of x and y.

In addition to the <, relation, each execution
also has a possible influence relation on actions
that we denote <;. We need this relation to
capture the intuitive notion of an information
transfer in the presence of synchronization
mechanisms that may span more than one proc-
ess and allow the transfer of information without
messages. Note that in an asynchronous system
we can take < = <, . Define a cut of an exe-
cution as a prefix that is closed under <; (this
means, if action b is in a cut and a <; b, then

action a is also included in the cut). Cuts corre-

spond to the global states of our system.

Given the preceding definitions, we formally de-
fine a spstem as a set of executions satisfying the
following axioms:

Al: <, is irreflexive in each execution,

A2: Every prefix of an execution is a prefix of
some execution in which there are no further
failures.

A3: <, is transitive.

Ad: <, extends <, (this means, if a <, b, then
a <, b).

A5: If cut x is a prefix of both cut y and cut z
and if @(y-x) is disjoint from @(z-x), then y
and z have a common execution (are compat-
ible).

A6: There are at least two processes.
Axioms Al and A2 are fairly standard. A1l ex-

presses the idea that a message must be sent be-
fore it'is received. A2 says that each process that

has not failed can always continue to operate
fault free indefinitely. A6 simply removes some
trivial cases from consideration. A3, A4, and A5
are quite powerful. A3 is intended to capture the
independence of nonsynchronized actions taken
concurrently at different processes. Thus, if y
and z are each prefixes that contain all actions
that influence them, then y and z are either
compatible or they contain incompatible actions
at some common process. Because A5 is so
strong, it might seem that many systems of in-
terest could fail to satisfy it. However, in any
"system" satisfying A1 and A2 we can trivially
define a <, relation satisfying A3, A4, and A5,
making sure that the only sets of actions closed
under the relation are the empty set and the en-
tire execution,

Let E be a set of executions satisfying A1 and
A2, Next we show how to construct a relation
that captures the notion of information transfer
(using any mechanism beyond messages or any
special guarantees about messages) and satisfies
A3, A4,and AS.

Let x be a prefix of an execution. Let p be one
of the processes of x. Let ¢ be the last action of
p in x. If a is an action with @(a)=p and
s(a)=s{c)+1 and if the extension of x by a is also
a prefix of some execution in the system, then a
is said to be enabled at x. Actions a and b are said
to have antipathy at x if both a and b are enabled
at x but no execution of which x is a prefix con-
tains both a and b. Intuitively, antipathy reflects
some form of synchronization that prevents both
actions from occurring, although each one of
them is enabled. Actions a and a’ are said to be
similar if @(a)=@(a') and s(a)=s(a’). If actions
c and b occur in execution e, @(c)=@(b), and
s(c)<s(b), then c is said to be an antecedent of b
ine. If a and b both occur in an execution e,
then we define the similarity class of a over b, de-
noted [a/b], as the set of actions similar to a that
occur in some execution that contains all the
antecedents of b in e. If actions a and b both oc-
cur in execution e, then a is said to influence
action b if some action in [a/b] has antipathy
with b at some prefix of e that contains all the
antecedents of b in e. Intuitively, the process
@(b) learns something about [a/b] by taking
action b that it did not know before taking the
action, We define the relation <, as the transi-
tive closure of the relation (a2 <; b)|(a influ-
ences b). Note that the actions in a cut are not
necessarily known to any process, nor can they



be determined by an observer of only one exe-
cution, since the <, relation is defined in terms
of all executions.

It is immediate that <, satisfies A3 and A4, We
next show that the relation defined above satis-
fies AS.

Theorem.2.1: If cuts are defined as prefixes
closed under the transitive closure of (<;)} (in-
fluences), then axiom A5 is satisfied.

