JOURNAL OF ALGORITHMS 3, 14-30 (1982)

The Byzantine Generals Strike Again*
DANNY DOLEVT

Computer Science Department, Stanford University, Stanford, California 94305
Received March 10, 1981

Can unanimity be achieved in an unreliable distributed system? This problem was
named the “Byzantine Generals Problem” by L. Lamport, R. Shostak, and M. Pease
(Technical Report 54, Computer Science Laboratory, SRI International, March
1980). The results obtained in the present paper prove that unanimity is achievable
in any distributed system if and only if the number of faulty processors in the system
is: (1) less than ome-third of the total number of processors; and (2) less than
one-half of the connectivity of the system’s network. In cases where unanimity is
achievable, algorithms for obtaining it are given. This result forms a complete
characterization of networks in the light of the Byzantine Problem.

1. INTRODUCTION

Unanimity in an unreliable distributed system is still far from being well
understood. The major task is to circumvent errors without losing unanim-
ity. This can be achieved if all the reliable members of the system agree
upon the content of the messages in the system, especially of those messages
corresponding to the faulty parts of the system, even where the faulty parts
cannot be uniquely identified.

The assumption is that a faulty processor can do whatever it likes. Thus, a
faulty processor can behave very strangely: It can alter the information
relayed through itself; it can block such information from being relayed; it
can incorrectly reroute the information; and in the worst case, it can send
conflicting information to different members of the system.

Some of the processors may consider a faulty processor to be a reliable
one and a reliable processor to be faulty. Obviously, there is a limit to the
number of faulty processors a system can tolerate. The problem of achieving

*This work was supported in part by a Chaim Weizmann Postdoctoral Fellowship and in
part by National Science Foundation Grant MSC-80-12907.

TPresent address: K55 /282, IBM Research Center, San Jose Laboratory, 5600 Cottle Road,
San Jose, Calif. 95193.

14

0196-6774 /82 /010014-17$02.00/0
Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

THE BYZANTINE GENERALS STRIKE AGAIN 15

unanimity is further complicated by the following compound question:
Under what conditions does unanimity remain valid and what is the
system’s unanimity threshold?

In the general case one does not know which processors are faulty.
Moreover, in most cases one will never be able to find it out. To understand
the reason for this, picture yourself as a processor in a distributed system
that receives a message from a processor z. Assume that you want to make
sure that z is reliable. On inquiring what messages the rest of the system
received you find out that the message you have received differs from all the
rest. Is z a faulty processor? The answer is not necessarily positive. The
possibility that the only reliable processors in the system are you and z
always exists. :

To overcome this logical pathology you should make your decision
assuming an upper bound on the number of faulty processors in the system.
That is, if the system contains more faulty processors than that upper
bound, it will no longer matter what decision you are going to make.
Throughout this paper ¢ denotes the upper bound on the number of faulty
processors in the system. Knowing ¢, a receiver can sometimes determine
that the sending processor is unreliable. This can be achieved in cases of
“too many” conflicting versions of the sender’s message. In such cases the
receiver is said to “explicitly know” that the sending processor is faulty. In
the next section a precise definition of these notions is given.

Unfortunately, in many cases the faulty processors can still remain
anonymous and indistinguishable from the reliable ones. Consider the
problem of a processor, say z, that sends its message to every other
processor in the system. If more than one message is received, the reliable
processors have to determine and agree upon which value was actually sent
by z. Two types of agreements which can be achieved in the presence of
faulty processors are studied in this paper.

Agreement A

(Al) All the reliable processors that do not expli’citly know that z is
faulty agree on the same message.

(A2) If z 1s reliable, then all the reliable processors agree on its message.
Agreement B |

(B1) All the reliable processors agree on the same message.

(B2) If z is reliable, then all the reliable Processors agree on its message.

Agreement B was named the Byzantine Generals Problem by Lamport et al.
[3]. Here it is referred to as the Byzantine Agreement. For consistency
Agreement A is called the Crusader Agreement.

16 DANNY DOLEV

A characterization of a network’s tolerance to faults for a given type of
agreement is f, the upper bound on the number of faults a network can
sustain and still reach the agreement. The upper bound ¢ should depend on
the topology of the network. For example, if the network graph is a tree, it
is clear that almost every faulty processor can prevent the system from
achieving both the Crusader and the Byzantine Agreements.

