
Congress: CONnection-orientedGroup-address RESolution Service1T. Anker D. Breitgand D. Dolev Z. LevyEmail: fanker,davb,dolev,zoharg@cs.huji.ac.ilUrl: http://www.cs.huji.ac.il/f�anker,�davb,�dolev,�zohargInstitute of Computer ScienceThe Hebrew University of JerusalemJerusalem, IsraelTechnical Report CS96-23December, 1996

1This work was supported by the Ministry of Science of Israel, grant number 854-6195

AbstractThe use of a high bandwidth multicast is becoming widespread in today's network applications. Manyof these applications use multicast groups with dynamic membership such as multi-media conferencing,multi-media broadcasting and multi-media distributed data bases. ATM UNI 3.1 and 4.0 protocols o�er thepoint-to-multipoint connection type that enables multicast over native ATM. Point-to-multipoint connectionsmay be utilized for e�cient implementation of multicast groups. In both ATM UNI 3.1 and 4.0, however,explicit information about the end-points (members of a multicast group) participating in the multicastconnection is required at a connection set up time. Unfortunately, there is no standard mechanism thatfacilitates the maintenance of such group membership information.In this document we present for the �rst time a CONnection-oriented Group-address RESolution Ser-vice (congress). congress incorporates a protocol for e�cient maintenance and propagation of groupmembership information in connection-oriented networks, and thus acts as a complementary service to theATM multicast mechanism and makes it more usable. congress does not replace the ATM multicast service(i.e. does not actually open connections for data transmission), but only resolves group addresses, leavingfreedom to the application designer to use the resolved addresses as desired.Applications that use congress may name groups arbitrarily, using logical names (group addresses).This enables the application to refer to multicast groups as abstract services. The membership of a groupmaintained by congress may change dynamically and is also sensitive to current network connectivity.Groups may consist of a large number of members and may span world-wide. In order to make the servicee�cient and scalable, congress services are maintained using servers that are organized hierarchically.

1 IntroductionThe concepts of group communication and multicast are basic building blocks of an everincreasing number of communication-oriented applications. The fast networking technologyo�ered by the ATM technology allows for new and more demanding types of distributed andmulti-process applications to be implemented. Major examples are multi-media conferenc-ing, pay-TV and high availability replicated data bases with high bandwidth demands suchas image data bases. Extensive research is currently done in optimizing scalable reliablemulticast protocols to meet the demands of such applications [21, 12, 22]. Many of theseapplications make use of highly dynamic multicast groups. One example is a TV broad-casting service that serves groups of clients that may join or leave constantly. AlthoughATM network protocols ([4, 5]) enable the formation of multicast connections that may beused by such applications, there is no mechanism for managing membership information ofmulticast groups.In this document we present for the �rst time a CONnection-oriented Group-addressRESolution Service (congress) for e�cient maintenance and propagation of group mem-bership information. congress operates in an ATM environment and manages groups ofclients. A congress client is an application or a transport-layer entity running on an ATMbased host. For the rest of this paper we refer to such an application as an ATM end-point.An end-point application can use congress services in order to join groups, leave groupsor �nd out who are the members of a group by issuing a group name resolve requestor through reception of constant updates on group membership. Using this knowledge,end-points may form and maintain point-to-multipoint connections even when the set of re-ceivers in the connection is dynamic. Group addresses (names) are chosen arbitrarily by theapplications that form the groups. Thus, addresses are not bound to any �xed addressingscheme.Multicast groups may consist of a large number of members, which may be geograph-ically far apart. This causes membership to be highly dynamic. A protocol that managesthe membership information will be forced to propagate large amounts of membership dataacross long distances. In order to be scalable, congress is designed to minimize the networktra�c needed to maintain the dynamic group membership. The scalability and e�ciencyare achieved by using dedicated congress servers that are organized hierarchically acrossthe global network, and propagate necessary information about multicast groups which havemembers in their area.As an address management protocol, congress does not actually open connections,but only resolves multicast group addresses. Hence, it serves as a complementary serviceto the ATM multicast connection mechanisms. There is no guarantee, once a membershipof a multicast group is obtained, that a physical connection from the resolver through thenetwork to the recipients is possible. This depends on the network congestion level, theQuality of Service (QoS) requested for the connection and possibly the mechanism used toform the connection (point-to-multipoint, multiple point-to-point, etc.).
1

1.1 Incompleteness of Existing ProtocolsThe connection-oriented nature of ATM as opposed to earlier wide-spread networkingtechnologies, presents new di�culties in establishing and managing multicast connections.The currently established standards of ATM UNI 3.1 and 4.0 [4, 5] o�ers the point-to-multipoint connection type to enable multicast over native ATM. Another tool for multicast,a multipoint-to-multipoint distribution tree, is presented in [14] and used for propagatingsignalling information. There are also multicast protocols that make use of a multicast serverto manage multicast connections such as [3] (mainly within subnets) and [12] in which agroup communication server is used to collect control information to achieve reliability.In all of these techniques, an explicit list of the recipients' ATM end-point addressesis necessary for the establishment of the connection. This is true whether the connectionis formed directly by an end-point or by an intermediate server. The address list mightbe obtained in a relatively straightforward manner by applications that work with staticprede�ned multicast groups, using a common data base or known multicast servers. Thisbecomes harder to implement when the members of the group are unknown at the time ofconnection set-up and even more di�cult when dealing with multicast groups which changedynamically. No mechanism for managing dynamic multicast group addresses in ATM isavailable so far.When connected to a dynamically changing group of receivers, the end-point that formedthe connection may need to receive updates on the membership of the multicast group inorder to update the connections as needed. Updates on membership are necessary especiallywhen only root-initiated join is possible, as in the UNI 3.1 [4] signaling protocol. However,even when leaf-initiated join is possible, as is in the UNI 4.0 [5] standard, the joining partymust know the VC assigned to that speci�c connection, which is less abstract then a logicalgroup name. Moreover, in order to become connected to all members of the group, the newjoiner must know the VCs of the multicast trees of all group members.The services provided by congress are aimed to solve exactly these problems. When-ever a connection to the group members must be formed, a resolve request is issued tocongress by the root of the connection (which may be either a multicast server or anend-point). As a reply to this request congress returns a list of the members' addressesthat can be used for establishing a connection. Whenever a new member joins or leavesthe group, the root of the point-to-multipoint connection receives an update and can in-clude/discard the new member in the connection.It should be noted that UNI 4.0 does provide group addresses, which are used to supportthe ATM anycast service (see [6]). However, this service allows a user to request a point-to-point connection only to a single ATM end-point that is a member of the group. The useris not provided with a mechanism to resolve the ATM group address into a list of end-pointmembers. Moreover, the anycast service does not force the ATM signalling mechanism tosupport such a resolve operation.1.2 Motivation for CONGRESSIn this section we give examples of the application that will bene�t greatly from the use ofa low-level native ATM protocol like congress for maintaining dynamic multicast groupmembership. 2

