A Quorum Based Approach to CORBA Fault-Tolerance*

Gregory Chockler* Danny Dolev* Dahlia Malkhi*

1 Introduction

In this paper we propose an approach based on quorum replication for providing fault-tolerance in
middlewares compliant with the Common Object Request Broker Architecture (CORBA) [OMG99].
While various solutions for supporting replication in CORBA exist, all of them are based on tech-
niques borrowed from the group communication world. In this paper we demonstrate that quorum
based replication is a viable alternative to this approach, offering improved scalability, availability
and load balancing. In addition, quorum systems can be customized according to a wide range of
parameters, e.g., to mask Byzantine failures [MR98], thus offering the object creator flexibility to
choose the replication framework most suitable for the application needs.

The issue of fault-tolerance support in CORBA has received significant attention in recent
years, both in research and standardization. The recently published Fault-Tolerant CORBA (FT-
CORBA) specification [OMGO00] is a culmination of several years of intensive research dedicated
to this topic. Due to the importance of compliance with this standard on the one hand, and the
need to reflect on potential improvement to it on the other, we dedicate attention in this paper to
the most important aspects of this standard and analyze its applicability in our context. We also
discuss the modifications we deem necessary to the standard that would allow implementations
based on the quorum replication approach.

Our proposed infrastructure utilizes a new total ordering protocol [CMRO01] that we recently
developed for maintaining replica consistency using quorum replication. The protocol is entirely
client driven and is built on top of a simple and efficient distributed mutual exclusion primitive.
Our claims of scalability and high availability derive from the properties of the total ordering pro-
tocol and the fundamental features of quorum based replication. In particular, the total ordering
protocol does not rely on system reconfiguration in case of failures for ensuring its progress. In-
stead, it relies on the inherent fault-tolerance of quorum systems, as only a quorum of the replicas
needs to be available for the duration of each request. Eliminating constant monitoring of replica
failures contributes considerably to the scalability of our solution and results in a more lightweight
infrastructure. Additionally, the size of quorums can be surprisingly small, e.g., an order of square
root of the total number of replicas. Thus, finding an available quorum is quite realistic in prac-
tice, and keeps communication costs low. Finally, a clear separation between the client and the
replica side implementations makes our protocol especially suitable for distributed object systems
and in particular for CORBA systems. This further reduces the complexity of integration of our
protocols at the ORB level.

We are currently implementing the first system prototype that is structured as a CORBA
service (see Section 4). In the future, we intend to make it compliant with FT-CORBA as much
as possible. This might require implementing parts of our system at the ORB level, as necessitated
by the standard (see Section 5).

*This paper appears in European Research Seminar on Advances in Distributed Systems (Ersads 2001),
Bologna, Italy, May 2001.

*School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, ISRAEL.
Email: {grishac,dolev,dalia}@cs.huji.ac.il



2 Related Work

The existing body of research on CORBA fault tolerance is dedicated to augmenting CORBA
with support for group communication; for a survey of works, see [AG98]. According to [F98],
existing systems can be classified as designed according to one of the following three approaches:
the integration approach, the interception approach and the service approach. Below we briefly
discuss these approaches and their implications on our system design.

With the integration approach, the ORB is augmented with proprietary group communication
protocols. The augmented ORB provides the means for organizing objects into groups and sup-
ports object references that designate object groups instead of individual objects. Client requests
made with object group references are passed to the underlying group communication layer which
disseminates them to the group members. The most prominent representatives of this approach
are Electra [LM97] and Orbix+Isis [I194].

With the interception approach, no modification to the ORB itself is required. Instead, a
transparent interceptor is over-imposed on the standard operating system interface (system calls).
This interceptor catches every call made by the ORB to the operating system and redirects it
(if necessary) to a group communication toolkit. Thus, every client operation invoked on a repli-
cated object is transparently passed to a group communication layer which multicasts it to the
object replicas. The interception approach was introduced and implemented by the Eternal sys-
tem [MMN9S].

With the service approach, group communication is supported through a well-defined set of
interfaces implemented by service objects or libraries. This implies that in order for the application
to use the service it has to either be linked with the service library, or pass requests to replicated
objects through service objects. The service approach was adopted by Object Group Service
(OGS) [FGS98, Fag].

Among the above approaches, the integration and interception approaches are remarkable for
their high degree of object replication transparency: It is indistinguishable from the point of view
of the application programmer whether a particular invocation is targeted to an object group or
to a single object. However, both of these approaches rely on proprietary enhancements to the
environment, and hence are platform dependent: with the integration approach, the application
code uses proprietary ORB features and therefore, is not portable; whereas with the interception
approach, the interceptor code is not portable as it relies on non standard operating system
features.