Proof of Theorem 2.1: Suppose that y and z are
incompatible cuts that both extend prefix x.
. There must be a prefix u of y and an action a
such that u+a is a prefix of y and u and z are
compatible but u+a and z are incompatible.
There must then be a prefix v of z and an action
b such that v+b is a prefix of z and v and u+a
are compatible but v+b and u+a are incompat-
ible. Since v and u+a are compatible, v and u
are compatible and a is enabled at u+v. Since u
and z are compatible, u and v+b are compatible
and b is enabled at u+v. Thus a and b have
antipathy at u+v. Let e be an execution con-
taining cut z. Let a’ be the action in e similar to

a. Then a’ influences b in € because aisin[a’'/b] .
and u+v contains the antecedents of b in e. .
Hence z contains an action similar to a but x-

does not. Likewise, y contains an action similar
to b but x does not. Thus @(y-x) and @(z-x)
both contain @(a) and @(b).

QED

A system solves a coordination problem if each
process has a set of output actions from which it
must take at most one action in every execution.
For the rest of this paper, we assume that each
system solves a coordination problem.

A system is recoverably safe if all process outputs
must agree; it is safe if outputs of processes that
have not failed must agree. A cut x is said to be
deciding if some process gives its output in x
without failing. An extension e of cut x is said
to be deciding if x+e is deciding.

A system solves a nontrivial coordination problem
if there is a cut that has two deciding extensions
so some output of a nonfailing process in one
disagrees with some such output in the other.
Such a cut is called multivalent. A coordination
problem is called recoverably timely (timely) with
respect to a set of cuts s if there is a bound b on

the number of actions each process takes after s
and before it gives its output (or fails),

The set of all cuts in an execution is partially or-
dered by the prefix ordering. If cut x is a prefix
of cut y and there is no cut z such that x is a
prefix of z and z is a prefix of y, then y-x is said
to be a primitive extension of cut x. Here cut y is
said to be a successor of cut x.

If x is a prefix of a set of cuts Y, then cut z is said
to be an isolation of Y over x if x is a prefix of z
and @(z-x) is disjoint from @(Y-x), the set of
processes that appear in @(y-x) for some y in
Y. In this case Y is isolated by z at x. If Y con-
sists of a single cut y, then z is said to be an iso-
lation of y over x and y is said to be isolated by z
at x. Let Y(p) represent the set of successors y
of cut x such that @(y-x) contains process p. If,
for each process p, Y(p) can be isolated at x,
then x has the isolation property.

Theorem 2.2: If <, is irreflexive then every cut
that has successors involving different processes
has the isolation property.

Proof of Theorem 2.2:

If <; is irreflexive then every primitive exten-
sion involves exactly one process.
QED

Let A be any subset of the set of all executions
of a system S. If the relations <, and £, induce
relations in A that satisfy the axioms A1 through
AS, then A is said to form a subsystem of S. We
say (subsystem or system) A is deciding if every
execution in A has a cut in which some process
gives its output without failing.

A cut x is multivalent in a system A, if x has de-
ciding extensions in A with disagreeing outputs.
A cut is said to be final multivalens if it is multi-
valent and has no multivalent successors. A cut
is said to be univalens if outputs from all deciding
extensions agree.

A cut y is said to be vulnerable if it has primitive
extensions b and c¢ such that y+b and y+c are
univalent with disagreeing outputs (in some ex-
tensions) and there is an isolation d of {b, c} over
y such that d is either deciding or the system is
deciding and d is univalent. A system is called
vulnerable if it contains a subsystem with a vul-
nerable cut.



Lemma 2.3: If a system contains a deciding sub-
system that has a final multivalent cut with the
isolation property, then the system is vulnerable.

Proof of Lemma 2.3: Let system S contain de-
ciding subsystem A with final multivalent cut x
that has the isolation property. Since x is final
multivalent in A, x has primitive extensions b
and c in A such that x+b and x+c are univalent
and x+b and x+c are prefixes of deciding ex-
tensions with disagreeing outputs. Thus x+b and
x+c are incompatible and there must be some
process p in the intersection of @(b) and @(c).
Since x has the isolation property, A contains an
isolation y of the set of successors of x involving
p over x. But then y is univalent because x is
final multivalent and A is deciding so x is vul-
nerable.

QED

Theorem 2.4: A system cannot be both safe and
vulnerable.

