
Gaussian Belief Propagation Solver
for Systems of Linear Equations

Ori Shental1, Paul H. Siegel and Jack K. Wolf
Center for Magnetic Recording Research

University of California - San Diego
La Jolla, CA 92093

{oshental,psiegel,jwolf}@ucsd.edu

Danny Bickson1 and Danny Dolev
School of Computer Science and Engineering

Hebrew University of Jerusalem
Jerusalem 91904, Israel

{daniel51,dolev}@cs.huji.ac.il

Abstract— The canonical problem of solving a system of linear
equations arises in numerous contexts in information theory, com-
munication theory, and related fields. In this contribution, we de-
velop a solution based upon Gaussian belief propagation (GaBP)
that does not involve direct matrix inversion. The iterative
nature of our approach allows for a distributed message-passing
implementation of the solution algorithm. We also address some
properties of the GaBP solver, including convergence, exactness,
its max-product version and relation to classical solution methods.
The application example of decorrelation in CDMA is used to
demonstrate the faster convergence rate of the proposed solver
in comparison to conventional linear-algebraic iterative solution
methods.

I. PROBLEM FORMULATION AND INTRODUCTION

Solving a system of linear equations Ax = b is one of
the most fundamental problems in algebra, with countless
applications in the mathematical sciences and engineering.
Given the observation vector b ∈ Rn, n ∈ N∗, and the data
matrix A ∈ Rn×n, a unique solution, x = x∗ ∈ Rn, exists if
and only if the data matrix A is full rank. In this contribution
we concentrate on the popular case where the data matrices,
A, are also symmetric (e.g. , as in correlation matrices).

Thus, assuming a nonsingular symmetric matrix A, the
system of equations can be solved either directly or in an
iterative manner. Direct matrix inversion methods, such as
Gaussian elimination (LU factorization, [1]-Ch. 3) or band
Cholesky factorization ([1]-Ch. 4), find the solution with a
finite number of operations, typically, for a dense n×n matrix,
on the order of n3. The former is particularly effective for
systems with unstructured dense data matrices, while the latter
is typically used for structured dense systems.

Iterative methods [2] are inherently simpler, requiring only
additions and multiplications, and have the further advantage
that they can exploit the sparsity of the matrix A to reduce the
computational complexity as well as the algorithmic storage
requirements [3]. By comparison, for large, sparse and amor-
phous data matrices, the direct methods are impractical due to
the need for excessive row reordering operations.

The main drawback of the iterative approaches is that, under
certain conditions, they converge only asymptotically to the

1Contributed equally to this work.
Supported in part by NSF Grant No. CCR-0514859 and EVERGROW, IP
1935 of the EU Sixth Framework.

exact solution x∗ [2]. Thus, there is the risk that they may
converge slowly, or not at all. In practice, however, it has been
found that they often converge to the exact solution or a good
approximation after a relatively small number of iterations.

A powerful and efficient iterative algorithm, belief propa-
gation (BP) [4], also known as the sum-product algorithm,
has been very successfully used to solve, either exactly or
approximately, inference problems in probabilistic graphical
models [5].

In this paper, we reformulate the general problem of solving
a linear system of algebraic equations as a probabilistic
inference problem on a suitably-defined graph. We believe that
this is the first time that an explicit connection between these
two ubiquitous problems has been established. As an impor-
tant consequence, we demonstrate that Gaussian BP (GaBP)
provides an efficient, distributed approach to solving a linear
system that circumvents the potentially complex operation of
direct matrix inversion.

We shall use the following notations. The operator {·}T

denotes a vector or matrix transpose, the matrix In is a n×n
identity matrix, while the symbols {·}i and {·}ij denote entries
of a vector and matrix, respectively.

II. THE GABP SOLVER

A. From Linear Algebra to Probabilistic Inference

We begin our derivation by defining an undirected graphical
model (i.e. , a Markov random field), G, corresponding to the
linear system of equations. Specifically, let G = (X , E), where
X is a set of nodes that are in one-to-one correspondence with
the linear system’s variables x = {x1, . . . , xn}T , and where
E is a set of undirected edges determined by the non-zero
entries of the (symmetric) matrix A. Using this graph, we can
translate the problem of solving the linear system from the
algebraic domain to the domain of probabilistic inference, as
stated in the following theorem.