The service approach is less transparent compared to the other two. However, it offers superior
portability as it is built on top of an ORB and therefore, can be easily ported to any CORBA
compliant system. Another strong feature of this approach is its modularity. It allows for a clean
separation between the interface and the implementation and therefore matches object-oriented
design principles and closely follows the CORBA philosophy.

In general, each of the approaches outlined above can be adopted for implementing quorum
based replication. We opted to first introduce quorum replication support using the service ap-
proach, and then implement a compatibility layer for FT-CORBA using the integration framework.

3 Quorum based replication

Quorum systems are known tools for increasing the availability and efficiency of replicated ser-
vices. A quorum system over a universe of replicated servers (simply, replicas) is a set of subsets,
called quorums, in which each pair of quorums have a non-empty intersection. Replicated services
implemented with quorum systems allow an operation to be performed on any available quo-
rum. Intuitively, operation consistency is preserved because of the intersection property, which
guarantees that an operation observes the effects of any previously completed operations.

The efficiency of this paradigm is gained from the need to access only a subset (a quorum)
of the replicas; and from the reduction in the overall load on any single replica, stemming from
the fact that every replica handles only a fraction of the operations. In fact, quorums can be



surprisingly efficient: For a universe of n replicas, there exist quorum constructions with quorums
of size O(y/n) only, in which each replica needs to handle only a O(ﬁ) fraction of the overall
operations. High availability is provided in quorum replication due to the need to access only a live
quorum. This comes at a low cost, since no complicated failure handling is involved. Moreover,
quorum systems can be designed with various availability levels, and for various failures types,
including resilience to arbitrary (Byzantine) failures [MR98]. For a survey of quorum replication
techniques, see [Mal99].

Traditionally, quorums have been used primarily for achieving mutual exclusion or for locking,
and for emulation of data with weak guarantees (e.g., safe registers). To support atomic data shar-
ing or transactions, replicated data systems employ additional concurrency control mechanisms
such as locking, that come with a heavy price: A coordinator of a transaction may fail holding a
lock permanently, or otherwise, if old locks are allowed to be overriden, create inconsistency that
must be resolved manually.

Recently, we have devised a protocol that provides atomic replication guarantee for replicated
objects using quorums [CMR01]. The protocol implements operation ordering providing lineariz-
able semantics [HW90]: Informally, this guarantees that all client operations (even those that
are invoked concurrently) appear to execute in some serial order. The ordering protocol utilizes
a simple and efficient mutual exclusion primitive for leader election (see [CMRO1] for details).
This protocol forms the foundation of fault-tolerant replication for CORBA, whose design and
implementation is described hence.

4 A CORBA quorum replication service

This section describes our design for CORBA quorum replication using the service approach. With
the service approach, the implementation of the replication protocol is encapsulated into a number
of service objects implementing various parts of the protocol. The overall architecture is depicted
in Figure 1.

A replica side service object, called a replica prozy, implements the following three interfaces:
TOReplica, Mutex and QuorumManager. The TOReplica interface represents the server side func-
tionality of the quorum based total ordering protocol; Mutex supports the interface defined by the
mutual exclusion primitive; and QuorumManager supports methods for manipulating (set and get)
parameters of the quorum system through which the object is replicated. Turning regular CORBA
objects into replicated objects is done simply by inheriting from the replica proxy interface. Note
that both Mutex and QuorumManager can be realized as separate CORBA services for improved
modularity and flexibility.

Each object group supported by the quorum replication service is identified by a unique name.
We use a CORBA Naming Service [OMG98] for resolving object group names to the lists of
members. Each newly created object group G is assigned a naming context under the quorum
replication service naming context. Consequently, references to the individual members of G are
bound to the names under the G’s naming context. Note that this is a reasonable solution for the
quorum based systems because in such systems a replica set is not supposed to change frequently
and in particular does not change in response to failures.

A client side service object, called a group proxy, implements the client side functionality of
the quorum based total ordering protocol. Group proxy implements an interface called TOClient.
This interface consists of a single method: submit(op). This method takes an operation description
(operation name, arguments, etc) as a parameter and returns the result of invoking this operation
at the target object group.