Proof of Theorem 2.4: Suppose the contrary. Let
S be such a safe vulnerable system. Let A be the
subsystem of S that contains a vulnerable cut x,
let b and c be its univalent extensions with disa-

greeing outputs, and let d be the deciding or

univalent extension that is an isolation of b and
c over x. Since S is safe, if d is deciding then it is
univalent, However, x+d must be compatible
with both x+b and x+c¢. Thus d cannot be de-
ciding. But then A must be a deciding subsystem
and x+d must be univalent, again contradicting
the compatibility of x+d with both x+b and
X+cC.

QED

3. Asynchronous Systems.

A sequence of cuts is said to be an ascending chain
if each cut is a prefix of the next. A system is
said to have the ascending chain property if the
union of the actions of any ascending chain of
cuts is contained in an execution of the system.

In what follows we assume a message structure
in addition to the send-receive relation: in par-
ticular, we assume that with each send action is
associated a list of processes called the rargers of
the message sent, and with each receive action a
there is a unique send action b such that b - a
and @(a) is a target of b.

A system is said to be asynchronous if it has the
ascending chain property, <; = <, , every cut
has a successor at every process, and if x is a cut
containing a send action but no corresponding
receive action for a target p then x has a succes-
sor containing an action at p that is a corre-
sponding receive action and x has a successor
containing an action at p that is not a corre-
sponding receive action. (Note that the fourth
requirement is not guaranteed communication.
It simply says that in an asynchronous system
the "next" action at the target after a send may
or may not be the corresponding receive: there
is no minimum or maximum message delay.)

Theorem 3.1. Safe consensus is impossible in an
asynchronous deciding system with no process
failures. (This is a generalization of the Chinese
Generals' Problem [G].)

Proof of Theorem 3.1: Suppose S were a safe
deciding asynchronous system that solved the
consensus problem with no process faults. Since
S solves a consensus problem, the initial empty
cut is multivalent. Since S is safe, deciding, and
asynchronous, there can be no infinite ascending
chain of multivalent cuts. Thus there must be a
final multivalent cut. Note that in an asynchro-
nous system, every cut has successors involving
different processors, so every cut has the iso-
lation property. Thus S is vulnerable.

QED

The proof is simple because any asynchronous
system has executions in which no messages are
ever received. Any safe deciding asynchronous
system with a multivalent cut is vulnerable, so
there are no safe deciding asynchronous systems.
If we restrict attention to executions in which
every message is eventually received, the proof
is more complex but the end result is the same,
Below we reproduce arguments from [FLP] to
establish Theorem 3.2 using the proof technique
of Theorem 3.1.

An execution has guaranteed evenrual communi-
cation if every message sent is eventually received
by every target that does not fail. Note that the
notion of guaranteed eventual communication
applies also to an infinite ascending chain of cuts
with the same definition. Note also that in an
asynchronous system, an infinite ascending chain
of cuts is an execution, provided each process
takes infinitely many actions in the chain.



A crash fault in an execution is a process that
ceases to perform any action except for a special
faulty action called a crashk action, which the
process repeats for the rest of the execution. A
system is subject to crash faults if for every prefix
x of an execution and for every process p that
has not failed in x, there is an execution con-
taining x in which p crashes after its last action
in X. A subsystem of such a system consisting of
all executions in which no more than k processes
crash is said to be subject to at most k crash faults.

A system is said to be asynchronous with guaran-
teed eventual communication if it consists of the
subset of executions of an asynchronous system
- that have guaranteed eventual communication.

Theorem 3.2: (FLP) Safe consensus for a decid-
ing asynchronous system with guaranteed even-
tual communication subject to at most one crash
fault is impossible.

Proof of Theorem 3.2:
In an asynchronous system, every cut is the pre-

fix of an execution with guaranteed eventual
communication, and every cut has the isolation

property. Moreover, the cuts are exactly the |
prefixes closed under the <, relation, so the sub-~

set of fault free executions of an asynchronous
system forms a subsystem. Further, each primi-
tive extension consists of exactly one action by
Axiom Al,

Let S be an asynchronous system for solving a
coordination problem that is subject to crash
faults. Let G be the subsystem of S of executions
with guaranteed eventual communication, at
most one crash fault, and no other fauilts. Let A
be the subsystem of G of executions with no
faults. Suppose G is both safe and deciding.