Movies

Satellite dish

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Satellite

PayTV Server

Satellite dish

Satellite dish

PayTV Server

Sports
channelMovie

channel
PayTV Server

Movie
channel

PayTV Server

News
channel

PayTV Server

Educational

Movies

News

Sports

Movies

News

Movies

Education

Figure 1: An example of Pay TV Broadcast services in Europe mainland.Pay TV ApplicationConsider a world-wide television broadcasting service in which a group of servers receivesbroadcast signals from a geo-stationary satellite. The servers propagate it to the clientsat home through the ATM network with high QoS using point-to-multipoint connections.Many di�erent services can be provided at any time, e.g. several simultaneous programs.For the purpose of load-balancing, each service is supplied only by some of the servers.In addition, each client can receive the service only from those servers to which there isconnectivity through the network. And �nally, to save bandwidth, only clients that havetheir televisions open and tuned to a speci�c service should receive signals for that service.Figure 1 depicts a layout of the service. This scenario raises three issues:� the clients need to notify some server providing the service about its desire to receivethe service;� the servers need to maintain high bandwidth point-to-multipoint connections to dy-namically changing groups of clients;� the servers need a mechanism for load balancing.The �rst two problems may be resolved in framework of an ATM anycast service pro-vided by UNI 4.0 [6]. However, ATM anycast service provides its user with point-to-point3

connections only. In order to achieve e�ciency, native ATM multicast connections shouldbe used. Additional steps that are beyond the ATM anycast service should be taken inorder to add a client as a leaf in the server-rooted multicast tree. Another limitation isthe impossibility to provide a load-balancing algorithm among the servers. Usage of theATM anycast will override such an algorithm, and the network will choose a server basedon its own considerations. These limitations make the ATM anycast service inconvenientfor development of the Pay TV application.congress provides a dynamic multicast group abstraction that facilitates the solutionof the three problems stated above. In the above example, the broadcasting service could berepresented by a logical group name called \PayTV", for example, which a client can jointo receive the service without knowing which and where the active servers are. An activeserver would resolve the clients' addresses through the group name \PayTV" in order toestablish a point-to-multipoint connection to the clients.Video Chat ApplicationAs a second example, consider a video chat application, like CU-SeeMe [15], implementedover native ATM. The most natural mechanism for the data transfer in such applicationwould be multicast. The problem, however, is that the membership of a group of participantsis not known in advance. It is impossible to open a point-to-multipoint connection in ATM,if the ATM addresses of the participants are not known. Note also that this information isdynamic, because participants may join and leave the chat sessions arbitrarily (like in theIRC application or the Netscape Chat).Working with congress an end-point that wants to join an arbitrary video-chat groupcan request upon joining, the ATM addresses of the other end-points participating in thechat. Using the received address list, the new member can form connections to the othermembers with any desired QoS and start gossiping. At the same time, the other membersof the group will receive a noti�cation about the new member and add him to their ownconnections so he can hear their own gossip...IP multicast over ATMCurrent internetworking is based primarily on IP [17]. This protocol will continue to play anextremely important role in the future due to an immense amount of applications that weredesigned to use it. An e�cient implementation of IP over ATM is considered crucial for�nal success of ATM as a universal communication infrastructure. Extensions to IP [18, 16]provide a mechanism for multicast data transfer in IP networks. The implementation of IPmulticast over ATM WAN emulates the connectionless IP routing protocol over connection-oriented ATM network. The underlying ATM routing mechanisms are not utilized by IP.Thus, IP multicast routing is suboptimal in comparison with the native ATM routing.The implementation of IP multicast over ATM may be substantially improved usingprotocol like congress. This can be done using congress at the multicast routers thatconnect subnets or LANs to an ATM backbone. Upon the reception of an IP multicastpacket destined to a multicast group, the router can use congress in order to obtain the4

list of the ATM addresses of the multicast group members1. Then it can use native ATMmulticast mechanisms in order to e�ciently multicast this packet. Using congress, theincorporation of QoS support into IP multicast over ATM will be relatively straightforward,given that the non-ATM components of the internet support them.1.3 Sensitivity to Failures and Network PartitionsA noti�cation upon a member joining or leaving a group, may be useful at the applicationlevel. Membership maintenance is needed for purposes such as bookkeeping or ow-controladjustments. Such noti�cations are not always possible to implement at the applicationlevel. For example, if a member of the group fails or becomes disconnected due to a networkpartition, it can not inform the rest of the group about this event.Handling such cases requires the resolution protocol to be sensitive to the availabilityand connectivity of the group members. This means that from an end-point's point of view,a reply for an address resolution request for a group address should not include addresses ofcrashed or disconnected group members. Counting disconnected or crashed end-points asactive members of the group may have undesirable e�ects. For example, if a \PayTV" serverfails to connect to an active member, it must periodically retry to form the connection inorder to provide good services. If, on the other hand, the server \gives up" on disconnectedregistered clients, it is the clients who would need to constantly try to re-join the multicastgroup in order to receive the service. These scenarios may burden both the applicationand the network (with signaling requests). Maintaining multicast group membership thatis sensitive to network con�guration changes takes this load o� the applications and leavesit to the group address resolution protocol.A network partition can be caused by switch or link failures. Such a partition divides thenetwork into several components. In an environment where partitions and failures occur, amore elaborate de�nition for the multicast group is needed. A multicast group is a group ofend-points that have all registered into the group by joining it. An end-point that joined agroup becomes a registered member of the group. An end-point may cease being a memberof a group by either explicitly leaving it, or due to a crash. The membership (or view)of the group is an addresses list of the members of the group . The membership may beseen di�erently by each member at di�erent times due to dynamic changes and networkpartitions. For example, if a, b and c are members of a group G but b belongs to a di�erentnetwork component than the component to which a and c belong, then the membership ofG as seen by a and c will be fa, cg while b's view of G's membership will be fbg.A well known result presented in [20] proves the impossibility of reaching agreementin an asynchronous system. However, many distributed applications require agreement ongroup membership among group members in order to operate correctly. Practical systemscircumvent this problem by taking a presumably faulty entity out of a view [1, 19]. However,in a WAN environment, any kind of distributed agreement is prohibitively expensive in termsof latency. congress membership service does not guarantee agreement on membershipbetween group members. congress provides relaxed guarantees on membership that willbe described in Section 4.1The members can be either hosts that are ATM based, or routers that connect ATM network with othertypes of networks. 5

Applications

Native ATM Library Other API libraries

CONGRESS Library

Traditional transport &
network protocols

Other
services

Connection and Data
Distribution

Native ATM API
Existing

Transport API(S)

Native
ATM SAP

UNI Services

Figure 2: Position of congress library in the reference model model for native ATM2.2 CONGRESS Overviewcongress is an address resolution protocol for native ATM environment. It may be viewedas a sub-layer between the network layer and the transport layer services in the ISO OSIseven-layer model [17]. The location of the congress library in the ATM reference modelis depicted in Figure 2. A congress client, which may be either a transport-layer entityor a user application running on an ATM based host, can resolve logical group names intoa list of the ATM addresses of the group members.An end-point may become a group member by joining the group or cease its membershipby leaving the group. An end-point that is a member of the group may choose to receiveon-line updates about the group membership changes.congress services are supported by local and global membership servers. A LocalMembership Server (lms) resides in each host and serves as a front-end for the end-pointsusing congress on that host. Global Membership Servers (gms) are organized in a hier-archical structure throughout the network, and may be located on dedicated machines orswitches. gmss provide processing of aggregate information and e�cient dissemination ofcongress messages to the lmss.Since congress operates in an asynchronous environment, it can never supply accurateinformation about the group membership. Some membership information may be delayed inthe network and by the time an end-point receives a resolution reply for a group membership,the real membership of the group may have already changed. This is true for any protocolworking in an asynchronous environment [20]. congress guarantees that if the groupmembership stops changing at some point, then eventually any resolution request for the6

1.7.2.1 1.7.2.9
1.7.2.6

1.7.4.8
1.7.4.2

1.7.4.9
1.1.2.1

1.1.2.4

1.1.2.31.1.1.2

1.1.1.7

1.1.1.5

Domain 1.

