
Indexing data-oriented overlay
networks using belief propagation �

DANNY BICKSON, DANNY DOLEV, YAIR WEISS
The Hebrew University of Jerusalem (HUJI), Israel

KARL ABERER, MANFRED HAUSWIRTH
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract
In this paper we discuss the problem of data-oriented parti-

tioning in large-scale overlay networks, as required by peer-to-
peer databases or by peer-to-peer information retrieval. The goal
is to partition a large set of nodes into k partitions with the ad-
ditional requirement of meeting certain load-balancing constraints
without global knowledge of the network’s parameters, i.e., the de-
sired number of partitions and the partition distribution function
are not known in advance and change dynamically as the network
evolves. This key problem in large-scale decentralized systems has
so far received only very limited attention. The novel contributions
described in the following are (1) the definition of a distributed
algorithm for local estimation of the partitioning distribution func-
tion, which does not preclude the network’s topology, and (2) a
distributed method for performing the actual partitioning. As ad-
ditional advantages, the algorithms do not require global knowl-
edge and are completely decentralized, thus suitable for Peer-to-
peer networks. Both algorithms are based on the max-product be-
lief propagation algorithm and give exact results on trees, and suf-
ficiently accurate approximations on graphs containing cycles. We
show the accuracy of the proposed algorithms in terms of the num-
ber of nodes per partition and the good load balancing of partitions
in the network by simulation. Our algorithms are scalable and the
accuracy of the partitioning improves with larger network sizes.
Having shown the efficiency of our proposed algorithms, we dis-
cuss a natural application for our algorithm in the data-oriented
P2P system P-Grid (http://www.p-grid.org/). Using P-Grid’s un-
derlying tree abstraction, we can apply our algorithm recursively
to achieve optimal partitioning results in short times relative to the
tree diameter.�

This work was supported (in part) by the European project Evergrow No 001935.

1

1 Introduction
Currently the standard way of indexing in nearly all overlay networks is
to compute uniformly distributed keys from the data to be indexed, e.g.,
by using standard hashing. With some simple additional partition assign-
ment and maintenance algorithms (joining/leaving of nodes), this ensures
that the key space is evenly distributed among the participating nodes,
i.e., the storage load is balanced among the peers. This standard model
for overlay networks also assumes that peers essentially join and leave in
a sequential way and the resulting maintenance schemes to repair incon-
sistencies or re-balance load essentially correspond to updating database
indexing structures which has been studied extensively in the literature.

Approaches following this basic strategy work fine for scenarios where
semantic relations among the data items are irrelevant and only very sim-
ple query predicates, i.e., equality, have to be supported. A typical exam-
ple for such applications would be a naming service, statically binding a
set of attributes to an identifier. However, in typical data-oriented scenar-
ios the standard strategy outlined above, will no longer work or become
very inefficient. In data-oriented applications, for example, re-indexing
due to a change in the data distribution, or a new data field to be in-
dexed, or the need to preserve key-ordering relations implies that uni-
form hashing cannot be applied anymore as it destroys these properties.
In consequence the distribution of keys will be unknown, most likely
be skewed, and a more powerful, explicit partitioning scheme ensuring
load-balancing will be required. Additionally, the indexing/partitioning
strategy should support a high degree of parallelism to minimize latency.

Adaptive Eager Partitioning [2] (AEP) is an efficient, completely de-
centralized, parallel, partitioning algorithm which meets these require-
ments. It uses an analytically proven strategy, verified by simulation and
through an implementation in the P-Grid overlay network [1] (http://
www.p-grid.org/), to estimate the key distribution based on local knowl-
edge and ensures storage and replication load balancing, i.e., each data
partition contains approximately the same number of keys and approxi-
mately the same number of peers (nodes) are responsible for each parti-
tion. We have used the implementation in P-Grid as a proof-of-concept,
but the essential elements of AEP are applicable to all overlay networks
using fixed key space partitioning schemes, for example, CAN [9] or
Pastry [10].