Given a multivalent cut x in A, we will show that
for each primitive extension a of x, there is an
extension e of x such that (1) x+e is multivalent
in A, (2) @(e) contains @(a), and (3) if a is the
receipt of message m at process p, then e con-
tains an action that is the receipt of message m
at process p. Then we can take turns among all
the processes and all the outstanding (sent but
not yet received) messages to produce an infinite
ascending chain of multivalent cuts with guaran-
teed eventual communication in which all proc-
esses take infinitely many actions. But this
infinite ascending chain would be an execution

of A and would have a deciding finite prefix,
contradicting safety. Thus there can be no cut
that is multivalent in A. However, in any sol-
ution to a nontrivial coordination problem, the
empty cut is multivalent; and, for a consensus
problem, the empty cut is multivalent in the
subsystem of fault free executions. Thus a safe
deciding G is impossible for consensus.

So suppose a is an extension of x such that x+a
is not multivalent in A. Without loss of general-
ity let us denote by 0 the output action produced
by extensions of x+a, and let us denote by 1 the
output action corresponding to a disagreeing de-
ciding extension of x. Since x is multivalent and
A is deciding, x has an extension that produces
output 1. Let p = (@(a). If a is a receipt of mes-
sage m at p, then consider the extension of each
cut in the sequence of primitive extensions lead-
ing to output 1 by a receipt of message m at p.
Either one of these produces the desired multi-
valent cut x+e or there is some cut y in the se-
quence of primitive extensions of x such that y
is multivalent in A and it has primitive exten-
sions b and ¢ with extensions of y+b in A only
producing output ¢ and extensions of y+c in A
only producing output 1. The two extensions of
y would be incompatible so @(b) = @(c) =
some process q. Since G is subject to at most one
crash fault and deciding, it would contain a de-
ciding extension d of y with no actions at q. By
A2, y+d isacut of A, soyis vulnerable in A and
neither A nor G could be safe by Theorem 2.4.
Thus the desired extension e must exist. The ar-
gument if action a is not a receive action is iden-
tical except that any enabled action at p=@(a)
can be used to extend a member of the sequence
of primitive extensions of x leading to output 1.
QFED

Process q is blocked by set of processes P (not
containing q} at cut x if x has no output action
from process q, there is no extension of x that
contains an output action from ¢ unless it also
contains an action from some process in P, and

‘there is an infinite ascending chain of extensions

of x with an infinite set of actions of q but no
actions from processes in P. A system is said to
be blocking if it contains a cut at which some
process is blocked. (When <, = <;, we can re-
strict the notion of blocking to the existence of a
cut at which some process is blocked by a single
other process and keep all our results about
blocking.)



Corollary 3.3: A safe asynchronous system with
guaranteed eventual communication that solves
a nontrivial coordination problem when there
are no process fauits is blocking.

A cut is called definitive if it can be extended to
two disagreeing deciding cuts y and z such that
some process does not fail in either y or z.

Corollary 3.4: No safe asynchronous system
with guaranteed eventual communication can be
timely with respect to a definitive cut, even
when there are no faults.

4, Partially Synchronous Systems.

A system is said to be fimed if it has an infinite
ascending tree of cuts such that each execution
contains exactly one chain from the tree and, if
a <; b in some execution, then there is some cut
in the chain for that execution that contains a
but not b. Such an infinite ascending tree of cuts
is called a riming. In each execution of a timed
system, the timing is an infinite ascending chain
of cuts, so we can refer to the ith cut in the tim-

ing for any integer i. Thus with respect toa given
timing, there is a function t that takes actions to

the least integer i such that they are contained in
the ith cut. With respect to a given timing, a
system is said to have synchronous processes if
there is a linear increasing function f such that
t(a)<f(s(a)) for any action a. Note that
s(a)<t(a) for any timing. Again, with respect to
a given timing, a system is said to have synchro-
nous communication if there is a constant B such
that, if a-»b then t(b)-t(a)<B. A system is said
to be synchronous with respect to a given timing
if it has both synchronous processes and syn-
chronous communication. Conjecture: these
notions of partial synchrony are fairly robust, In
particular, if a system has synchronous processes
with respect to two timings and it has synchro-
nous communication with respect to one of
them, then it has synchronous communication
with respect to the other.