Domain
1.1

Domain
1.7

Cluster
1.1.1 Cluster

1.1.2
Cluster
1.7.2

Cluster
1.7.4

Figure 3: Addresses scopinggroup name will result in the correct list of addresses for the members of this group. Thisis explained in detail in Section 4.5.3 EnvironmentWe assume the existence of a global hierarchical addressing scheme that enables to relatenodes (switches and ATM based hosts) to domains and sub-domains by their ATM addresspre�xes. The addressing scheme proposed by the PNNI signaling protocol [8] that dividesthe hosts and switches in the network into peer groups based on ATM address pre�xes is anexample of such a scheme. However, since we cannot be sure that this scheme will indeedbe used wholly or partially for internet addressing, and since congress does not depend oninternal features of PNNI to operate, we state here the abstract features congress wouldrequire from any addressing scheme.We assume that, similarly to the way that today's IP addressing scheme divides theInternet, the network is divided into a hierarchy of domains. At the lowest level, a domainconsists of a group of hosts and switches. A group of several neighboring domains comprisesa higher level domain and so on. The highest level domain could be seen as the whole net.In order to distinguish between the lowest-level domains (which are comprised of hosts andswitches) and the higher-level domains (whose members are lower-level domains), we shallrefer to the lowest-level (level 0) domains as clusters. Figure 3 presents an example of adomain hierarchy. We also assume the existence of a global signaling protocol such as thePNNI signaling protocol that enables connection set-up across the network.Reliable point-to-point communication is assumed between the congress servers. This2The full reference model for native ATM services (Native ATM SAP) is given in [7].7

can be achieved by using any reliable unicast protocol between the neighboring entities3.The network itself (links and switches) as well as the hosts are not assumed to befailure-free. Network partitions/re-merges, and host crashes/recoveries may occur, dividingthe network into several components. A network partition can be caused by switch or linkfailures. Hosts residing in the same network component are physically connected (throughlinks and switches) and may form connections as the signaling protocol allows. Hostsbelonging to di�erent components are physically disconnected and no data or signalinginformation can be exchanged between them. If a host on which a congress server isrunning crashes, the services given by that server are no longer supplied. Failed hosts orcongress servers may recover at any time.In order to make the protocol sensitive to such events, each congress server receivesreports from a fault detector module that monitors the network. The fault detector moduleprovides reliable noti�cations in case of host/process crashes and recoveries. All congresscommunication passes through this module. In any implementation of this module, we re-quire that that protocol messages received from an entity (host/process), will be consideredas an indication for this entity's liveliness. Thus, if an entity is considered faulty, and a mes-sage is received from this entity, the fault detector module delivers a noti�cation indicatingliveliness of the entity prior to the delivery of the entity's message.There are various ways in which fault detector modules can be implemented. Commonways are polling and heartbeats. In [25] a framework for implementing a fault detector inwide area networks is described. In any case, it should be noted that in an asynchronousenvironment where failure detection is based on message exchange or timeouts, if a machinemonitoring a peer machine for liveliness suspects a failure, it can never be sure whether ithas been partitioned from the peer (link failure), if the peer has failed or if the peer is justtoo slow. A slow machine may be suspected by the fault detector module as failed and onthe other hand, delayed messages in the network may cause the fault detector to report therecovery of a machine that is actually failed or disconnected. In either cases, we assume thatif the state of the host/process whose liveliness has been misinterpreted remains constant,the fault detector will eventually correct itself and send a report which reects the real stateof the host/process.4 CONGRESS Services and Guarantees4.1 Logical Group NamesIn order to allow easy dynamic group formation for speci�c purposes, groups are named bylogical names that are speci�ed by end-points. This is di�erent from other existing schemeswhere a �xed group address space is provided. A logical-name addressing scheme allowsmore exibility in giving meaningful names to groups and sets no limit on the number ofpossible groups.Groups supported by congress can be either permanent or spontaneous. Permanent3Limitations of TCP as a reliable protocol over WAN are now recognized and a number of smart protocolsimplementing reliability between neighboring communicating entities at low cost have appeared recently [23,13]. Reliability could also be implemented more e�ciently in congress itself to suit its requirements butsuch an implementation will not be described in this paper.8

groups have a well known registered logical name, and they exist even if they have nomembers. They can be formed only through administrative agreements. Such groups can beused to support well-known services (e.g newsgroups). In contrast, spontaneous groups areintended to be used for private or temporary purposes. An end-point forms a spontaneousgroup by being the �rst end-point to join it. The name of the group is speci�ed by thisend-point with a join request. Any end-point issuing a join request with this group nameafterwards, does not form a new group but joins the existing group. When a spontaneousgroup contains no more end-points, i.e. all end-points that have joined the group left it, itceases to exist. Both types of groups, permanent or spontaneous, can be dynamic in termsof membership, meaning that end-points can join or leave groups at any time.The distinction between permanent and spontaneous groups is made in order to protectgroups used for well-known services from accidental use of their names for private pur-poses. The use of a group for more than one service can harm application protocols thatassume that only relevant messages ow in the group. Malicious end-points could still joinpermanent groups and attack the protocol executed in them through redundant messages.Additional security measures must be taken against such possibilities, but this is out of thescope of this paper.In order to support permanent groups, databases for permanent group names must bemanaged and kept consistent at the di�erent congress servers. The way this is done willnot be described in this paper. A general approach for maintaining distributed databasescan be found in [26]. In the rest of this paper, all groups will be related to as spontaneousunless stated otherwise.4.2 Group ScopingThe distinction between permanent and spontaneous groups does not solve the problem ofpossible overlapping of spontaneous groups. End-points may desire to form unique spon-taneous groups for their own speci�c use. If two end-points accidentally specify the samegroup name, they may unintentionally �nd themselves in the same group. The probabilitythat such scenarios will occur grows as the network becomes larger and more end-points par-ticipate in the protocol. Although a name-locking mechanism could be implemented (e.g.,using a two-phase commit protocol [9]), this mechanism incurs a high overhead at connectionset-up time and should de�nitely not be forced on all end-points that use congress.In order to reduce the probability of such scenarios, an end-point that forms or joinsa group must specify a scope in which the group name will be advertised. The scope is anetwork domain de�ned in the network's domain hierarchy as speci�ed by the network'saddressing scheme 4. The pair (G, S) where G is a group name and S is a scope, is unique:congress refers to a group G formed in scope S1 as a totally di�erent group from anothergroup G formed in scope S2 if S1 6= S2, no matter what the relations between S1 and S2are (subsets of one another, intersecting or disjoint). Thus, if two end-points make a call toform group G in the same scope S, they will become members of the same group while ifone end-point forms G of scope S1 and another end-point forms group G of scope S2 theywill form two di�erent groups. An end-point must reside in the scope of any group that it4If the underlying network hierarchy is the PNNI hierarchy, then the congress scoping may match thePNNI peer group scoping mechanism 9