The first work toward finding the threshold ¢ for some networks was done
by Pease, Shostak, and Lamport and is described in their paper “Reaching
Agreement in the Presence of Faults” [4]. In that paper and in an extended
one, “The Byzantine Generals Problem” [3], the authors analyze the prob-
lem of reaching an agreement of type B, the Byzantine Agreement, in a
complete network in which all pairs of processors are directly connected.
They present an algorithm to circumvent up to (n — 1) /3 faulty processors,
where n is the number of processors in the system. They prove that this
threshold is tight; that is, one cannot guarantee a unique agreement if the
number of faulty processors is not less than a third of the total number of
processors. Lamport et al. [3] found another algorithm for a special type of
networks that they call p-regular networks, but in this case the result is no
longer tight. In a later paper Lamport [2] studied the complete network with
respect to another type of agreement called the Weak Byzantine Generals
Problem.

The results presented in the present paper provide a complete characteri-
zation of ¢ for every network. The value of ¢ is independent of the type of
agreement and depends only on the number of processors and the connec-
tivity of the network. The results can be stated as follows:

Both the Crusader and the Byzantine Agreements can be achieved in a
network G if and only if:

(1) ¢ is less than one-half of the connectivity of G; and
(2) t is less than one-third of the total number of processors in G.

The fact that both agreements are bounded by the same threshold 7 suggests
the following (nontrivial) exercise:

Assuming you know how to reach the Crusader Agreement, can you reach the
Byzantine Agreement?

This exercise is left to the reader to develop a better understanding of the
issue.

Note that the Crusader Agreement implies that if the sending processor z
is faulty, then the network contains three sets of processors: first, the set of
the faulty processors; second, the set of the reliable processors that ex-
plicitly know that z is a faulty processor; third, the set containing the rest of
the reliable processors, those that agree on the same message. To obtain the

THE BYZANTINE GENERALS STRIKE AGAIN 17

Byzantine Agreement the reliable processors need only to exchange their
knowledge. Beware, the exercise is not as easy as it looks. The algorithm for
the Byzantine Agreement described later in this paper is independent of that
of the Crusader Agreement.

2. BAsSIC NOTIONS AND ASSUMPTIONS

For a clear representation of the relationships among the processors the
following notions are used. A sender of messages is called the transmitter
and the messages it sends carry its value. The transmitter sends its values to
its receivers either directly or through other processors called relays. A
processor can be a transmitter, a receiver, or a relay according to its
function in the network with respect to a given message. A processor is
reliable if it transfers the messages it has received without altering or
eavesdropping on them. A reliable transmitter is a reliable processor that
sends the same value to all its receivers. A faulty processor is a relay or a
transmitter that is not reliable. Furthermore, assume that a reliable processor
does not read a message that it has to relay to someone else. This extra
assumption does not change the conditions for achieving the agreements.

Let us concentrate on the case of a single processor that sends its value to
the rest of the network. Solving this case successfully will enable us to
handle the general case in which every processor sends its own value
to every other processor.

For simplicity assume that every message contains the information about
the route through which it is supposed to be delivered. Thus, before sending
a message the transmitter chooses a route and sends the message containing
the route. The receiver, however, does not know in advance the route
through which it is going to receive the message. Note that a faulty
processor may also change the routing through which the message is
supposed to be delivered. Moreover, a faulty processor may also produce
many false copies of the message it is supposed to relay, then send them
through various routes of its own choice.

A faulty processor may change the record of the route to prevent the
receiver from identifying it as the source of faulty messages. To ensure the
inclusion of faulty processors’ names in the routes, assume that after a
reliable processor receives a message to relay, it makes sure the processor
from which the message has arrived is supposed to relay the message to
itself. Only then does it relay the message to the next processor along the
route to the receiver. :

Throughout the above discussion one issue was omitted: synchronization.
Consider an asynchronous distributed system. In a reliable asynchronous
system there should be an upper bound on the amount of time between

18 DANNY DOLEV

sending and receiving of a message through reliable relays. If the transmitter
sends several messages to the same receiver, then, in a reliable system, the
above upper bound determines the maximum length of the time interval
during which all the messages should arrive. In an unreliable system every
message that has not arrived on time can be ignored, because it was relayed
by a faulty processor.