A network partition is a communication failure
that divides the set of processes into at least two
sets containing processes that have not failed and
prevents messages between the sets from being
received. An execution in a timed system has a
network partition of duration j if there is an inte-
ger isuch that, for any send action a with t(a)>1,

and any receive action b with a—=b, if (@(a) and
@(b) are on opposite sides of the partition, then
t(a)>i+j, that is, no message sent between time i
and time i+j is received across the partition.

The following results hold for synchronous sys-
tems in which every cut has the isolation prop-
erty.

Theorem 4.1: Safe coordination that is timely
with respect to a definitive cut and must tolerate
a single network partition of arbitrary duration
is impossible.

Proof of Theorem 4.1: Let P be the set of proc-
esses that do not fail in either of the disagreeing
deciding runs from the definitive cut. Let A be
the subsystem of executions containing the de-
finitive cut in which the processes of P do not
fail. Then A is deciding if the system is timely
with respect to the definitive cut. Moreover,
timeliness implies that there is no infinite as-
cending chain of multivalent cuts in any exe-
cution of A. Thus there must be a final
multivalent cut and the system must be vulner-
able.

QED

Corollary 4.2: Safe timely atomic commit is im-
possible in the presence of a possible network
partition of arbitrary duration.

Corollary 4.3: Safe atomic commit is blocking.

This result does not contradict the results of [SS].
In [SS], the <, relation differs from the <, re-
lation: each time a message is sent, the target re-
ceives information about actions taken by the
sender, whether the message is received or not.
Moreover, after a bounded time, the sender re-
ceives information about whether the message
was received. Thus cuts containing actions taken
a bounded time after the send must contain cor-
responding actions taken at the target. In such
systems cuts may not have the isolation prop-
erty.

However, in more realistic models without some
guaranteed synchronous transfer of information,
all cuts will have the isolation property and any
safe atomic commit protocol must be blocking.



5. Jury: Safe and Probably Timely Atomic Com-
mit.

In this section we provide some positive results
for synchronous systems that do not have guar-
anteed eventual communication. An atomic
commit protocol cannot be safe and timely at the
same time in the absence of guaranteed syn-
chronous information transfer. The family of
protocols we present in this section has two
characteristics that distinguish it from the stand-
ard two phase commit approach. One is the ad-
dition of a set of new processes called jurors to
the transaction processing system. The other is
the combination of timeout with unilateral re-
- quests for more time that are propagated
throughout the communication structure associ-
ated with a given transaction. The basic idea is
to use the jurors in order to decrease the proba-
bility of reaching an unsafe state.

The set of jurors is used to replicate the commit
decision role usually reserved for a single trans-
action coordinator process. The timeout/time
request combination is used to detect the inabil-
ity of a process to communicate while not re-
quiring any preknowledge of the time the
transaction will actually require to complete

processing. Together they can be used to prevent

blocking by a small number of faults.

We assume as a base a transaction processing
system that can support standard two phase
commit. Thus, transactions can be initiated at
any site and at any time and each transaction
dynamically invokes a set of processes at various
sites to do work on its behalf. The set of proc-
esses may depend on data at the sites. We also
assume a dynamically growing communication
structure (typically a tree) that allows all proc-
esses doing work for the transaction to commu-
nicate with each other, provided there are no
faults in the underlying communication media.

We assume that each process knows when it has
completed the work on behalf of a given trans-
action. Any process can unilaterally decide that
the work must be aborted (for any reason) until
it enters a "prepared" state. Once a process en-
ters the "prepared" state, a process participating
in standard two phase commit must wait for in-
structions from a coordinator on whether to
commit or abort the work. Our scheme modifies
two phase commit in the following ways.