The group proxy object is created by a service object called a group prozy factory. This object
supports a GroupProxyFactory interface that among others, supports a createGroupProxy(groupName)
method that is used to instantiate a group proxy object for the object group designated by group-
Name. This method is implemented as follows. First, the naming service is contacted and group-
Name is resolved into a list of references to individual object group members. Then, a method of
QuorumManager is invoked on some group member to discover parameters of the quorum system



Client Application

/.
submit(op)

Naming
Service

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

submlt(op

Client Application

createGroupProxy(groupName) submit(op)

TOClient

Group Proxy
Group Proxy
Group Proxy

Client Representative

GroupProxyFactory -
— Group Proxy

Quortm Mii g;l Quoer QuorEm .
Manager utex eplica Manager utex TOReleca Manager utex TOReplica
O
Replica Proxy Replica Proxy Replica Proxy
Application Application Application
Object Object Object

Figure 1: Quorum Replication Service: Basic Components

employed by the group. Finally, a group proxy is instantiated and initialized with the list of replica
object references and the quorum system parameters. createGroupProxy(groupName) returns the
object reference to a newly created group proxy object.

In order to allow client applications to access object groups through the original object inter-
faces, the group proxy can be implemented using CORBA’s Dynamic Skeleton Interface (DSI).
The DSI based group proxy is constructed by the group proxy factory based on the interface
definition obtained by invoking the get_interface() method on the object reference of some target
group member. The resulting DSI based group proxy is then able to process method invocations
made through the original object interface.

Object group proxies can be instantiated either in the address space of a client application
or in a separate server called a client representative. The advantage of accessing object groups
through client representatives is in reduced contention for the mutex as client requests addressed
to a particular object group are mediated by the same group proxy object. The disadvantage is
in higher communication cost and reduced fault tolerance as the client representative introduces
an extra hop between the client application and the object replicas.

Another possible use of client representatives is in providing transparent access to object groups
for clients outside the quorum replication domain. This can be done by configuring some client
representatives as naming contexts representing the quorum replication domain in the external
naming service. In order to support this functionality client representatives have to (at least
partially) implement the CosNaming:NamingContex interface of the CORBA Naming Service.



5 FT-CORBA with quorum replication

In this section, we outline how parts of our service-based implementation can be integrated into the
ORB to realize an implementation compatible with FT-CORBA. We start with a short overview of
the FT-CORBA standard, illuminating issues relevant to our design of FT-CORBA with support
for quorum replication.

The Fault Tolerant CORBA Specification. FT-CORBA supports the notion of an object
group which is used to designate a set of the object replicas. An object group is represented
and addressed by an Interoperable Object Group Reference (IOGR). An IOGR is an extension of
CORBA’s Interoperable Object Reference (IOR), which is the standard way to address CORBA
objects. IOGR can be viewed as composed of multiple IORs (profiles) each of which contains a
TAG_FT_GROUP component that uniquely identifies the object group it belongs to. Typically, each
TIOR encapsulated into an IOGR, addresses an individual object replica. Alternatively, it might be
the IOR of a gateway that allows clients supported by non-fault-tolerant ORBs to access replicated
objects.

In order to facilitate management of large scale fault tolerant applications, FT-CORBA intro-
duces the notion of a fault tolerance domain. Each fault tolerance domain is managed by a single
logical entity called a Replication Manager.

The standard provides flexibility in choosing the actual replication mechanisms supporting fault
tolerance through a set of fault tolerance properties. Among these properties, a ReplicationStyle
parameter determines the type of replication employed, which could be ACTIVE, COLD_PASSIVE or
WARM_PASSIVE. Additional parameters, MembershipStyle and ConsistencyStyle, control whether
membership maintenance and replication consistency are provided by the objects themselves (AP-
PLICATION CONTROLLED) or by an infrastructure of the fault tolerance domain (INFRASTRUCTURE
CONTROLLED).

Within a fault tolerance domain, failures of object replicas are monitored and propagated
through a hierarchical infrastructure of Fault Detectors. Failure notices of the fault detector are
collected by a Fault Notifier, that communicates fault notifications to the Repication Manager and
other objects that registered for such notifications.

The standard recommends mechanisms for implementing some combinations of fault tolerance
properties. In particular, it explicitly recommends view synchronous group communication for
ACTIVE replication with INFRASTRUCTURE CONTROLLED membership and consistency. This ap-
proach for implementing FT-CORBA was indeed carried in the Eternal system [MMN98], the only
full implementation of the standard we are aware of. Eternal employs the Totem group communi-
cation sytem [MMABLO6]. Other styles of replication are left open in the standard for design by
implementors. An attempt to partially implement FT-CORBA with WARM-PASSIVE replication
in an APPLICATION CONTROLLED manner was recently made in DOORS [GNSY00].

Implementing FT-CORBA using the integration approach. One of the most important
building blocks introduced by FT-CORBA is the Interoperable Object Group Reference (IOGR),
which is used to address object groups. Here, we should point out that FT-CORBA constrains
any implementation which makes use of object groups referenced through IOGRs to necessitate
either the integration or the interception approaches, and preclude service level implementation.
There are at least two reasons for this: First, CORBA does not specify any means available
outside the ORB to create the CORBA::Object datatype from the IOP::IOR datatype and vice
versa. Thus, creating an object group and assigning IOGR to it cannot be implemented by an
external CORBA service. Second, several implementation modules should be able to manipulate
internal IOGR components. This cannot be done at the application level as the CORBA standard
dictates that the CORBA::Object datatype has to be opaque outside the ORB.