Proposition 1 (Solution and inference): The computation
of the solution vector x∗ is identical to the inference of the
vector of marginal means µ = {µ1, . . . , µn} over the graph
G with the associated joint Gaussian probability density
function p(x) ∼ N (µ , A−1b,A−1).

Proof: Another way of solving the set of linear equations
Ax − b = 0 is to represent it by using a quadratic form

q(x) , xT Ax/2− bT x. As the matrix A is symmetric, the
derivative of the quadratic form w.r.t. the vector x is given
by the vector ∂q/∂x = Ax − b. Thus equating ∂q/∂x = 0
gives the stationary point x∗, which is nothing but the desired
solution to Ax = b.

Next, one can define the following joint Gaussian probabil-
ity density function

p(x) , Z−1 exp
(
− q(x)

)
= Z−1 exp (−xT Ax/2 + bT x),

(1)
where Z is a distribution normalization factor. Denoting the
vector µ , A−1b, the Gaussian density function can be
rewritten as

p(x) = Z−1 exp (µT Aµ/2)
× exp (−xT Ax/2 + µT Ax− µT Aµ/2)
= ζ−1 exp

(
− (x− µ)T A(x− µ)/2

)
= N (µ,A−1), (2)

where the new normalization factor ζ , Z exp (−µT Aµ/2).
It follows that the target solution x∗ = A−1b is equal to µ ,
A−1b, the mean vector of the distribution p(x), as defined
above (1).

Hence, in order to solve the system of linear equations we
need to infer the marginal densities, which must also be Gaus-
sian, p(xi) ∼ N (µi = {A−1b}i, P

−1
i = {A−1}ii), where µi

and Pi are the marginal mean and inverse variance (sometimes
called the precision), respectively.

According to Proposition 1, solving a deterministic vector-
matrix linear equation translates to solving an inference prob-
lem in the corresponding graph. The move to the probabilistic
domain calls for the utilization of BP as an efficient inference
engine.

B. Belief Propagation in Graphical Model

Belief propagation (BP) is equivalent to applying Pearl’s lo-
cal message-passing algorithm [4], originally derived for exact
inference in trees, to a general graph even if it contains cycles
(loops). BP has been found to have outstanding empirical
success in many applications, e.g. , in decoding Turbo codes
and low-density parity-check (LDPC) codes. The excellent
performance of BP in these applications may be attributed
to the sparsity of the graphs, which ensures that cycles in the
graph are long, and inference may be performed as if the graph
were a tree.

Given the data matrix A and the observation vector b, one
can write explicitly the Gaussian density function, p(x) (2),
and its corresponding graph G consisting of edge potentials
(‘compatibility functions’) ψij and self potentials (‘evidence’)
φi. These graph potentials are simply determined according
to the following pairwise factorization of the Gaussian func-
tion (1)

p(x) ∝
n∏

i=1

φi(xi)
∏
{i,j}

ψij(xi, xj), (3)

resulting in ψij(xi, xj) , exp(−xiAijxj) and
φi(xi) , exp

(
bixi −Aiix

2
i /2

)
. Note that by

completing the square, one can observe that
φi(xi) ∝ N (µii = bi/Aii, P

−1
ii = A−1

ii). The graph topology
is specified by the structure of the matrix A, i.e. , the edges
set {i, j} includes all non-zero entries of A for which i > j.

The BP algorithm functions by passing real-valued mes-
sages across edges in the graph and consists of two compu-
tational rules, namely the ‘sum-product rule’ and the ‘product
rule’. In contrast to typical applications of BP in coding
theory [6], our graphical representation resembles a pairwise
Markov random field [5] with a single type of propagating
message, rather than a factor graph [7] with two different
types of messages, originating from either the variable node
or the factor node. Furthermore, in most graphical model
representations used in the information theory literature the
graph nodes are assigned discrete values, while in this con-
tribution we deal with nodes corresponding to continuous
variables. Thus, for a graph G composed of potentials ψij

and φi as previously defined, the conventional sum-product
rule becomes an integral-product rule [8] and the message
mij(xj), sent from node i to node j over their shared edge
on the graph, is given by

mij(xj) ∝
∫

xi

ψij(xi, xj)φi(xi)
∏

k∈N(i)\j

mki(xi)dxi. (4)

The marginals are computed (as usual) according to the
product rule

p(xi) = αφi(xi)
∏

k∈N(i)

mki(xi), (5)

where the scalar α is a normalization constant. The set of
graph nodes N(i) denotes the set of all the nodes neighboring
the ith node. The set N(i)\j excludes the node j from N(i).