When a transaction is initiated, a small set of
processes called jurors is chosen and their names
are conveyed to each process invoked to do
work on the transaction. (The juror processes
are invoked before any nonjuror processes are
invoked.) As each juror process is invoked, it
sets a timer. For simplicity, we will assume that
clocks at all sites are synchronized. (When clocks
are not synchronized our proposal must be mod-
ified in straightforward ways.) The synchroniza-
tion need not be very precise when there is some
known bound on the precision. We assume that
the initiation time of the transaction is conveyed
to all processes that work on it. Each juror sets
its timer for a known constant time after the ini-
tiation time. This constant is chosen to provide
sufficient time for most short transactions to
complete. (The larger the constant the longer
the time required to wait before crashed proc-
esses are detected. But if the constant is too
small, processes will not have time to communi-
cate with the jury.)

When any nonjuror process is invoked, its exist-
ence is communicated to the jury. Each nonju-
ror process invoked, works on the transaction

~until one of three events: (1) it decides to

unilaterally abort, (2) it completes its work, or
(3) current time comes within a known constant
threshold of the timeout. In case it decides to
abort, it communicates this fact to the jury and
ceases to do work on behalf of the transaction.
(There are many ways to optimize message traf-
fic here, but we suppress these details in order to
convey the main ideas of our protocol.) In case
it completes its work, it enters a "prepared" state
and communicates this fact to the jury. (We
suppress details of possible optimizations. It suf-
fices that no juror can receive a "prepared"
communication from a process without knowing
the identities of all processes invoked by that
process; but we can also arrange that processes
act as subordinate coordinators for all processes
they invoke and only communicate "prepared"
to their invoker(s) when all their subordinates

have in turn communicated "prepared" to

them.) The time threshold above is chosen to
allow any process sufficient time to communi-
cate with all to reset the timeout time. In case it
crosses the time threshold, a process resets its
timeout’s time and sends it to all.

Each juror simply waits for one of the following
events: (1) a new timeout time, (2) a unilateral
abort, (3) receipt of "prepared" messages from



every process known to be working on the
transaction, or (4) a timeout. In case of a new
timeout time, the juror resets its timer. In case
of a unilateral abort, the juror records in some
stable way that it votes to abort the transaction
(presumed abort of [MLO] could be used here),
communicates this fact to all participants, and
ceases to work on behalf of that transaction. In
case all known participants have sent "prepared"
messages, the juror records in some stable way
that it votes to commit the transaction, commu-
nicates this fact to all participants, and ceases to
do work on behalf of the transaction. In case of
a timeout, the juror records in some stable way
that it votes to abort the transaction, communi-
cates this fact to all participants, and ceases to
do work on behalf of the transaction.

A participant in the "prepared" state waits for
one of two events: (1) the receipt of a commit
vote from a majority of the jury, or (2) the re-
ceipt of an abort vote from a majority of the
jury. (If the size of the jury is even, then a third
event must be added: (3) receipt of a tied vote
with all members of the jury voting.) It acts ac-
cording to the majority vote from the jury to ei-
ther commit its part of the transaction or abort
it. (In case of the tie vote with all jurors voting,
the transaction is aborted.)

The Jury Protocol presented below assumes an
upper bound d on the worst case diffusion time
and an upper bound e on the precision of clock
synchronization. Let D and E be the corre-
sponding worst clock times., Let W be a clock
time sufficient for most transaction processing.
We assume that when a transaction is started, a
set of jurors are chosen and started. Then the
nonjurors are dynamically invoked to perform
the work. For transaction X, we assume com-
munication primitives send__to__jury(X,Y) and
send__to__all(X,Y) by which all participants,
juror and nonjuror can send messages to all ju-
rors or to all participants, respectively. When
each process is invoked it is given the initiation

time of the transaction I(X). From this it com-
putes and maintains a timeout time T(X).

We give two protocols, one for the nonjuror
and one for the juror. In the protocol the com-
mand "On Learning Y - do Z" means that at
the first time event Y or condition Y holds per-
form Z.