forms or joins.Similarly to the spontaneous groups, permanent groups are also declared in a certainscope. This allows well-known services to co-exist with other (permanent or spontaneous)groups bearing identical names, but declared with a di�erent scope. In the rest of this paperwe shall denote groups by their logical names only without specifying their scope unless itis relevant.In addition to name uniqueness, using scopes reduces network load and congress ser-vice latency. The group scoping mechanism restricts the congress tra�c (i.e. the groupmembership data propagated among the involved end-points) to the relevant parts of thenetwork. This prevents a local group from ooding the rest of the network. In the televi-sion broadcast example, a station that broadcasts only in Jerusalem could use a multicastgroup called \PayTV-Jerusalem" whose scope is Jerusalem only. The bandwidth reductionachieved by scoping can be signi�cant since data communication often follows locality pat-terns. Tra�c within a properly organized communication domain is more intensive than thetra�c that streams in and out of the domain. This implies that the number of local groups,whose members are located relatively close to one another might considerably exceed thenumber of global groups spread over wide distances.4.3 Membership Noti�cationsGroup membership may be dynamic, i.e. members may join or leave groups arbitrar-ily. In addition, group membership is a�ected by network partitions/remerges, and hostscrashes/reincarnations as explained in Section 3. A membermemb of a group G may deriveG's group membership locally using messages received from congress. We shall refer tothese as membership noti�cations.congress provides two types of membership noti�cations: absolute and incremental.An absolute membership noti�cation for a group G contains a complete list of the ATMaddresses of the end-points that are members of G. This type of noti�cation is provided bycongress in response to user's request (e.g., resolve request). An incremental member-ship noti�cation, or membership update for a group G reports of a change that occured inthe membership of G and holds only minimal information needed to depict the change. Thistype of noti�cation is received automatically from congress each time the membership ofG changes. A user may optionally request incremental noti�cations upon joining G. Note,that the �rst incremental noti�cation received by an end-point upon joining the group G,will be exactly the same as the absolute one.An incremental noti�cation holds a list of ATM addresses. The addresses in this listcan come in two forms:� Host/Domain address: An ATM address pre�x describing a domain in the domainhierarchy. All addresses of the hosts and switches in this domain share this commonpre�x. The domain can consist of a single host, in which case the address would be afull ATM address of a host;� End-point address: Consists of a host address and an identi�er of the end-point processon that host (e.g., port number, vci). 10

Incremental noti�cations are subdivided into special subtypes for reporting joining andleaving of the individual end-points, and domain failures. In order to keep the size of theincremental noti�cations minimal, the address list is kept short by specifying domain or hostaddresses instead of the individual end-points addresses wherever possible. The followingcases are possible:1. When end-points join a group due to either join request or a network merge, theupdate contains the list of the new end-points. Note, that when a group remerges(due to a network merge), end-points that came from di�erent components will receivecomplementary incremental noti�cations;2. When members leave a group (using the leave request) or crash, the update messagecontains end-point addresses of these members;3. If a congress server crashes or the network partitions so that certain domain 5becomes disconnected from the rest of the congress servers, we say that there is apartition in terms of the congress services. This means that the congress serversin di�erent network components can not interact. The update message generatedfollowing such an event, holds a domain address of the disconnected domain.If the end-point that receives an incremental update belongs to the disconnected do-main itself, it should discard all the end-points that are located outside of this domain.Otherwise, it should discard all the end-points that belong to the failed domain. Thesetwo cases are treated by two di�erent types of the incremental noti�cations, calledfilter in and filter out respectively.In the �rst two cases above, the name of the group in which the change occured isspeci�ed on the membership noti�cation. In the third case, no group name is speci�ed. Tohold the necessary information, each membership noti�cation consists of three �elds:1. Noti�cation Type: This �eld can hold one of the following values:� absolute: The noti�cation is absolute, i.e. a reply to a resolve request;� ep join: The noti�cation reports of end-point(s) joining a group. In case ofdomain re-merging, end-point will receive a noti�cation of this type holding alist of all the members of the group in that domain;� ep leave: The noti�cation reports of end-point leaving a group or failing;� �lter in: The noti�cation reports of a domain partition. The receiving end-point belongs to the reported domain, and this domain is disconnected from therest of network in terms of congress services;� �lter out: The noti�cation reports of a domain partition. The receiving end-point does not belong to the reported domain, and all end-points in this domainare disconnected of the receiving end-point.2. Group: The group whose membership is reported, if the noti�cation type is absolute,ep join or ep leave;3. Address List: A list of one or more end-point addresses, or a domain address.5A domain may consist of a single host on which end-points are running.11

4.4 User InterfaceA client of the congress services may be a transport layer that supports multicast or a userapplication that needs to determine the membership of a group. This group may consist ofservers that provide a service, clients that receive a service, or a set of entities cooperatingin a distributed operation. The functions that are provided by congress are:1. resolve(G, [S]): Resolution of a logical group name G of scope S, if S is speci�ed,into a set of the ATM communication end-points. The caller receives a resolve-replythat is an absolute membership noti�cation for G as described above. If S is notspeci�ed, the reply resolves the addresses of all groups named G in all scopes thatcontain the caller;2. join(G, S, Online flag, Group type):Become a registered member of the group G in scope S. The calling end-point mustreside in the scope speci�ed by S. An end-point may join more than one group.Online flag can be either set online, or reset online. Setting/resetting this agenables/disables the reception of incremental membership noti�cations (membership-updates) in the joined group. In addition, if this ag is set to set online, then itis guaranteed that the end-point will automatically receive one absolute membershipnoti�cation. Note that incremental membership noti�cation might be received beforereception of this absolute membership noti�cation.Group type can be either permanent, or spontaneous. If Group type is set tospontaneous, then the �rst process that joins the group forms it. If Group type isset to permanent, but group G of scope S is not registered as a permanent group,then the join call will fail and return an appropriate error to the user. If Group typeis set to spontaneous, and group G of scope S is already known to congress as apermanent group, then the join call will fail with an appropriate diagnostics;3. set flag(G, S, Online flag): Enable/disable the reception of incremental mem-bership noti�cations (membership-updates) in the group G of scope S while being aregistered member of G. The values of the Online flag are the same as in join above;4. leave(G, S): Terminate a membership in group G of scope S. If G is a spontaneousgroup it will cease to exist when the last member leaves it. If G is a permanent groupit will continue to be known to congress even if it has no registered members left asa result of the leave call.It is up to the end-points that have their set online ag set to maintain the exact groupmembership derived from membership-updates. An end-point can maintain the group mem-bership by obtaining an absolute membership noti�cation for the group and then updatethis membership view according to the incremental noti�cations that it receives. Each end-point can be associated with a single host or a single domain according to its address. So,if for example, an update about a domain failure is received, the end-point can delete allgroup members that belong to that domain from its membership view of the group.12