C. The Gaussian BP Algorithm

Gaussian BP is a special case of continuous BP, where the
underlying distribution is Gaussian. Now, we derive the Gaus-
sian BP update rules by substituting Gaussian distributions
into the continuous BP update equations (4)-(5).

Before describing the inference algorithm performed over
the graphical model, we make the elementary but very useful
observation that the product of Gaussian densities over a
common variable is, up to a constant factor, also a Gaussian
density.

Lemma 2 (Product of Gaussians): Let f1(x) and f2(x)
be the probability density functions of a Gaussian
random variable with two possible densities N (µ1, P

−1
1)

and N (µ2, P
−1
2), respectively. Then their product,

f(x) = f1(x)f2(x) is, up to a constant factor, the probability
density function of a Gaussian random variable with
distribution N (µ, P−1), where

P−1 = (P1 + P2)−1, (6)
µ = P−1(P1µ1 + P2µ2). (7)

Proof: The proof of this lemma is straightforward, thus
omitted.

Fig. 1. Graphical model: The neighborhood of node i.

Fig. 1. plots a portion of a certain graph, describing the
neighborhood of node i. Each node (empty circle) is associated
with a variable and self potential φ, which is a function of this
variable, while edges are identified with the pairwise (symmet-
ric) potentials ψ. Messages propagate along the edges in both
directions (only the messages relevant for the computation of
mij are shown in Fig. 1.).

Looking at the right hand side of the integral-product
rule (4), node i needs to first calculate the product of all
incoming messages, except for the message coming from node
j. Recall that since p(x) is jointly Gaussian, the factorized self
potentials φi(xi) ∝ N (µii, P

−1
ii) and similarly all messages

mki(xi) ∝ N (µki, P
−1
ki) are of Gaussian form as well.

As the terms in the product of the incoming messages and
the self potential in the integral-product rule (4) are all a
function of the same variable, xi (associated with the node
i), then, according to the multivariate extension of Lemma 2,
φi(xi)

∏
k∈N(i)\j mki(xi) is proportional to a certain Gaussian

distribution, N (µi\j , P
−1
i\j). Applying the multivariate version

of the product precision expression in (6), the update rule for
the inverse variance is given by (over-braces denote the origin
of each of the terms)

Pi\j =

φi(xi)︷︸︸︷
Pii +

∑
k∈N(i)\j

mki(xi)︷︸︸︷
Pki , (8)

where Pii , Aii is the inverse variance a-priori associated
with node i, via the precision of φi(xi), and Pki are the inverse
variances of the messages mki(xi). Similarly, using (7) for the
multivariate case, we can calculate the mean

µi\j = P−1
i\j

(φi(xi)︷ ︸︸ ︷
Piiµii +

∑
k∈N(i)\j

mki(xi)︷ ︸︸ ︷
Pkiµki

)
, (9)

where µii , bi/Aii is the mean of the self potential and µki

are the means of the incoming messages.
Next, we calculate the remaining terms of the mes-

sage mij(xj), including the integration over xi. After
some algebraic manipulation, using the Gaussian integral∫∞
−∞ exp (−ax2 + bx)dx =

√
π/a exp (b2/4a), we find that

the messages mij(xj) are proportional to a normal distribution
with precision and mean

Pij = −A2
ijP

−1
i\j , (10)

µij = −P−1
ij Aijµi\j . (11)

These two scalars represent the messages propagated in the
GaBP-based algorithm.

Finally, computing the product rule (5) is similar to the
calculation of the previous product and the resulting mean (9)
and precision (8), but including all incoming messages. The
marginals are inferred by normalizing the result of this prod-
uct. Thus, the marginals are found to be Gaussian probability
density functions N (µi, P

−1
i) with precision and mean

Pi =

φi(xi)︷︸︸︷
Pii +

∑
k∈N(i)

mki(xi)︷︸︸︷
Pki , (12)

µi = P−1
i\j

(φi(xi)︷ ︸︸ ︷
Piiµii +

∑
k∈N(i)

mki(xi)︷ ︸︸ ︷
Pkiµki

)
, (13)

respectively.
For a dense data matrix, the number of messages passed on

the graph can be reduced from O(n2) (i.e. , twice the number
of edges) down to O(n) messages per iteration round by using
a similar construction to Bickson et al. [9]: Instead of sending
a unique message composed of the pair of µij and Pij from
node i to node j, a node broadcasts aggregated sums to all
its neighbors, and consequently each node can retrieve locally
Pi\j (8) and µi\j (9) from the aggregated sums

P̃i = Pii +
∑

k∈N(i)

Pki, (14)

µ̃i = P̃−1
i (Piiµii +

∑
k∈N(i)

Pkiµki) (15)

by means of a subtraction

Pi\j = P̃i − Pji, (16)

µi\j = µ̃i − P−1
i\jPjiµji. (17)

The following pseudo-code summarizes the GaBP solver al-
gorithm.