NONJUROR PROTOCOL

Do forever;
On learning
transaction X initiated at I(X) - do;
T(X) := I(X)+W+3D+E;

log X;
commence work on X;
end;

decide abort X —» do;
log abort X;
send__to__jury(X,abort);
abort X;
end;

work complete for X - do;
log prepared X;
send__to__ jury(X,prepared);
decide prepared X;
end;

current time > T(X) - do;
/* doubles timeout time */

T(X) := 3T(X) - 2I(X);
send__to__all(X,new__timeout T(X));
end;

new__timeout T for X — do;
T(X) := max(T,T(X));
end;

prepared & majority jury commit X - do;
commit X;
log commit X;
end;

prepared & majority jury abort X - do;
decide abort X;
end;

end;

end.

10



JUROR PROTOCOL

Do forever;
On learning

transaction X initiated at I(X) - do;
T(X) := {(X)+W+3D+E;
log X;
end;

new__timeout T for X - do;
T(X) := max(T,T(X));
end; )

decide abort X - do;
log abort X;
send__to__all(X,abort);
end;

all nonjurors prepared X - do;
log commit X;
send__to__all(X,commit};
end;

current time > T(X)+D+E - do;
decide abort X;
end;

end;
end.

The original timeout and threshold values are to .

be chosen so that processes have sufficient time
to contact the jury to request more time. When
this condition is violated, the violation is called a
timing fauit,

Omission fauits cannot cause the above scheme
to produce inconsistent results. Moreover, when
there are no faults, no unilateral aborts by par-
ticipating processes, and the work of the trans-
action is completed at all sites, then the
transaction will be committed at all sites. On re-
covery a failed process can resolve the "in
doubt" state of a transaction by consulting the
jury. Finally, provided the jury has at least 2t+1
members and at most t component failures, and
provided there are no failures other than omis-
sion failures, no process that can communicate
with all correctly functioning jurors will block
the transaction.

To cope with Byzantine failures in the jury, the
jury should reach Byzantine consensus on the
vote before sending it to the prepared processes.
To tolerate Byzantine failures among the proc-
esses, each process should be replicated and the
replicas should reach Byzantine agreement about
the work, preparation, and commitment, and

should communicate by majority vote with the
jury.

Omission failures in the communication media
can cause blocking. However, by arranging
communication protocols (such as diffusion) in a
multiply connected network, a small number of
such communication omission failures can be
tolerated without blocking.

In general, the jurors may reside with a subset
(or all) of the processes performing the work of
the transaction, so long as some implementation
is provided for communicating with the jury and
knowing the identities of the jurors so that a
majority can be recognized. '

In case the jury has size 1, our scheme degener-
ates into a variant of two phase commit; in case
the jury has size 2, it resembles schemes that use
a backup coordinator (eg.[HS]) and the novelty
becomes only the use of timeout and request for
more time,

By providing sufficiently many jurors and suffi-
ciently redundant communication facilities, a
designer can use this Jury approach to make the
probability of blocking extremely small.

6. Conclusion.

When partitions may occur with a positive prob-
ability there is no way to guarantee safety and
timely operation. In most cases the probability
of partition is small even though some compo-
nents may be inoperative for long periods of
time. Blocking prevents transient faults from
causing a loss of consistency in the rare instances
of partition. Much as we would like a truly non-
blocking coordination protocol, Theorem 3.2 im-
plies that guaranteed eventual communication is

‘not enough to guarantee safety without blocking

in an asynchronous environment, and Corollary
4.3 says that even in a synchronous environ-
ment, any safe atomic commit protocol is block-
ing.