Summary of Assumptions

1. The processors are arranged in a k-connected bidirectional network.

2. Every processor knows the topology of the network.

3. Processors only communicate by sending messages along links.

4. Every processor can identify the neighbor from which it receives each
message.

5. Every message includes the route through which it is supposed to be
delivered.

6. A reliable processor relays a message to its neighbor only if the
neighbor appears after itself in the message’s route.

7. A reliable processor relays a message only if the processor from which
it received the message appears immediately before itself in the message’s
route.

8. A reliable processor relays messages w1thout altering them and without
eavesdropping on their values.

9. There exists an upper bound on the delay of relaying a message by a
reliable processor.

10. There exists an upper bound, ¢, on the number of faulty processors in
the system. :

The ability of a faulty processor to disrupt may appear unlimited, but the
situation is not so bad. Due to the Menger theorem [1], if the connectivity of
the graph is k, then there exist at least k disjoint paths between every pair of
processors. This shows that the transmitter has the ability to transmit k
copies of its value through k disjoint routes to every receiver.

The following algorithm provides the receiver with a method for purifying
the correct values out of all the copies it has received. Define “O” to be the
zero value, which means either that the transmitter did not send any value
or that there is no way to find a unique value out of the set of copies. This
last case arises when the transmitter is a faulty processor that has sent too
many conflicting values.

DEFINITION. Let {a,,...,a,} be the set of copies of the transmitter’s
value received by receiver x. Let U, be a set of processors that does not
contain the transmitter itself. A set U, is called a set of suspicious processors
determined by x if every message a;, that did not pass through the processors
in U, carries the same value.

THE BYZANTINE GENERALS STRIKE AGAIN 19

Algorithm. Purifying (t; ay, ..., a,; X)

1. If a set U, of up to ¢ suspicious processors exists, then the purified
value is the value of the messages that did not pass through U,. If no
message is left, the value is O. '

2. If there is no set U, of cardinality up to ¢, then the purified value is O.

Note that if more than one set of suspicious processors exists, then there
may be many purified values. But because of the way the algorithm will be
used a plurality of possible values will not be a problem.

Before proving that the Purifying Algorithm actually does the right
filtration, consider an application of the Purifying Algorithm to the network
shown in Fig. 1. The network contains 10 processors and at most 2 faulty
ones. Assume that v and u are the faulty processors. The transmitter v sends
the value a to receivers 1 and 2 and the value b to the other receivers.
Assume that Receiver 1 receives v’s value through the following paths:

D) a: ol,

2) a: v21,
3) a: vul,
4) b: v741],
5) b: v851.

The Purifying Algorithm provides the purified value a to Receiver 1, by
choosing {7,8) as the set of suspicious processors. Similarly, Receiver 2
obtains the value a. But the rest of the network’s receivers obtain the value b
by choosing {1,2} as the set of suspicious processors.

The following theorem proves that with sufficient connectivity all the
reliable receivers obtain the same value if the transmitter is reliable.

THEOREM 1. Let G be a network which contains at most t faulty processors,
and the connectivity of which is at least 2t + 1. If a reliable transmitter
transmits 2t + 1 copies of its value to every receiver, through disjoint paths,
then, by use of the Purifying Algorithm, every reliable receiver can obtain the
transmitter’s value.

Proof. 'The reliable transmitter sends every receiver 2¢ + 1 copies of its
value, through disjoint paths. It sends the same value to all receivers. Let
{ay,...,a,} be the set of all the copies of the transmitter’s value that receiver
x receives. There are at most ¢ faulty processors; therefore, at most ¢ values
might be lost. This implies that the number of copies, r, is at least 7 + 1. At
least r + 1 of the messages are relayed through routes which contain only
reliable processors; each one of the reliable processors relays the message
faithfully without changing it. This implies that at least # + 1 of the received

20 DANNY DOLEV
a—
~
o, \
] £

' \

6

F1G. 1. Ten processors with two faulty; v is the transmitter.

copies carry the original value. Note that if the transmitter were a faulty
processor, then the above reasoning would fail to hold.

It may be that the number of copies received is much more than 7 + 1
and even that the majority of them carry a faulty value. The task of receiver
x is to find the correct value out of this mess. It does this by applying the
Purifying Algorithm. Observe that the technique, described at the beginning
of the section, of adding the names of the processors along the route to the
message, enables x to differentiate among the values. Every message which
passed through faulty processors contains at least one name of a faulty
processor; more precisely, every list of processors added to a message
contains at least the name of the last faulty processor that relayed it.