Algorithm 1 (GaBP solver):

1. Initialize: X Set the neighborhood N(i) to include
∀k 6= i such that Aki 6= 0.

X Fix the scalars
Pii = Aii and µii = bi/Aii, ∀i.

X Set the initial i→ N(i) broadcast messages
P̃i = 0 and µ̃i = 0.

X Set the initial k → i, k ∈ N(i) internal scalars
Pki = 0 and µki = 0.

X Set a convergence threshold ε.
2. Iterate: X Broadcast the aggregated sum messages

P̃i = Pii +
∑

k∈N(i) Pki,

µ̃i = P̃i
−1

(Piiµii +
∑

k∈N(i) Pkiµki), ∀i
(under chosen scheduling).

X Compute the i→ j, i ∈ N(j) internal scalars
Pij = −A2

ij/(P̃i − Pji),
µij = (P̃iµ̃i − Pjiµji)/Aij .

3. Check: X If the internal scalars Pij and µij did not
converge (w.r.t. ε), return to Step 2.

X Else, continue to Step 4.
4. Infer: X Compute the marginal means

µi =
(
Piiµii +

∑
k∈N(i) Pkiµki

)
/
(
Pii +

∑
k∈N(i) Pki

)
= µ̃i, ∀i.

(X Optionally compute the marginal precisions
Pi = Pii +

∑
k∈N(i) Pki = P̃i)

5. Solve: X Find the solution
x∗i = µi, ∀i.

D. Max-Product Rule

A well-known alternative to the sum-product BP algorithm
is the max-product (a.k.a. min-sum) algorithm [5]. In this
variant of BP, a maximization operation is performed rather
than marginalization, i.e. , variables are eliminated by taking
maxima instead of sums. For trellis trees (e.g. , graphical
representation of convolutional codes or ISI channels), the
conventional sum-product BP algorithm boils down to per-
forming the BCJR algorithm, resulting in the most probable
symbol, while its max-product counterpart is equivalent to the
Viterbi algorithm, thus inferring the most probable sequence
of symbols [7].

In order to derive the max-product version of the proposed
GaBP solver, the integral(sum)-product rule (4) is replaced by
a new rule

mij(xj) ∝ arg max
xi

ψij(xi, xj)φi(xi)
∏

k∈N(i)\j

mki(xi). (18)

Computing mij(xj) according to this max-product rule, one
gets (the exact derivation is omitted)

mij(xj) ∝ N (µij = −P−1
ij Aijµi\j , P

−1
ij = −A−2

ij Pi\j),
(19)

which is identical to the messages derived for the sum-product
case (10)-(11). Thus interestingly, as opposed to ordinary
(discrete) BP, the following property of the GaBP solver
emerges.

Corollary 3 (Max-product): The max-product (18) and
sum-product (4) versions of the GaBP solver are identical.

III. CONVERGENCE AND EXACTNESS

In ordinary BP, convergence does not guarantee exactness
of the inferred probabilities, unless the graph has no cycles.
Luckily, this is not the case for the GaBP solver. Its un-
derlying Gaussian nature yields a direct connection between
convergence and exact inference. Moreover, in contrast to BP,
the convergence of GaBP is not limited to acyclic or sparse
graphs and can occur even for dense (fully-connected) graphs,
adhering to certain rules that we now discuss.

We can use results from the literature on probabilistic
inference in graphical models [8], [10], [11] to determine the
convergence and exactness properties of the GaBP solver. The
following two theorems establish sufficient conditions under
which GaBP is guaranteed to converge to the exact marginal
means.

Theorem 4: [8, Claim 4] If the matrix A is strictly di-
agonally dominant (i.e. , |Aii| >

∑
j 6=i |Aij |,∀i), then GaBP

converges and the marginal means converge to the true means.
This sufficient condition was recently relaxed to include a

wider group of matrices.
Theorem 5: [10, Proposition 2] If the spectral radius (i.e. ,

the maximum of the absolute values of the eigenvalues) ρ
of the matrix |In −A| satisfies ρ(|In −A|) < 1, then GaBP
converges and the marginal means converge to the true means.