Membership in a group (achieved by the join function call) does not necessarily implythe existence of an active ATM connection to the other members of the group. An end-pointwhich is a member of a group may or may not open any kind of connection to other membersof the group. It may open UNI 3.1/4.0 point-to-multipoint connections or separate point-to-point connections to other members of the group. This enables adaptability to any futuremulticast connection standards de�ned. In addition, no restriction of QoS of connections isimplied by congress.4.5 CONGRESS GuaranteesMembership noti�cations can be retrieved either by absolute noti�cations (which sometimeswill be referred as resolve-replies) or by incremental noti�cations as described in the previoussection. In this section we describe the guarantees congress supplies on membershipnoti�cations.Membership updates and replies to resolve requests should be received in an order thatreects the order in which the membership events (or membership changes) occur, in orderto enable an end-point to construct an up-to-date view of the group membership basedeither on membership updates or resolve replies. The ordering of membership events isde�ned only on events which involve a particular host, domain or end-point. We guaranteethis behavior through per-source chronological ordering of membership events.Since the network is asynchronous and protocol messages may be delayed, membershipinformation at di�erent congress servers at any given time may di�er. It is thereforedi�cult to make many strong guarantees about the correctness membership noti�cationsduring a time of instability. If, however, the membership stops changing, then eventuallyall the members will have the correct view of the membership as de�ned below.4.5.1 Per-Source Chronological Ordering of Membership EventsEvery membership event can be related to a speci�c source. A source can represent eitheran end-point or a host/domain. A membership event involving a source s in relation to agroup G can be either:1. A join request for group G issued by an end-point s.2. A leave request for group G issued by an end-point s.3. A failure of a host/domain s.4. A recovery of a host/domain s.A member end-point ep of a group G may not receive all the membership noti�cationsconcerning G. If the network is partitioned, ep can acquire noti�cations only about mem-bership change events in G that occur in the network component to which it belongs. Inaddition, if ep does not have the set online flag set, it will receive membership noti�ca-tions only through the resolve operation. The guarantee made here relates only to thosemembership noti�cations that are actually received by ep.Per-source chronological ordering of membership events guarantees that any two mem-bership events involving the same source will be reported to any end-point in the same13

order they were occured. Thus, membership noti�cations on any event are guaranteed tobe delivered to other group members in this order. In addition, an end-point that issuesseveral resolve requests, will receive the resolve-replies in an order that reects the partialorder6 of membership change events. In particular:� Join/Leave events with respect to a group G initiated by an end-point, will be re-ected to all the receiving end-points in the same order that they were issued (withep join/ep leave incremental noti�cations). For example, if an end-point m1 joins agroup G and later leaves it, any other memberm2 receiving both noti�cations on theseevents will receive them in the order they were generated. If this was not the case,m2 would have seen m1 as a member of G until it issued another resolve request.� Failure/recovery events of an end-point or a host/domain as detected by the faultdetector module will be reected to all the receiving end-point in the same order ofdetection (with ep leave/�lter in/�lter out messages).� Two consecutive resolve to a group address G will be answered with two resolve repliesr1 and r2 respectively, such that r2 is delivered to the requesting end-point after r1.If r1 6= r2, then some membership changes occurred between the serving of these tworesolve requests by congress. In such case r2 is considered more updated.4.5.2 Correctness of MembershipHere we present a de�nition of the concept of correct membership. However, a formal proofof the correctness of the membership supplied by congress is out of the scope of thisarticle.As mentioned above, it is di�cult to de�ne correctness of membership in a dynamicasynchronous environment because of network propagation delay. Although messages maybe delayed for an unbounded time interval in the network, we assume that this delay isalways �nite. Any message sent will be eventually received by its destination unless thedestination fails (this relies on the assumption of link reliability stated in Section 3).Due to the propagation delay, an end-point may receive a membership noti�cation msgthat reects obsolete information. If other membership noti�cations were originated aftermsg's origination, msg would hold out of date or non accurate information. The newer, moreupdated information would be received only later, in consequent membership noti�cations.In particular, at a certain point in time, di�erent members of the same group G in thesame network component could have di�erent membership views of G because they havenot received the latest membership noti�cation (although all noti�cations would be receivedeventually by all members in the component).A correct membership could only be de�ned in a state of stability. Stability associatedwith a time T is de�ned to be the state of the network starting at T (called stabilitytime) after which no new incremental membership noti�cations are originated and all thepreviously sent noti�cations have been propagated throughout the network. The stability6Membership change events can be ordered in a partial order according to chronological order in whichthey occured with respect to a particular source. 14

associated with T is violated when a new membership noti�cation is originated after timeT . At a stability state associated with a stability time T , a di�erent view is correct forend-points in di�erent network components. A correct view of the membership of a groupG in a network component C as seen by a member memb consists of all the end-pointsthat belong to C that have issued a join(G,...) request before T and have not issued aconsequent leave(G,...) request before T . Naturally, if all members of the group G incomponent C hold the correct view of G after T , they all hold the same view of G as well.In order to ensure that congress supplies non-trivial membership noti�cations, weguarantee that the membership computed by an end-point using the membership noti�-cations will be correct once the network reaches a state of stability. Any resolve(G,...)request issued by a member memb of G in C will receive a resolve-reply that holds thecorrect membership of G in component C.5 CONGRESS ArchitectureAs mentioned earlier, congress servers are placed in the network in a hierarchical structure.This structure serves two purposes:� Support scoping of groups.� Make the protocol scalable up to serving a world-wide network.In order to support scoping, the hierarchy that is used must be meaningful to the user.A natural choice would be to use the addressing hierarchy that would be used in futureATM internet. congress servers are placed in the network according to the hierarchydescribed in Section 3. A Local Membership Server (lms) is placed in each host, and servesas an interface to the congress's services for end-points running on its host. The lmsreceives end-point requests for registration to groups, leaving groups and resolving groupaddresses. The lms processes them by interacting with the gms and provides the end-pointwith replies. The gmss are placed in a hierarchy based on the addressing hierarchy. A singlegms is placed in each cluster to exchange protocol messages with all the lmss residing in thecluster. At level i in the domain hierarchy, each domain consists of level (i�1) sub-domains(which are clusters for i = 2). Each level (i� 1) sub-domain is represented by a gms. Oneof these gmss is chosen to represent the level i domain. This gms is called the gms leader(gmsl) of this domain7. The gmsl of a domain is responsible to communicate and processany protocol tra�c owing in and out of the domain. A single host may execute gmss ofseveral consecutive levels. This means that if a gms who is the gmsl of a domain D oflevel i runs on a speci�c host, then the gmsl of the level i + 1 (that contains D) may beexecuted on the same host8.We refer to the gmsls of level i� 1 that belong to the same level i domain as a siblingsset. The level i gmsl selected from this set is termed parent of the other gmsls. The level7This is similar to the way peer group leaders are chosen in PNNI.8There is more than one possibility for implementing multiple gmss on a single host. One way of doingthis is to use a single process that acts as multiple gmss - one for each (consecutive) level managed by thehost. Another simpler way, is to use multiple processes, each for a di�erent gms on a di�erent level.15