In this paper we present an alternative strategy based on belief propa-
gation to achieve the same goal, i.e., to partition a large set of nodes into

2

k partitions. By applying this recursively we ensure routing consistency
and meet AEP’s storage and replication load-balancing constraints. We
do not assume global knowledge of the network’s parameters, i.e., the
desired number of partitions and the partition distribution function are
not known in advance and change dynamically as the network evolves.
The motivation for this work was to have another generally applicable
strategy at hand and to test and compare it with AEP.

1.1 Local estimation of the data distribution
As the first step in the approach we need to estimate the distribution of
the data set to be indexed. As we assume a P2P environment, we cannot
assume global knowledge of all the the data. Thus we have to estimate
the distribution as good as possible based on local information. The fol-
lowing example illustrates this problem: Assume nodes index dictionary
words, and we have 26 partitions corresponding to the letters A–Z. We
would like to estimate what is the fraction of nodes needed to store words
starting with each letter. This is highly important especially for skewed
distributions where some partitions require more storage space relative
to the others.

Given a set of n � 1 nodes, where each node has small subset of neigh-
bors and its local stored keys. We assume that each key belongs to exactly
one partition and each node should have an estimation of the partitioning
distribution function. Formally, we would like each node to calculate a
vector of size k, where k is the number of different partitions, such that
p1 ��������� pk is the percentage of keys in partition i and ∑k

i � 1 pi � 1.

1.2 K-Partitioning Problem
Given a set P of n � 1 peers which hold keys from a keyspace K, we
would like to partition the set into 	 1 ��������� k
 sets such that the load mea-
sured in number of data keys related to the partitions 1 ��������� k is expressed
in a probability distribution p1 ��������� pk, which is termed partitioning func-
tion.

The partitions we would like to achieve should have the following
properties:

1. Proportional replication: Each peer has to decide for one partition
such that (in expectation) a fraction pi of the peers decides for
partition i.

2. Referential integrity:

3

1. The graph has to be connected, i.e., each peer has sufficient
links to reach any other partition (in-)directly.

2. Each peer strives to maximize the number of neighbors from
different partitions under its degree constraint.

Note that without the proportional replication requirement, the peers
could decide for a partition based on the partitions probability function,
and in expectation achieve the desired partitioning. However, this would
not ensure approximately uniform availability of all the data. The refer-
ential integrity function ensures routing consistency and can be exploited
to achieve better load balancing of partitions.

For being able to evaluate the quality of a solution for the above prob-
lems we need to define some metrics. As for the estimation problem we
might take the mean square error of an estimate relative to the correct
partitioning distribution function.

In the K-partitioning problem we have two metrics that might be con-
tradicting. First, we want to have an exact numeric partitioning of nodes
as close as possible to the partitioning distribution function. Here we can
take the mean square error as well. Another metric is the link satisfac-
tion ratio, where we would like to minimize the number of neighboring
nodes which are partitioned into a common partition. The first metric
arises from the need to allocate a proportional number of nodes based on
the storage needs. The second metric is important in terms of load balanc-
ing where we would like to prevent unbalanced placement of a partition
in a small neighborhood of nodes. This is bad in terms of resiliency to
failures, and network load.

2 Proposed algorithms
For solving the two problems of distributed partitioning function estima-
tion and the extended partitioning problem we will use the max-product
belief propagation algorithm which we will briefly outline in this section.
Then we present the technical details needed for constructing both algo-
rithms. First, we run the distributed estimation algorithm to equip nodes
with local knowledge of the partitioning distribution function and then
we run the K-partitioning algorithm using the result of the estimation
algorithm as its input.

4

2.1 Graphical models for data indexing
An undirected graphical model G consists of a set of vertices V and a set
of edges E connecting them. Each vertex vi is associated with a random
variable xi. We assume that the joint probability distribution factors into
a product of terms involving node pairs and single nodes. These factors
are called edge potentials ψi j 	 xi � x j
 and local (or self) potentials ψii 	 xi
 .