Thus, compliance with the standard currently requires modification of low-level infrastructure
in order to implement quorum based replication for FT-CORBA. The quorum replication service
described in Section 4 can be converted into an FT-CORBA compliant implementation by inte-



grating several parts of the service at the ORB level and augmenting the infrastructure with a
Replication Manager (RM).

Thanks to a clear separation between the client and the replica side implementations of our
protocols, the necessary modifications are confined to the client and servant specific modules while
the core ORB mechanisms are left intact. More specifically, the group proxy code becomes the
part of the client stub, whereas the code implementing the TOReplica and Mutex interfaces is
incorporated into the object skeleton.

To enable the conversion, an implementation of the QuorumManager interface becomes a part
of the Replication Manager functionality. This requires augmenting the FT-CORBA standard
with new properties that are needed for describing quorum systems. As in FT-CORBA, the
Replication Manager is responsible for creating object groups and assigning Interoperable Object
Group References (IOGRs) to these groups.

In a typical scenario, an object group launcher application contacts an RM and requests it to
create object replicas at the specified locations through the create_object() method. In response,
an RM creates replicas by invoking auxiliary factories at the requested locations, collects replica
references, allocates a unique group identifier, constructs an IOGR and returns it to the launcher.
The launcher then invokes other RM methods to associate a quorum system with this IOGR.

Whenever a client application invokes a method on an object group through an IOGR, the
client stub first contacts the RM to get a description of the quorum system employed by the
object group. It then extracts replica IORs from the IOGR and proceeds with the rest of the
protocol. If quorum system parameters could be incorporated into the IOGR, it would save the
extra interaction with the RM.

References

[AGY8] G. Agha and R. Guerraoui editors. High Availability in CORBA. Special Issue of Theory and Practice
of Object Systems 4(2): 71-115, April 1998.

[CMRO1] G. Chockler, D. Malkhi, and M. K. Reiter. Backoff protocols for distributed mutual exclusion and

ordering. In Proceedings of the 21st International Conference on Distributed Computing Systems,
April 2001. To appear.

[FGS98] P. Felber and R. Guerraoui and A. Schiper. The implementation of a CORBA object group service.
Theory and Practice of Object Systems, 4(2):93-105, 1998.
[F98] P. Felber. The CORBA Object Group Service. A service approach to object groups in CORBA. PhD

Thesis, Ecole Polytechnique Federale de Lausanne, 1998.

[GNSY00] A. Gokhale and B. Natarajan and D. C. Schmidt and S. Yajnik. DOORS: Towards High-performance
Fault-Tolerant CORBA. In Proceedings of the 2nd International Symposium on Distributed Objects
and Applications (DOA ’00), OMG, Antwerp, Belgium, September 2000.

[HW90] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems 12(3):463-492, July 1990.

[1194] IONA and Isis. An Introduction to Orbix+ISIS. IONA Technologies Ltd. and Isis Distributed Sys-
tems, Inc., 1994.

[LM97] S. Landis and S. Maffeis. Building reliable distributed systems with CORBA. Theory and Practice
of Object Systems, 3(1), 1997.

[Mal99] D. Malkhi. Quorum systems. Chapter in The Encyclopedia of Distributed Computing, Joseph

Urban and Partha Dasgupta, editors, Kluwer Academic Publishers. To be published.
http://www.cs.huji.ac.il/"dalia/pubs/quorums.ps.gz.

[MMABL96] L. E. Moser and P. M. Meliar-Smith and D. A. Agarwal and R. K. Budhia and C. A. Lingley-
Papadopoulos. Totem: A fault-tolerant multicast group communication system. Comm. ACM,
39(4):54-63.

[MR98] D. Malkhi and M. Reiter, Byzantine quorum systems. Distributed Computing 11(4):203-213, 1998.

[MMNO98] L. E. Moser and P. M. Meliar-Smith and P. Narasimhan. Consistent object replication in the Eternal
system. Theory and Practice of Object Systems, 4(2):81-92, 1998.

[OMG98] CORBAservices: Common Object Services Specification, December 1998.

[OMGY9] Object Management Group. The Common Object Request Broker: Architecture and Specification,
2.3 edition, June 1999.

[OMGO00] Object Management Group. Fault Tolerant CORBA Specification, OMG Document ptc/2000-04-04,

April 2000.