There are many examples of linear systems that violate these
conditions for which the GaBP solver nevertheless converges

to the exact solution. In particular, if the graph corresponding
to the system is acyclic (i.e. , a tree), GaBP yields the exact
marginal means (and even marginal variances), regardless of
the value of the spectral radius [8].

IV. RELATION TO CLASSICAL SOLUTION METHODS

It can be shown (see also Plarre and Kumar [12]) that the
GaBP solver (Algorithm 1) for a system of linear equations
represented by a tree graph is identical to the renowned direct
method of Gaussian elimination (a.k.a. LU factorization, [1]).
The interesting relation to classical iterative solution meth-
ods [2] is revealed via the following proposition.

Proposition 6 (Jacobi and GaBP solvers):
The GaBP solver (Algorithm 1)

1) with inverse variance messages arbitrarily set to zero,
i.e. , Pij = 0, i ∈ N(j),∀j;

2) incorporating the message received from node j when
computing the message to be sent from node i to node
j, i.e. , replacing k ∈ N(i)\j with k ∈ N(i);
is identical to the Jacobi iterative method.

Proof: Arbitrarily setting the precisions to zero, we get
in correspondence to the above derivation,

Pi\j = Pii = Aii, (20)
Pijµij = −Aijµi\j , (21)

µi = A−1
ii (bi −

∑
k∈N(i)

Akiµk\i). (22)

Note that the inverse relation between Pij and Pi\j (10) is no
longer valid in this case.

Now, we rewrite the mean µi\j (9) without excluding the
information from node j,

µi\j = A−1
ii (bi −

∑
k∈N(i)

Akiµk\i). (23)

Note that µi\j = µi, hence the inferred marginal mean µi (22)
can be rewritten as

µi = A−1
ii (bi −

∑
k 6=i

Akiµk), (24)

where the expression for all neighbors of node i is replaced
by the redundant, yet identical, expression k 6= i. This fixed-
point iteration (24) is identical to the element-wise expression
of the Jacobi method [2], concluding the proof.

Now, the Gauss-Seidel (GS) method can be viewed as a
‘serial scheduling’ version of the Jacobi method, thus based
on Proposition 6, it can be derived also as an instance of the
serial (message-passing) GaBP solver. Next, since successive
over-relaxation (SOR) is nothing but a GS method averaged
over two consecutive iterations, hence SOR can be obtained
as a serial GaBP solver with ‘damping’ operation [13].

V. APPLICATION EXAMPLE: LINEAR DETECTION

We examine the implementation of a decorrelator linear
detector in a CDMA system with spreading codes based upon
Gold sequences of length N = 7. Two system setups are
simulated, corresponding to n = 3 and n = 4 users.

Algorithm Iterations t (Rn=3) Iterations t (Rn=4)

Jacobi 111 24

GS 26 26

Parallel GaBP 23 24

Optimal SOR 17 14

Serial GaBP 16 13

Jacobi+Steffensen 59 −

Parallel GaBP+Steffensen 13 13

Serial GaBP+Steffensen 9 7
TABLE I

CONVERGENCE RATE.

The decorrelator detector, a member of the family of linear
detectors, solves a system of linear equations, Ax = b, where
the matrix A is equal to the n× n correlation matrix R, and
the observation vector b is identical to the n-length CDMA
channel output vector y. Thus, the vector of decorrelator deci-
sions is determined by taking the signum (for binary signaling)
of the vector A−1b = R−1y. Note that Rn=3 and Rn=4 in
this case are not strictly diagonally dominant, but their spectral
radii are less than unity, since ρ(|I3 −Rn=3|) = 0.9008 < 1
and ρ(|I4 −Rn=4|) = 0.8747 < 1, respectively. In all of the
experiments, we assumed the (noisy) output sample was the
all-ones vector.

Table I compares the proposed GaBP solver with stan-
dard iterative solution methods [2], previously employed for
CDMA multiuser detection (MUD). Specifically, MUD algo-
rithms based on the algorithms of Jacobi, GS and (optimally
weighted) SOR were investigated [14]–[16]. Table I lists
the convergence rates for the two Gold code-based CDMA
settings. Convergence is identified and declared when the
differences in all the iterated values are less than 10−6. We
see that, in comparison with the previously proposed detectors
based upon the Jacobi and GS algorithms, the serial (asyn-
chronous) message-passing GaBP detector converges more
rapidly for both n = 3 and n = 4 and achieves the best
overall convergence rate, surpassing even the optimal SOR-
based detector.