LMS
1.1.1.2

GMS
1.1.1.7

LMS
1.1.1.5

GMS
1.1.1.7

LMS
1.1.2.1

GMS
1.1.2.4

LMS
1.1.2.3

GMS
1.7.2.9

LMS
1.7.2.1

GMS
1.7.2.9

LMS
1.7.2.6

GMS
1.7.2.9

LMS
1.7.4.8

GMS
1.7.4.2

LMS
1.7.4.9

Process
(end point)

using
CONGRESS

Process
(end point)

using
CONGRESSFigure 4: The CONGRESS Protocol Hierarchy Structurei� 1 gmsls are children of the level i gmsl. At the lowest level of the hierarchy lmss arereferred to as children of their corresponding gms. An end-point belongs to a domain of agms, if the lms running on its host is an descendant of that gms. The domain of an lmsincludes all the end-points running on its host. A sample congress' hierarchy is depictedin Figure 4. The addressing hierarchy in this �gure is the same as in Figure 3. Note thatgmsl of a domain D at level i is also a gmsl of all the domains that descend from D. Thisis expressed in the �gure by associating the same address with a gmsl in all the levels atwhich it serves as a gmsl.5.1 Local Membership Server (LMS)The lms serves as a host's service access point to congress. An end-point that is interestedin a congress service (issuing a join or leave request for a group or resolving an address ofa group) submits its requests to the lms. All replies and noti�cations about con�gurationchanges (e.g. other host failures) are forwarded to the end-points by the lms.An lms runs at each host participating in congress. It maintains a membership tablethat contains a list of the local end-points for each multicast group about which it hasknowledge. The lms knows only about groups that have at least one member running atthe lms's host. Each lms is connected via a point-to-point reliable connection to its parentgms. Each gms has a point-to-multipoint reliable connection to all its children, the lmssof its cluster.5.1.1 LMS's Basic OperationThe lms reacts upon receiving a request from an end-point running on its machine, amessage from the gms running in its cluster, or feedback from it's fault detector module.16

When an end-point issues a join, leave, resolve or set flag request the lms noti�esthe gms of its cluster of the request. resolve request are recorded by the lms so that whena resolve-reply is received for them, the lms will know to which end-point to forward thereply. When a failure of an end-point is detected by the lms it noti�es the gms as if thisend-point has issued a leave request.The messages an lms receives from its gms can be either resolve requests originatingin a distant machine or reports in the form of the membership noti�cations described inSection 4.3. When receiving a resolve request for a group G from the gms, the lms replieswith a message holding the list of end-points belonging to G that it serves. When receivinga membership noti�cation, the lms informs interested local end-points. If the noti�cationreports a membership update resulting from the failure of one or more hosts or upper-leveldomains, each process receiving this update may loop through all the groups that it is amember of, and remove all the endpoints related to failed hosts or domains from the groupmembership. This way, all the calculations of group membership are done locally, at noadditional network tra�c.When a host running an lms recovers from failure, or a new host starts using congressservices, it naturally has no active end-points running, so the recovered lms does not informits parent gms about its recovery. The gms will detect the recovery through its faultdetector. However, when the host has merely been disconnected and now re-merges, thelms must inform its parent gms of all the end-points running on the host and a noti�cationis propagated to all the appropriate lmss.5.1.2 LMS's Data StructuresThe most important data structure of the lms is a table of the multicast group nameswhere each entry points to a list of the end-points belonging to the domain of the lms.As described above, the lms's domain contains only the end-points local to the host of thelms. Therefore, the lms's table can be kept reasonably small.A second data structure held by the lms is a queue of open resolve requests. This queueholds data on any resolve request sent by the lms that was not answered yet. It holds theid of the end-point that initiated the resolve request and the message id with which thelms stamped the resolve request. The message id is a combination of the lmss address anda sequence number. This id will be used by all the servers in order to distinguish betweendi�erent resolve request, and the replies to them.Each lms maintains also a variable MY GMS that holds the ATM address of the gmsof the cluster to which this lms belongs. At the initialization time the lms reads the valueof this variable from a con�gurational �le.5.1.3 A Note On ImplementationAlthough we stated earlier that each host receiving congress services will have an lmsrunning on it, exceptions can be made. For example a host that does not supply a multi-tasking environment can connect to another host (preferably one that is in the same cluster)that is executing an lms and receive congress services from it. This solution is also suitablefor a group of hosts that typically run few processes using congress at any time, and it iswasteful to overload each host with an lms. 17

Note however that if an lms will run on each host, it will be easy to exploit the congressarchitecture for the implementation of a fault detector within congress. The lmss coulduse OS services to verify the liveliness of end-points running on their machines in a de-terministic manner. This information could be propagated through congress servers toany remote end-point wishing to monitor the liveliness of end-points on that host. This issimilar to the layout described in [25].5.2 Global Membership Server (GMS)The gms is responsible for the processing of group address resolution requests, recognitionof con�guration changes and propagation of protocol messages. In order to prevent oodingof the network with protocol messages, the gms makes intelligent use of data structures inorder to forward messages in the network in relevant directions only.At the lowest level of the gms's hierarchy each gms maintains a list of the active lmss.When an lmss fails or recovers the gms will recognize the event through its fault detectormodule and inform through the gms hierarchy all the interested lmss about the new mem-bership. Note that congress treats a failure of an lms as if the lms's host failed. This isdone since the end-points on that host can no longer receive congress services.An important characteristic of the gms is that the data it maintains is stateless. Itdoes not hold any data about group membership but only propagates messages. Onlyinformation as to where to propagate messages is kept by the gms. The bene�t of such adesign is that it enables quick and simple recovery of failed gmss. A recovered gms wouldsimply forward data in all directions until it receives a clearer picture of group membership.This feature is described in further detail in the next section.5.2.1 GMS's Basic Operation. Similarly to the lms, the gms's actions are triggered either by messages received fromneighboring servers 9 (lmss or gmss) or by reports from its own fault detector about fail-ures/recoveries of neighboring servers. Messages received by the gms can be either reportson membership events or resolve and set flag requests originated by end-points.When a server or an end-point is disconnected or fails, re-merges or recovers, a set oflmss receives a membership noti�cation and propagates it to interested end-points on theirmachines. This set is de�ned as following. Let L(G) be the set of lmss that reside atthe hosts where the members of a group G run. Let L0(G) be the set of lmss that havemembers of G that request incremental membership noti�cations (have set online agset). Note that L0(G) is always a subset of L(G). We denote the set of di�erent groupsthat have members running under an address pre�x Addr as G(Addr). Addr can denote adomain, a host or a single end-point. If Addr is an address of an end-point, G(Addr) in theset of groups of which Addr is a member. Hence the set F of lmss that should receive theincremental membership noti�cation will beF = [g2G(Addr)L0(g)9The neighboring servers can be either children, siblings or the parent of the gms.18

In the opposite direction, all end-points running on a re-merged lms that have theirset online ag set should receive incremental membership noti�cations from all lmssbelonging to F . When an end-point issues a resolve request for a group G, the requestshould be forwarded to the lmss in L(G). When an end-point issues a join, or leaverequest for a group G, a noti�cation should be forwarded only to lmss in L0(G). When adomain fails, an incremental membership noti�cation containing the address of this domainshould be forwarded only to lmss in F .In order to forward the membership noti�cations on a group G to the relevant set of lmssonly, each gms maintains a knowledge of the directions in which lmss from L(G) and L0(G)can be found. This knowledge is kept for every group G that has members in the gms'sdomain subtree. This substantially reduces the network tra�c caused by congress. Eachgms can maintain this knowledge at reasonable memory requirements as will be explainedin the next subsection.Due to the network delay and the asynchronous model that is assumed, this knowledgecan be sometimes inaccurate. It is possible thus, that the set of lmss that receive thenoti�cations will be broader then necessary. congress guarantees however, that all theservers that belong to L(G) and L0(G), will eventually learn about the new membership.5.2.2 GMS's Data StructuresThe gms's data structures maintain information needed by the gms in order to know inwhich directions to forward di�erent protocol messages. For each multicast group G wede�ne the control sub-tree of G, T (G), that serves for communicating control informationrelating to G (e.g. group name resolution requests, con�guration changes etc.). T (G) isde�ned as T (G) = Graph(V (G); E(G)) where V (G) be the group of gmss and lmss thathave members of G in their domain and E(G) is the set of links connecting those servers inthe congress hierarchy tree.The gmss do not maintain the full structure of T (G). Each gms has knowledge only ofits local part of the graph. For each group G that has members in the gms's domain, thegms maintains a vector Neighbors(G). This vector has one entry for each neighbor of thegms, i.e. children, parent and siblings. Each entry can hold one of three values: a value ofnone means that no messages concerning the group G should be forwarded in the directionof the neighbor that this entry represents. A value of resolve means that only resolverequests concerning G are to be forwarded to that neighbor, since no end-points desiringincremental membership noti�cations reside in its domain. A value of all means that allmessages concerning group G should be forwarded to that neighbor. In case of insu�cientknowledge about the end-points in the domain of a neighbor its entry in the vector will beall as well. This is true, for example, at initialization time.The vectors of a gms form a Matrix, where each vector represents a row. The memoryrequirements for holding this matrix can be kept relatively small with the support of groupscoping. The number of columns equals the number of neighbors. This number is limitedby the degree of the congress hierarchy tree that corresponds the degree of the networkdomain hierarchy tree. The number of rows equals the number of groups that have membersin the domain of the server holding this matrix. Although world-wide groups must beadvertised at higher levels in the congress hierarchy, local groups, could be kept advertised19