Step 1 of the Purifying Algorithm requires one to look for a set U, of up
to ¢ processors with the property that all the values which have not been
relayed by processors from this set are the same. The network contains at
most ¢ faulty processors, and by definition, the transmitter is not one of
them. Therefore receiver x should be able to find such a set U,. It may be
that the set it finds is not exactly the set of faulty processors, but U,
necessarily eliminates the wrong values. The set U, cannot eliminate the
correct values because there are at least 7 + 1 independent copies of them

THE BYZANTINE GENERALS STRIKE AGAIN 21

and U, can eliminate at most ¢ independent copies. This completes the proof
of the theorem. (]

In the case where the transmitter is faulty, Theorem 1 does not ensure the
ability to reach a unique agreement on a value. This case is discussed in the
rest of the paper. Throughout the rest of the paper, whenever a transmitter
sends its value it sends 2¢ + 1 copies through disjoint paths it chooses.
Every receiver uses the Purifying Algorithm to find the value the transmitter
wants it to receive.

The copies of values a receiver receives are evidence of the value sent by
the transmitter. A reliable transmitter sends the same value to every
processor. This implies that all further information about the transmitter’s
value that a receiver obtains from other receivers is also evidence of the
transmitter’s value. That is, if receiver y sends to receiver x a message saying
“the transmitter has sent me the value a,” then this message is also evidence
to receiver x of the transmitter’s value. Define the set of evidence to be the
set of all the messages containing information about the transmitter value
that a receiver receives. If the transmitter is reliable then reasoning similar
to that of Theorem 1 implies that the purification of every set of evidence
should uncover a set of suspicious processors.

DEFINITION. Let {a,,..., a,} be a set of evidence of the transmitter’s
value received by receiver x. Receiver x explicitly knows that the transmitter
is a faulty processor if it is unable to find a set of ¢ suspicious processors.

Note that the definition implies that every set of ¢ processors leaves a set
of copies which still contains conflicting values.

LEMMA 2. If the number of faulty processors is at most t, then receiver x
explicitly knows that the transmitter v is a faulty processor only if v is indeed a
faulty processor.

Proof. Assume to the contrary that v is a reliable transmitter. Let T be
the set of faulty processors; hence its cardinality is at most ¢. In the
subnetwork remaining after the set 7 is ignored there are no more faults.
Therefore, every value x receives through this subnetwork, if it receives
anything, should be the transmitter’s value.

Among all the candidate sets of suspicious processors that x checks it has
to check T itself. But this leads to a contradiction because x cannot
explicitly know that the transmitter is faulty. OJ

Lemma 2 implies that sometimes a faulty processor can be identified
because it has sent too many conflicting values. But even being known as a
faulty processor by some of the processors does not prevent a faulty
processor from being considered a reliable transmitter by others. Thus, it
can still prevent these processors from reaching an agreement on values.

22 DANNY DOLEV
3. THE NECESSARY CONDITIONS

In terms of the communication vocabulary defined in the previous section
the Crusader Agreement becomes:

(Crul) All reliable receivers that do not explicitly know that the
transmitter is faulty agree on the same value.

(Cru2) If the transmitter is reliable, then all reliable receivers agree on
its value.

Similarly the Byzantine Agreement becomes:

(Byz1) All reliable receivers agree on the same value.

(Byz2) If the transmitter is reliable, then all reliable receivers agree on
its value.

Thus, to prove the necessary condition it must be shown that if ¢ is not less
than half the connectivity or not less than a third of the total number of
processors, then neither the Crusader Agreement nor the Byzantine Agree-
ment can be achieved. It is enough to show that the Crusader Agreement
cannot be achieved, because the Byzantine Agreement implies the Crusader
Agreement. '

Recall that n is the number of processors, ¢ is the upper bound on the
number of faulty processors in the system, and k£ denotes the connectivity of
the network. Let the actual number of faulty processors is denoted by m.
Thus m < ¢. If the number of processors is 2 or less, then there is no
problem reaching either agreement. Therefore, assume that n >2 and
similarly that m < n.