Further speed-up of the GaBP solver can be achieved by
adopting known acceleration techniques from linear algebra.
Table I demonstrates the speed-up of the GaBP solver obtained
by using such an acceleration method, termed Steffensen’s
iterations [17], in comparison with the accelerated Jacobi
algorithm (diverged for the 4 users setup). We remark that
this is the first time such an acceleration method is examined
within the framework of message-passing algorithms and that
the region of convergence of the accelerated GaBP solver
remains unchanged.

The convergence contours for the Jacobi and parallel (syn-
chronous) GaBP solvers for the case of 3 users are plotted in
the space of {x1, x2, x3} in Fig. 2. As expected, the Jacobi
algorithm converges in zigzags directly towards the fixed point.
It is interesting to note that the GaBP solver’s convergence is
in a spiral shape, hinting that despite the overall convergence
improvement, performance improvement is not guaranteed
in successive iteration rounds. Further results and elaborate

Fig. 2. Convergence visualization.

discussion on the application of GaBP specifically to linear
MUD may be found in recent contributions [18], [19].

REFERENCES

[1] G. H. Golub and C. F. V. Loan, Matrix Computation, 3rd ed. The
Johns Hopkins University Press, 1996.

[2] O. Axelsson, Iterative Solution Methods. Cambridge, UK: Cambridge
University Press, 1994.

[3] Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing
company, 1996.

[4] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco: Morgan Kaufmann, 1988.

[5] M. I. Jordan, Ed., Learning in Graphical Models. Cambridge, MA:
The MIT Press, 1999.

[6] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, 2007.

[7] F. Kschischang, B. Frey, and H. A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp. 498–
519, Feb. 2001.

[8] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in
Gaussian graphical models of arbitrary topology,” Neural Computation,
vol. 13, no. 10, pp. 2173–2200, 2001.

[9] D. Bickson, D. Dolev, and Y. Weiss, “Modified belief propagation
for energy saving in wireless and sensor networks,” in
Leibniz Center TR-2005-85, School of Computer Science and
Engineering, The Hebrew University, 2005. [Online]. Available:
http://leibniz.cs.huji.ac.il/tr/842.pdf

[10] J. K. Johnson, D. M. Malioutov, and A. S. Willsky, “Walk-sum inter-
pretation and analysis of Gaussian belief propagation,” in Advances in
Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and
J. Platt, Eds. Cambridge, MA: MIT Press, 2006, pp. 579–586.

[11] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-sums and
belief propagation in Gaussian graphical models,” Journal of Machine
Learning Research, vol. 7, Oct. 2006.

[12] K. Plarre and P. Kumar, “Extended message passing algorithm for
inference in loopy Gaussian graphical models,” Ad Hoc Networks, 2004.

[13] K. M. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation
for approximate inference: An empirical study,” in Proc. of UAI, 1999.

[14] A. Yener, R. D. Yates, and S. Ulukus, “CDMA multiuser detection:
A nonlinear programming approach,” IEEE Trans. Commun., vol. 50,
no. 6, pp. 1016–1024, June 2002.

[15] A. Grant and C. Schlegel, “Iterative implementations for linear multiuser
detectors,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1824–1834, Oct.
2001.

[16] P. H. Tan and L. K. Rasmussen, “Linear interference cancellation in
CDMA based on iterative techniques for linear equation systems,” IEEE
Trans. Commun., vol. 48, no. 12, pp. 2099–2108, Dec. 2000.

[17] P. Henrici, Elements of Numerical Analysis. New York: John Wiley
and Sons, 1964.

[18] D. Bickson, O. Shental, P. H. Siegel, J. K. Wolf, and D. Dolev,
“Linear detection via belief propagation,” in Proc. 45th Allerton Conf. on
Communications, Control and Computing, Monticello, IL, USA, Sept.
2007.

[19] D. Bickson, O. Shental, D. Dolev, P. H. Siegel, and J. K. Wolf, “Gaussian
belief propagation based multiuser detection,” in IEEE Int. Symp. Inform.
Theory (ISIT), July, 2008, Toronto, Canada, submitted for publication.