The max-product belief propagation algorithm [7] is a distributed
inference algorithm that enables us to calculate the marginal probabil-
ities of the nodes, otherwise known as the “beliefs.” It is a distributed
message-passing algorithm and is therefore suitable for communication
networks [4, 5, 8]. The Belief Propagation(BP) algorithm gives exact
results on trees. We have no guarantee for the algorithm performance
on graphs with cycles. As P-Grid is a tree and has no cycles this poses
no problems. The input to the BP algorithm is a graphical model with
self potentials ψii 	 xi
 and edge potentials ψi j 	 xi � x j
 . The output of the
algorithm is the vector of node beliefs (posteriori probabilities). The al-
gorithm is an iterative distributed message passing algorithm where mes-
sages sent between nodes are determined by the following update rule:

mi j 	 x j
�� t 1 � � αmax
xi

ψi j 	 xi � x j
 ψii 	 xi
 ∏
xk � N � xi ��� x j

m � t �ki 	 xi
 (1)

where mi j 	 x j
 is a message sent from node xi to node x j, α is a nor-
malization factor and N 	 xi
 is the set of neighbors of node xi. We initial-
ize the messages at the first round uniformly. Finally each node calculates
the belief:

bel 	 xi
 � αψii 	 xi
 ∏
x j � N � xi � m ji 	 xi
 (2)

The algorithm converges when the node receives identical messages
from all neighbors for two consecutive rounds. In networks containing
cycles the algorithm might not converge. However, in practice, there are
several applications where the algorithm produces very good results even
for graphs with cycles, for example, in the case of Turbo codes.

It is known that if we use the max-product algorithm we can find an
optimal X � that maximizes the probability P 	 x
 , if the topology has no
cycles, and we can find a strong local maximum in case the graph has
cycles [11]. In other words, our algorithm solves the problem optimally
on trees and gives a good approximation of a graph containing cycles.

5

Based on equation 1, we calculate the self potentials ψii 	 xi
 and edge
potentials ψi j 	 xi � x j
 for a given cost function.

2.2 Algorithm for estimation of the partition distribu-
tion function

First we outline a simpler version of the algorithm for tree topologies. In
round 	 t � 1
 each node i sends a message mi � j 	 x j
 to each of its neighbors
j by the following rules:

m � t 1 �
i j 	 x j
 � ∑

k � N � xi ��� x j

m � t �ki 	 xi
 (3)

where the initialization of m � 0 � � x j �
i j is done by assigning the number

of keys node i holds in each partition. For example, if node i has 3 keys
which are related to partition 0, the message will contain the value 3 in
position 0 of the vector. Finally, we estimate the partitioning distribution
function:

bel 	 xi
 � ∑
k � N � xi � m � t �ki 	 xi
 (4)

Basically we have here an aggregation procedure along the tree, where
each node aggregates the partition estimation from all of its neighbors on
the subtree rooted in the node, and forwards it upstream in the tree. After
diam rounds, where diam is the tree diameter, the algorithm converges
and gives an exact result.

Since overlay network topologies may contain cycles, we can apply
the consensus propagation algorithm [6] recently proposed by Moallemi
and van Roy to avoid over-counting of the partitions because of cycles.
Thus our approach can be generalized to any overlay network topology.
Due to space constraints we omit a description of this algorithm and refer
reader to [6].

2.3 The K-partitioning algorithm
As already mentioned, we use the max-product BP algorithm for solving
the K-partitioning problem. In order to use the BP algorithm, we need to
initialize the local potentials and edge potentials of the nodes.

For the self potentials, each node draws locally a random partition i
out of the partitioning distribution function 	 p1 � p2 ��������� pk
 and initializes
the local potentials vector to have 1 in cell i and ε elsewhere.