The following example clarifies the difficulties of reaching an agreement
in the case m = n/3. Assume the network contains only three processors
connected in a triangle and contains exactly one faulty processor. Let z be
the transmitter and x be a processor which tries to follow the Crusader
Agreement. Figure 2 describes the information x obtains. Receiver x re-
ceives the value a directly from the transmitter and a different version of the
transmitter’s value, say b, from y. The receiver has to consider two

X Y

F1G. 2. Three processors with one faulty processor.

THE BYZANTINE GENERALS STRIKE AGAIN 23
possibilities:

(P1) The transmitter z is reliable and y is a faulty relay; and
(P2) the transmitter z is faulty and y is a reliable relay.

Now, x can decide “faulty transmitter” or it can choose a value. It does
not know if the situation is either P1 or P2. Therefore, if it decides “faulty
transmitter” it might be that the situation is P1, which conflicts, with Cru2.
This implies that it cannot decide “faulty transmitter” in this case. Processor
x should choose the value a; otherwise it may fail to obey Cru2 in the case
P1. Assume that the actual case is P2; therefore, y as a reliable processor
faces the same problem: it receives b from z and a from x. The above
arguments imply that y will choose b to be the transmitter’s value. These
forced decisions contradict Crul. This proves that no matter what decision
the processors make, the Crusader Agreement cannot be achieved.

LEMMA 3. No Crusader Agreement can be reached if there are only three
processors which may contain faulty processors.

Proof. The nontrivial case is the example just studied; the rest of the
cases are easy to prove. Note that the case m = 3 was excluded. [

The general case in which n > 3 and m > n/3 is proved by reduction to
the case of Lemma 3, using arguments similar to those appearing in [3, 4]. A
complete and formal proof can be constructed similarly to those in [2, 3].

LEMMA 4. No Crusader Agreement can be achieved in a network of n

processors if the number of faulty processors is greater than or equal to a third
of the total number of processors.

Proof. Assume to the contrary that there exists a network G with n
processors and there exists an algorithm to achieve the Crusader Agreement
in G for every distribution of up to ¢ faulty processors in the network, where
t = n/3. The impossibility of this situation will be proved by constructing
the Crusader Agreement for a network of three processors, which con-
tradicts Lemma 3.

The assumed algorithm should obtain the Crusader Agreement in the case
where the actual number of faulty processors, say m, is not more than ¢.
Divide the set of processors into three sets, X, Y, and Z, such that each set
contains at most ¢ processors. Let Z be the set that includes the transmitter.
Denote by H the reduced network obtained from G by identifying all the
processors in each of the three sets. The new network H is a network of
three processors, in which each processor represents up to ¢ processors of
the original network G. Reaching the Crusader Agreement in the presence
of one faulty processor in H can be simulated by reaching the Crusader
Agreement in the network G, in the presence of up to ¢ faulty processors.

24 DANNY DOLEV

Similarly, the assumed algorithm for reaching the Crusader Agreement in G
can be simulated to reach the Crusader Agreement in H. But this con-
tradicts Lemma 3. The constructed contradiction proves the lemma. [1

The case in which the number of faulty processors is not less than half of
the connectivity is easier to visualize, and is proved in Lemma 5. Figure 3
describes the case schematically. The basic idea is that if the faulty processors
are not less than half of the bottleneck they can prevent the reliable
processors from reaching an agreement by behaving as a filter. Every
message that passes from right to left would be changed to carry one value,
and every message in the reverse direction would carry another value. This
behavior can cause all the processors on the right side to agree on a value
different from the value agreed on by those on the left side.

LeEMMA 5. No Crusader Agreement can be achieved in a network of n

processors if the number of faulty processors is not less than half of the
connectivity of the network. '

Proof. Let G be a network with connectivity k, and let {v,,...,v,} be a
set of processors that disconnects the network to two nonempty parts, G,
and G,. Assume that the subset {v,,...,v,} is the set of faulty processors,
where ¢ = k /2. Consider the following cases for the various places in which
the transmitter can be. ,

Assume the transmitter v is in the subnetwork G|, and that it sends the
value a to all the receivers in the network. The faulty processors can follow
the doctrine: change every message which passes from G, to G, to carry the
value b; and leave every other value as a. Change the messages passing back
from G, to G, to carry the value a. In this situation every receiver in G, can
consider v to be a reliable processor and thus chooses a. Similarly the
processors {v,, |, ..., v;} choose a. But every receiver in G, cannot consider
v a faulty transmitter. They are able to ignore the conflicting values they
have received by ignoring either the set {v,,..., v,} or the set {v,, ;,..., v.}.
On the other hand, they cannot agree on a value because each of the values
can be correct, depending upon what the transmitter has said and which
processors are faulty. Since ¢ = k the receivers in G, will choose b, in
contradiction to Cru2. The case where the transmitter is in G, is identical by
symmetry.