only at lower-level domains by de�ning their scope to be as small as possible. It should bethe user's interest to minimize the scope of a group in order to minimize delay of protocolmessages concerning the group. Note that in case of a neighbor failure, the gms will setthe neighbor entry in all of the Neighbors(g) vectors to be none.The gms also maintains a bit vector Neighbors state which, like Neighbors(G) hasone entry per neighbor but which is not related to a speci�c group G. The correspondingentry will be marked connected if a neighboring server (i.e. parent, siblings or children)is operational from the gms's point of view10 and disconnected otherwise.A third data structure held by the gms is a queue of open resolve requests. This queueholds data on any resolve request received by the gms that was forwarded and was notanswered yet. The data consists of the id of the resolve request, the server from whom itwas received and a waiting-list of neighbors. The waiting-list is the list of neighbors to whichthe request was forwarded and that did not reply yet. The gms will use this informationupon receiving a reply to this request, in order to forward the reply in the proper direction.The gms also holds an array of the ATM addresses of all its neighbors. A function mapseach position in the vector Neighbors state to an ATM address of the server.6 Protocolcongress is an event driven protocol. congress servers receive messages that can comeeither from the network, initiated by other instances of the protocol, or from the faultdetector module.In this section we describe congress in greater detail. Subsection 6.1 gives an overviewof the messages involved in the protocol. Subsection 6.2 describes in detail the data struc-tures and variables used in the protocol. Subsection 6.3 describes the the lms protocoland in Subsection 6.4 we describe the gms protocol. Subsection 6.5 holds references to thevarious utility functions used in the protocol.6.1 Protocol MessagesIn this section we give the format of the messages that are used in all the parts of theprotocol. Section 6.1.1 gives the format of the messages that are used for communicationbetween the lms and its gms, and between the gmss themselves, while Section 6.1.2 givesthe format of the messages that is used for communication between an end-point and itslms.6.1.1 LMS/GMS messagesFigure 5 depicts the registration update message format. On the bottom of this �gurethere is a table, which further explains the use of each �eld in the message.10As reported by the fault detector. Note that a gms can consider a server faulty because of a brokenlink, although that server can remain active and communicate over other non-control links with the rest ofthe world.
20

Field Type Description

message_id
This Field is comprised of a sender ID and a local sequence
number.

join_and_resolve

This field holds a boolean value (TRUE/FALSE). If this field is
set to TRUE, then there are some special actions that the
receiving server must perform. The use of this field is further
explained in the "GMS Resolve Reply Handler" and the "GMS
End-Point(s) Join Message Handler" .

groups

This field contains a list of group structures (group name and
group scope) of the groups to which the message is related. In
the EP_JOIN/EP_LEAVE case, this list contains a single
group structure. In the HD_FAILURE sub-type case this list is
used for noting which groups had members in the failed server
domain (and thus to which directions to forward the message).

addresses_list

This is the list of end point(s) that had joined (in case of
EP_JOIN sub-type). In the current description of the protocol,
user initiated join/leave operations would cause this list to
contain only a single ATM end-point address.

failure_type
This field can hold one of the two values: FILTER_IN or
FILTER_OUT. For further explanations consult the description
of the LMS Registration Message Handler.

type
This field holds the message sub-type, which can be EP_JOIN
or EP_LEAVE for the end-points' join or leave operations, or
HD_FAILURE which stands for Host/Domain failures.

s_address
The server address of the Host/Domain that failed. This field is
used only in the HD_FAILURE case.

level
This is the level of the CONGRESS server that failed. This
fieId is used only in the HD_FAILURE case).

message_id groupsaddresses_listfailure_typelevels_addresstype join_and_resolve

Registration Update Message Format:

Figure 5: Registration Update Message Format.
21

'resolve_request' Message Format:

message_id group-structure

'update_online_state' Message Format:

message_id groupsaddresses_listfailure_typelevels_addresstype join_and_resolve

'resolve_reply' Message Format:

message_id addresses_listgroup-structure

Figure 6: Other Protocol Messages Format.Figure 6 depicts the format of the rest of the messages that the lms and the gmsutilize in the protocol. It details the resolve request, the resolve reply and the up-date online state message formats.6.1.2 End-Point requests/messagesFigure 7 depicts the format of the end-point requests, in terms of variables and �elds. Therequest formats are compliant to the user interface given in section 4.4. Each functionthat is provided for a congress user has its variables packed in a message format. In theprotocol, we refer to the variables in the user requests as �elds in messages.6.2 Protocol related Data StructuresIn this section we list the data structures that the protocol requires. All these data structuresare explained in greater detail in Sections 5.2.2 and 5.1.2.� my level : Used by the gms.This variable holds the level of the gms in the congress hierarchy;� Neighbors state : Used by the gms.This variable is a vector with an entry for each neighbor of this gms. The entries aremarked either connected or disconnected depending on the state of the neighborsas reported by the fault detector module;22

Join Request Format:

Leave Request:

group_name scope

Resolve Request:

group_name scope

Set_Flag Request:

group_name online_statescope

group_name scope group_typeonline_flag

Figure 7: End-Point Requests Format.� Groups : Used by the gms.This is a matrix in which the gms holds information about multicast groups. Therows represent multicast groups, and the columns represent neighboring congressservers. The entry (g; s) in Groups matrix may hold one of the following values:{ none: This value means that no messages concerning the group g should beforwarded in the direction of the neighbor that this entry represents;{ resolve: This value means that only resolve requests concerning g are tobe forwarded to the neighbor that this entry represents. This means that noend-points desiring incremental membership noti�cations reside in this neighbordomain;{ all: This value means that all messages concerning group g should be forwardedto the neighbor that this entry represents. In case of insu�cient knowledge aboutthe end-points in the domain of a neighbor its entry in the vector will be all aswell.Although the scoping mechanism is used, this matrix can grow to relatively large sizes.This fact, and the fact that groups sometimes cease to exist (like when the last memberissues a leave request), call for a garbage collection mechanism to be incorporatedinto the protocol implementation. For simplicity's sake, we do not present a garbagecollection mechanism in the protocol presented here;� Groups info table : Used by the lms.This is a vector of multicast groups names with an entry for each group that is23