6

For the edge potentials, we use the following matrix:1

�
ei � j � E ψi j 	 xi � x j
 �

�����
�

ε k � k � ����� k �
k � ε k � ����� k �
k � k � ε ����� k ������������������������������
k � k � k � ����� ε

������
 (5)

Each matrix ψi j 	 xi � x j
 corresponds to the edge ei j. The K rows indi-
cate the probabilities to choose a partition for node i and the K columns
indicate the probabilities to choose partitions of node j. Thus the matrix
ψi j 	 xi � x j
 is the Cartesian product of both nodes possible partitions. We
build the edge potentials by the pairwise constraint, that two neighboring
nodes should not have the same partition. For that, we assign a negligi-
ble probability (ε) to the main diagonal. The other states have a uniform
probability.

A related work of a load-balanced graph coloring using the BP algo-
rithm is done by Saad et. al [3]. The major differences are in the con-
struction used. In a nutshell, Saad uses centralized computation on a fac-
tor graph while we use distributed computation over the communication
network. Saad’s coloring is balanced while we have desired fraction of
nodes from each color. Finally, we use the local potentials to reflect the
partitioning function while previous works on this area initialize the local
potentials to have a uniform probability.

2.4 The full algorithm
Input: A set of nodes where each node has knowledge of a small subset
of other nodes. Each node knows only his locally stored keys as well as
the partition to which they belong.
Output: A partitioning of the nodes into K partitions where the number
of nodes in each partition is based on the partitioning distribution func-
tion. Each node has an estimation of the partitioning distribution func-
tion.

Each node follows the following steps:
1. Estimate the partition distribution function using the consensus

propagation algorithm.
1. Input: Each node has knowledge of a subset of other nodes,

and the keys it currently stores.
1Each row is normalized to get a sum of one. k !#" 1 $&% k ' 1 (

7

2. Initialize m � 0 �i j 	 x j
 to the key count from each partition.
3. Run t rounds of the aggregation algorithm (equation 3) .
4. Estimate the partition distribution function (equation 4).
5. Output: local estimation of the partitioning distribution func-

tion.
2. Run the K-partitioning algorithm.

1. Input: estimation of the partitioning distribution function.
2. Initialize m � 0 �i j 	 x j
 by randomly drawing a partition from the

partitioning distribution function.
3. Run the max product belief propagation for t rounds (equa-

tions 1 and 5).
4. Calculate the belief (equation 2).
5. Select the maximal entry in the belief vector (the decided

partition number).
Properties of the algorithm. Regarding running time, when running

on tree topologies, the algorithm converges and gives an exact result in
time diam where diam is the tree diameter. On topologies containing
cycles the algorithm does not always converge, thus we have to stop it
after t rounds. As a heuristic we take t � log 	 n
 where n is the number
of overlay nodes. Weiss in [11] shows that on a graph with cycles we get
a strong local maximum in case the algorithm converges, in other words
a good approximation to the optimal.

When the algorithm does not converge, we get an approximation to
the optimal solution. In this case we are only able to show using simula-
tions that the algorithm gives a good approximation to the optimal.

As for the number of messages, in each round each node sends mes-
sages to all of its neighbors. Thus we have a total of tdn messages where
d is the average node degree. All messages are of size k where k is the
number of partitions.

3 Experimental results
For testing our algorithm, we used two typical topologies: a random
graph and a GT-ITM transit stub topology. Both topologies have cycles.
In the following we show the results on the random graph only, since
both topologies rendered similar results.

Figures 1(a)–1(d) show results of algorithm runs for several partition-
ing functions. We would like to point out that our algorithm supports any
desired partitioning distribution function.

8

For the partitioning estimation function, we assumed an underlying
tree topology, and thus received an exact estimation of the partitioning
distribution function. This assumption can be justified since we used the
P-Grid system as a natural application that might use the partitioning
algorithms described in this paper. In the P-Grid system we have an un-
derlying tree structure that can be used for the estimation procedure. An
area of future research might be to examine the algorithm’s correctness
for various other topologies. For the rest of this section we analyze the
K-partitioning algorithm results.

The BP algorithm generally did not converge, thus we chose to limit
the number of algorithm rounds to d (the node degree). Limiting the
number of rounds is a heuristic which is discussed in the previous section.
In each round, we send d messages from each node to its neighbors. Thus
in total we have nd2 messages. Assuming that d � k � log 	 n
 , we have a
total number of n log 	 n
 2 messages.