FiGUrRe 3

THE BYZANTINE GENERALS STRIKE AGAIN 25

Assume now that the transmitter is in the set {v,,...,v.}. If the
transmitter is reliable and sends the same value a to every processor, then by
reasoning similar to that in the previous case, the faulty processors can
prevent agreement. If the transmitter is faulty it can send the value a to G,
and b to G,. The processors in G, and G, are not able to decide “faulty
processor” because in either case they are able to obtain a unique value.
Thus, similarly to Lemma 3, in the case in which the transmitter is a faulty
processor every decision implies violation of the Crusader Agreement. [l

The necessary part of the main result is implied by the three lemmas
above. The rest of the paper is the proof ‘of the sufficiency for both
agreements.

4. THE CRUSADER AGREEMENT

Although the Byzantine Agreement implies the Crusader Agreement it is
better to study the Crusader Agreement, because it disencumbers the
understanding of the Byzantine agreement which is achieved by a complex
recursive algorithm.

Algorithm CR(G, z,V, t) (the Crusader Algorithm)

1. The transmitter z sends its value to every receiver in V" through 2¢ + 1
disjoint paths in G.

2. Each receiver applies the Purifying Algorithm to the values it receives
from the transmitter to find the value the transmitter intended it to receive.

3. For every u € V, let a, be the value receiver u has obtained in step 2.
Receiver u sends the value a, to every other receiver in {V-u} through
2t + 1 disjoint paths.

4. Let M, be the set containing the values receiver u has received in steps
1 and 3 and containing O for every value missing in step 3. Each receiver u
finds a set U, of ¢ processors in {'—z} such that all the values in M, which
do not pass through processors in U, are identical. If u is unable to find
such a set, then it sets a, to be “faulty transmitter.”

Before proving the validity of the above algorithm, study again the
example described in Fig. 1. The discussion in Section 2 implies that at step
2 of the Crusader Algorithm, Receivers 1 and 2 obtain the value a and all
the rest of the receivers obtain the value b. At step 3, every processor sends
the value it has obtained to every other processor through five disjoint
paths. At this step, processor 7 can learn that processors 1 and 2 claim to
obtain the value a, and every other processor claims to obtain the value b.
By choosing {1,2} to be the set of suspicious processors it can obtain a
unique value. Therefore, processor 7 decides that the value of the trans-

26 DANNY DOLEV

mitter is b. By the same reasoning, processors 3 to 6 can also decide that b is
the transmitter’s value. But processors 1 and 2 are no longer able to find a
set of up to two suspicious processors to achieve a unique value and
therefore they have to decide “faulty transmitter.” If the faulty processors v
and u produced more faulty values or changed later values, then more
processors would decide “faulty transmitter.”

LEMMA 6. Let G be a network of at least 3t + 1 processors which contains
at most t faulty processors, and the connectivity of which is at least 2t + 1. All
receivers that do not know explicitly that the transmitter is faulty agree upon
the same value.

Proof. 1f receiver x does succeed in finding a set U, of up to ¢ suspicious
processors, then it does not know explicitly that the transmitter z is a faulty
processor. Assume that processors x and y are such processors and therefore
they choose a, and a, respectively, to be the values. Note that the case of
receiving no value is also included.

Denote by T the set of faulty processors in the network G; thus | T|< t.
Let U, and U, be the sets of suspicious processors chosen by x and y,
respectively. Each of these two sets also contains at most ¢ processors. The
network contains at least 3z + 1 processors; therefore, there exists at least
one reliable processor w that is in neither set; thatis,wisnotin T U U, U U,.
Denote by a,, the value w determines at step 2 of the algorithm, or its value
if w is the transmitter 7 itself. Since w is a reliable processor, it sends the
value a,, faithfully to all the other processors.