The probability of network partition depends on
the number of faults and the probability of suc-
cessful transmission of single messages over links.
Our jury algorithms are always recoverably safe
and they are nonblocking provided synchronous

11



communication is guaranteed and provided less
than half of the jury fails. Three phase commit
techniques could be added to take care of exces-
sive jury failure; but since synchronous commu-
nication cannot be guaranteed in most
environments, the marginal improvement in the
probability of blocking would likely be insignif-
icant. The algorithms we have presented are
deterministic and require both process and com-
munication synchrony. We can generalize them
to probabilistic protocols like those of [BO] that
operate in asynchronous systems and require less
expected time to complete in timed systems.
However, these asynchronous probabilistic pro-
tocols must allow for the possibility of blocking.
- In a synchronous system we can combine proto-
cols so that the expected time is constant, but
when the probabilistic algorithm runs too long it
switches to a deterministic one, to guarantee
termination as soon as any partition is repaired.
Presentation of the probabilistic algorithms and
various alternatives and optimizations is outside
the scope of this paper.

7. Acknowledgements.

The Jury idea was first developed by the authors
and C. Mohan as a general method to provide
arbitrary fault tolerance for the transaction
process. The idea of unifying the various impos-
sibility results for distributed systems arose as a
result of subsequent work by the authors on the
Jury idea and questions posed by Flaviu Cristian
on the possibility of safe timely coordination in
synchronous and partially synchronous systems.
The authors would like to thank Joe Halpern for

helpful comments on an earlier version of this
work.

8. References.

[BD] S. Ben-David, "The Global Time Assump-
tion and Semantics for Concurrent Systems,"
Proc. 7nd ACM Symp. on PODC, (1988).

[BO] M. Ben-Or, "Another Advantage of Free
Choice: Completely Asynchronous Agreement
protocols," Proc. 2nd ACM Symp. on PODC,
(1983) 27-30.

[BHG] P. A. Bernstein, V. Hadzilacos, and N.
Goodman, Concurrent Control and Recovery ‘in
Database Systems, Addison-Weseley, 1987.

[DS] C. Dwork and D. Skeen, "The Inherent cost
of Nonblocking Commitment,” Proc. 2nd ACM
Symp. on PODC, (1983) 1-11.

[FLP] M. J. Fischer, N. A. Lynch and M. S.
Paterson, "Impossiblity of Disctributed Consen-
sus with One Faulty Process,”" J4CM 32 (1985)
373-382.

[G] J. N. Gray, "Notes on Database Operating
Systems," Operating Systems: an advanced course,
Lecture Notes in Computer Science 60,Springer
Verlag (1978) 393-481.

[HS] M. Hammer and D. Shipman, '"Reliability
mechanisms for SDD-1: A system for distrib-
uted databases," ACM Trans. Database Syst. 5,4
(1980) 431-466.

[L] L. Lamport, "Time Clocks and the Ordering

of Events in a Distributed System,” CACM 21,7
(1978) 558-565.

12



[MLO] C. Mohan, B. Lindsay, and R.
Obermarck, "Transaction Management in the
R* Distributed Database Management System,"
ACM Trans. Database Syst. 11,4 (1986) 378-396.

IMSF] C. Mohan, R. Strong, and S. Finkelstein,
"Method for distributed transaction commit and
recovery using Byzantine agreement within
clusters of processors,”" Proceedings of the 2nd
ACM SIGACT/SIGOPS Symposium on Principles
of Distributed Computing, (1983) 89-103, re-
printed in ACM/SIGOPS Operating Systems Re-
view (1985).

[NT] G. Neiger and S. Toueg, "Substituting for
Real Time and Common Knowledge in Asyn-
chronous Distributed Systems," Proc. 6nd ACM
Symp. on PODC, (1987) 281-293.

[PT] P. Panangaden and K. Taylor, 'Concurrent
Common Knowledge: A New Definition of
Agreement for Asynchronous Systems," Proc.
7nd ACM Symp. on PODC, (1988).

[R] M. Rabin, "Randomized Byzantine Gener-
als," Proc. of the 24th FOCS Symp. (1983)
403-409.

[S] D. Skeen, ""Nonblocking Commit Protocols,"
Proc. ACM Conf. on Management of Daia (1982)
133-147,

[SS] D. Skeen and M. Stonebraker, "A Formal
Model of Crash Recovery in a Distributed Sys-
tem," Proc. 5th Berkely Workshop on Distributed
Data Managemen: and Compurer Nerworks (1981)
129-142,

13



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13