In the experiments we used networks of up to 500 nodes, in which
each node had 10-12 random neighbors (approximately log 	 n
). Each
node had to choose from among 10-12 partitions. Under all policies, each
node tries to have as many neighbors in as many partitions as possible.
To measure the number of neighbors which break the referential integrity
condition we define the unsatisfied link ratio which is the ratio of graph
edges connecting two nodes which have the same partition to the total
number of edges.

We have also used several partitioning distribution functions in the
experiments: Balanced partitioning means that all partitions should have
the same number of nodes; exponentially skewed partitions use an ex-
ponential distribution; and linear partitioning means that the size of each
partition grows linearly relative to the previous partition.

4 Conclusions and future work
In this paper we proposed an algorithm for solving the extended parti-
tioning problem in overlay networks. As shown by simulation our al-
gorithm performs well and scales to large networks. An area for future
work might be to optimize the transfer of node keys to the nearest match-
ing partition.

9

References
[1] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva,

and R. Schmidt. P-Grid: a self-organizing structured P2P system. SIGMOD Record,
32(3), 2003.

[2] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. Indexing Data-oriented Overlay
Networks. In VLDB, 2005.

[3] S. Bounkong, J. van Mourik, and D. Saad. Coloring Random Graphs and Maximizing
Local Diversity. In cond-mat/0507579, 2005.

[4] C. Crick and A. Pfeffer. Loopy belief propagation as a basis for communication
networks. In In Proceedings of the 19th Conference on Uncertainty in AI, 2003.

[5] Ihler, Fisher, Moses, and Willsky. Nonparametric belief propagation for self-
calibration in sensor networks. In Information Processing in Sensor Networks, 2004.

[6] C. C. Moallemi and B. V. Roy. Consensus propoagation. In NIPS 2005, 2005.
[7] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate

inference: An empirical study. In Proc. of Uncertainty in AI, 1999.
[8] M. Paskin and C. Guestrin. Robust probabilistic inference in distributed systems. In

In the Twentieth Conference on Uncertainty in Art ficial Intelligence, Banff, Canada,
2004.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proceedings of the ACM SIGCOMM 2001 Technical Con-
ference, 2001.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), pages 329–350, 2001.

[11] Y. Weiss and W. T. Freeman. On the optimality of solutions of the max-product belief
propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory,
47(2), 2001.

10

0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

Partition number

Nu
m

be
r o

f n
od

es

Partitions for balanced distribution

(a) Balanced partitioning into 10 parti-
tions on a network of 500 nodes. Each
partition should have 50 nodes in the op-
timal solution. This figure results for an
average of 10 runs on 10 random graphs
is shown. The average smallest partition
had 48 nodes in the worst case and the
largest partition had 52 nodes. The error
bars show the variance of the partition
size distribution. The average unsatisfied
link ratio is less than 0.2%

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

Partition number

Nu
m

be
r o

f n
od

es

Partitions for exponentially diminishing distribution

(b) Skewed distribution partitioning into
10 partitions on a network of 500
nodes. This figure shows the results for
an average of 10 runs on 10 differ-
ent random graphs is shown. The in-
put partitioning distribution function is% 1 $ 2) 1 $ 4) 1 $ 8)+*+*+*,) 1 $ 1024 (.

0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Partition number

Nu
m

be
r o

f n
od

es

Partitions for linearly growing distribution

(c) Linearly increasing distribution of 10
partitions for a network of 500 nodes.
This figure shows the results of an aver-
age run on 10 random graphs.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

BP iteration number

%
 o

f U
ns

at
isf

ie
d

lin
ks

Unsatisfied links (Error ratio)

(d) The quality of a balanced partition-
ing where n=500, k=10, d=10. An unsat-
isfied link means that two nodes sharing
the same edge decided on the same par-
tition. Note that the BP algorithm fluctu-
ates toward the optimal solution.

11