The network is at least 2¢ + 1 connected; therefore, the subnetwork
which does not contain 7 and U, is at least one connected, which implies
that there exists a path of reliable processors from w to x. Along such a path
processor w sends its version of the original value to processor x. This
implies that x should obtain the correct value a . Therefore, all the values it
obtains from the network which do not pass through U_ are equal to a,,
thus a, = a,. Note that if w does not send anything, then every other
processor chooses the value O as the value sent by w. Therefore a, should
also be O.

The same argument implies that all the values that y obtains are equal to
a,,, which implies that a, = a,, which proves the lemma. []

THEOREM 7. Let G be a network of at least 3t + 1 processors which
contains at most t faulty processors, and the connectivity of which is at least
2t + 1. Algorithm CR(G, z,V, t) satisfies conditions Crul and Cru?.

Proof. Lemma 6 implies that Crul holds. The remaining case is where
the transmitter is reliable. But here, by Theorem 1, every reliable processor
obtains the value sent by the reliable transmitter. Moreover, no processor
can decide “faulty transmitter” because it could receive a wrong value from

THE BYZANTINE GENERALS STRIKE AGAIN 27

at most ¢ processors. Lemma 6 implies that no value other than the
transmitter’s can be chosen. This completes the proof of the theorem. [

5. THE BYZANTINE ALGORITHM

To obtain the Byzantine Agreement the following recursive algorithm can
be used. As a matter of fact, the actual result obtained is stronger: the
algorithm enables us to achieve the Byzantine Agreement on any desired
subnetwork of the underlying network. Throughout this section we use the
following notation: Let G be a network of n processors with connectivity
greater that 2¢; let U C V be a subset of the set of processors of G; and let v
be a processor of G not in U. The algorithm uses a function majority, which
is a function every processor has for deciding what the value is for a given
set of versions it has received. The function has to be such that it points out
the majority value if there exists exactly one; otherwise it can get arbitrary
(but consistent) value.

Algorithm BG(G, v, U, t, m) (the Byzantine Algorithm)

1. The transmitter v sends its value to every receiver in U through 27 + 1
disjoint paths in G.

2. Each receiver applies the Purifying Algorithm on the values it receives
from the transmitter to find the value the transmitter intended it to receive.

3. If m > 0 then:
a. For every u € U, let a, be the value receiver u has obtained in step
2. Receiver u acts as the transmitter in the algorithm BG(G, u, U — u, ¢,
m — 1) to send the value a, to every other receiver in U — u.

b. For each w € U and each u # w in U let a,(u) be the value receiver
w receives from receiver u in step a. If no value is received, then set
a(u)=0. Let a,(w) be the value receiver w has received from the
transmitter v in step 2. Receiver w determines the value of v by
majority{a (x)| x € U}.

To prove the validity of the Algorithm BG observe that the same
processor can be used again and again as a transmitter of disjoint paths
between pairs of processors, even if it was a transmitter in previous
recursions. Moreover, even being a faulty processor does not matter for the
simple reason that the total number of paths that would be affected by
faulty processors will never exceed t.

Before proving the validity of the algorithm, consider the example in Fig.
4. The network contains five processors and z is a faulty transmitter. At step
2 of the algorithm processors 1 and 2 obtain the value a while processors 3
and 4 obtain b. At step 3a every processor transfers its version to the rest.

28 DANNY DOLEV

At step 3b every processor evaluates majority{a, a, b, b}, which produces
the same value.

LEMMA 8. Let G be a network of processors, let U be a subset of processors
from G with cardinality at least 2r + m, and let v be a processor not in U. If
the set of processors U contains at most r faulty processors, then Algorithm
BG(G, v, U, t, m) satisfies condition Byz2 with respect to U.

Proof ~Condition Byz2 determines the behavior of the reliable processors
in the case where the transmitter is reliable. The proof of the lemma is by
induction on m. For m = 0, Byz2 holds, since the transmitter is reliable, and
by Theorem 1 every reliable receiver receives the same value.

Assume that the lemma holds for m — 1 = 0. The reliable transmitter v
sends its unique value a to every receiver in U by 2¢ + 1 disjoint paths.
According to Theorem 1 every receiver w in U obtains in step 2 the value
a, = a. In step 3a, each processor u applies Algorithm BG(G, u, U —
u,t,m — 1) to send the value it obtained to all the other processors in
U — u. Since U contains at least 2r + m processors, then U — u contains at
least 2r + m — 1 processors. This implies that the induction hypothesis can
be applied to reach the conclusion that every other reliable processor in U
receives from every other reliable processor the same value a. The set U
contains at least 2r + m processors. Since m > 0 and since there are at most
r faulty processors in U the majority in step 3b, done by every individual
receiver w, produces the same value a. This completes the proof of the
lemma. O

The following theorem uses Lemma 8 to prove that Algorithm
BG(G, v, U, t, m) induces the Byzantine Agreement among the processors
in U.

THEOREM 9. Let G be a network of processors, let U be a subset of
processors from G with cardinality at least 3m, and let v be a processor not in
U. If the set of processors U U {v} contains at most m faulty processors, then

F1G. 4. Five processors and one faulty transmitter.

THE BYZANTINE GENERALS STRIKE AGAIN 29

Algorithm BG(G, v, U, t, m) satisfies conditions Byzl and Byz2 with respect
to U. :

Proof. The proof is by induction on m, the bound on the number of
faulty processors in the set U U {v}. The case m = 0 is the case where there
are no faulty processors in U and v is a reliable transmitter. In this case
Theorem 1 implies that the algorithm trivially satisfies Byzl and Byz2.

Assume that the theorem holds for m — 1 = 0. Consider first the case in
which the transmitter v is reliable. Lemma 8 holds for every distribution of
faulty processors, especially for the case where r = m faulty processors in
U U {v}. Therefore, Algorithm BG satisfies Byz2, which implies Byzl for
this case. o

The only remaining case is where the transmitter is a faulty processor.
There are at most m faulty processors in U U {v} and the transmitter is one
of them; therefore U itself contains at most m — 1 faulty processors. Since
U contains at least 3m processors then U — u contains at least 3m — 1 >
3(m — 1) processors. This implies that the inductive assumption can be
applied to step 3a. The validity of Byz2 and the inductive assumption on
Byzl imply that in step 3b every two reliable processors obtain the same
value for every processor in U. Therefore, majority{a,(x)| x € U} produces
the same value for every processor w in U, which proves Byzl. [

Theorem 9 implies that the Byzantine Agreement, for the whole graph G,
can be obtained by taking V-{v} to be U and ¢t = m.

COROLLARY 10. Algorithm BG(G, v,V — v, t, t) achieves the Byzantine

Agreement for every network of more than 3t processors with connectivity
greater that 2t. [

6. CONCLUSION

A characterization of distributed networks according to their ability to
sustain arbitrary malfunctioning has been presented. The number of mes-
sages needed for achieving the Crusader Agreement is much less than that
needed for achieving the Byzantine Agreement. Lower bounds on the
number of messages require further study.

The concepts and algorithms described can be employed in many aspects
of distributed networks. Assumptions can be changed and agreements can
be relaxed. For example, the assumptions that a network 1s synchronous or
that routes are predetermined can provide simpler algorithms. However,
every relaxation that leaves the faulty processors to do whatever they like
requires the same threshold on the number of faults.

30 : ' DANNY DOLEV

ACKNOWLEDGMENTS

Faulty algorithms to overcome faulty processors are very common. I wish to thank Michael
Rodeh of IBM Israel for exploring the faults in my faulty algorithms, and for helping me to
gain the insight needed to solve the problem. I would like to express my gratitude to Uri Geva,
for helping me to present the nonfaulty algorithms in an understandable manner; to David
Chaum; and to Yonatan Malachi, who has carefully read and commented on a previous draft
of this paper. ‘

REFERENCES

1. F. HARARY, “Graph Theory,” Addison-Wesley, Reading, Mass., 1972.

2. L. LaMporT, “The Weak Byzantine Generals Problem,” Technical Report 58, Computer
Science Laboratory, SRI International, November 1980.

3. L. LamporT, R. SHOSTAK, and M. PEASE, “The Byzantine Generals Problem,” Technical
Report 54, Computer Science Laboratory, SRI International, March 1980.

4. M. Peasg, R. SHOSTAK, and L. LAMPORT, Reaching agreement in the presence of faults, J.
Assoc. Comput. Mach. 27 (1980), 228-234.

'

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17