presented at the lms's host. The entry relating to group g points to a list of end-points that are running on the lms's host and belong to g. The size of this vector issubject to dynamic changes caused by processes that join or leave di�erent groups orfail;� Open resolve requests queue : Used both by the gms and the lms.This is the queue in which each congress server holds the resolve requests that ithad forwarded to neighboring congress servers, and that were not answered yet byall of these servers11. The lms inserts the requests into this queue with a message idand a list of recipients (called waiting set) that wait for a reply to the request. Thegms uses a similar message id to identify open requests in the queue, but it holdsdi�erent information per open request:{ full waiting set: This is the set of congress servers to which the gms had for-warded the request. It is �lled when the gms invokes the enqueue resolve requestutility function.{ waiting set: This is the set of congress servers to which the gms had for-warded the request, and that did not replied with an answer yet 12. First, itis �lled when the gms invokes the enqueue resolve request utility function,and then, for each reply that is received, the server that sent it is removed fromthe waiting set;{ source: This is the server that has sent the resolve request to the gms, and towhom the gms would return the aggregated result that was collected from thewaiting set of servers;It is possible that more then one congress server requests a resolve for a groupg from the gms before the resolve operation for g was �nished. An optimizationcan be made in order to avoid sending multiple resolve requests for the samegroup. For each open request we would have to keep track of multiple sources.For each source we also save the request's message id to be returned along withthe reply. This optimization is possible only when the two requesting servers arefrom the same \side" of the gms - either both belong to the children of the gms,or both belong to parentS siblings of the gms. For simplicity's sake we do notimplement this optimization in the presented protocol;{ reply: This is the aggregated reply that is collected from all the congressservers. Once a reply is received from all the congress servers in the waiting set,the aggregated reply is sent to the request's source;{ resolve join: This is a ag, indicating whether the reply for this resolve requestshould be forwarded back as a join message or as a resolve replymessage. Themessage is forwarded back to a neighbor as a join message in case the gms ini-tiated the resolve request due to that neighbor's reincarnation.11If the server is an lms, then it `forwards' the request only to its local gms, and thus it has to wait onlyto its reply.12Note that this set is totally di�erent from the waiting set of the requests in the lms queue. Here,waiting set is the set of servers that should reply and not to receive a reply.24

� my gms : Used by the lms.This variable holds the ATM address of the gms of the cluster to which the lmsbelongs;� gms status : Used by the lms.This variable holds the status of the gms of the cluster to which the lms belongs.This variable can hold one of two values: off or on;6.3 LMS ProtocolIn this section we will describe in greater detail the main event loop of the lms (See Fig 8).There are three classes of events that the lms handles. The �rst is the reception of a messagefrom the gms. The second is the interaction between the lms and its local end-points. Thethird class of events contains two events: disconnection from the gms and reconnectionto the gms. These events are generated by the underlying fault detector module and arereported as messages to the lms.When an lms disconnects from its gms, the lms informs its local end-points that theyare cut o� from the congress services. In such a case any end-point running on thelms belongs to a network component consisting only of one host: the host on which thedisconnected lms runs. In addition, the lms changes its local variable reecting the stateof its gms to be \off"Upon reconnection to the gms, the lms changes the value of its local variable gms statusto be \on". In addition, for each group represented at the lms, the lms noti�es the restof the group members that belong to the new (larger) network component of the lms thatthe local members are again available13.The lms propagates registration updates, triggered by local end-points issuing requestsfor leave or join or failures. It is also responsible for delivery of registration updates comingfrom the gms. The lms also forwards replies for the resolve request to the local end-pointsthat expect it. As will be clari�ed in the following pseudo code, the lms delivers exactlyone reply for any request by an end-point for resolution of a group membership.6.3.1 The LMS End-Point Join Request HandlerThe code given in Figure 9 details the handler that is invoked when an lms receives a joinrequest r from a local end-point ep.Note that r is a join request, and that it contains several �elds (that are detailedin 6.1.2). We will use the requests �elds in the next subsections only when necessary. Adetailed description of these �elds was given in 6.1.2.The �rst thing that the lms does when receiving a join request with r:group = g anda r:scope = s is to check whether the invoking end-point belongs to s. If not, an error isdelivered to the end-point. Next, the lms checks for consistency between the actual grouptype of g and the group type that is speci�ed in the request. In case the group type givenis permanent and the actual type of g is spontaneous, or vice-versa, then a proper errormessage is delivered to the end-point.13This is equivalent to issuing a join request by the lms on behalf of the reconnected end-points.25

procedure lms-main-loop():Loop forever fswitch (event) f/* lms <-> end-point interaction: */case received resolve request r from local end-point ep:handle resolve request(ep; r:group name; r:scope);case received join request r from local end-point ep:lms join request handler(r; ep);case received set ag request r from local end-point ep:update end point online state(ep, r:group name, r:scope, online state);case received leave request r from local end-point ep:lms leave request handler(r; ep);/* lms <-> gms interaction: */case received a registration update m from the GMS:handle registration update msg(m);case received a resolve request message m from the GMS :lms resolve message handler(m);case received reply m on resolve request:lms resolve reply handler(m);/* fault suspector events: */case failure detection of local end-point ep:lms ep failure handler(ep);case failure suspicion of GMS:lms handle gms failure();case reconnection to GMS:lms reconnect gms();g /* switch (event) */g /* Loop forever */ Figure 8: The LMS Main Event Loop.
26

procedure lms join request handler(r, ep):if (:in address scope(ep; r:scope)) ferror(ep , not in scope);return;gif (r:group type == permanent) and (not is permanent(r:group name; r:scope))error(ep , no such permanent group);else if (r:group type == spontaneous) and is permanent(r:group name; r:scope)error(ep, group already exist);else fjoin msg = new(registration update);group = new(group struct);join msg:type = ep join;join msg:addresses list = fepg;group:group name = r:group name;group:scope = r:scope;join msg:groups = fgroupg;join msg:join and resolve = false;/* inform local end-points of the new member */handle registration update msg(join msg);update groups info(add, r:group name; r:scope; ep; r:online flag);if (gms status == on)send(fmy gmsg , join msg);update end point online state(ep, r:group name, r:scope, r:online flag);if (r:online flag == set online)handle resolve request(ep; r:group name; r:scope);g Figure 9: The LMS End-Point Join Request Handler.In case all the validity checks above were completed without an error, then the lmstakes the following steps:� A registration update message is formed. It contains a request subtype ep join,the ep identi�er and the group structure (containing the group name g and the scopes). The ag join and resolve which is used in the gms domain merging process is setto false;� The local end-points of g are informed about the joining end-point. This is done byusing the registration message handler, which can be found in Figure 14 and explainedin further detail in Subsection 6.3.6;� The information about the new end-point is recorded in the local data structures usingthe routine update groups info.� If the gms status is on then the join message is sent to it;� The online state of the new end-point is checked, and if the new end-point changes theonline state in the lms regarding g, then a proper update online state message is27

sent to the gms. All this is done by calling to the update end point online statehandler;� If the end-point online state is set online, then a resolve operation is started forg, in order to inform the newly joined end-point about the group membership of thegroup that it had just joined.6.3.2 The LMS End-Point Leave Request Handlerprocedure lms leave request handler(r, ep):if (member(ep; r:group name; r:scope)) fleave msg = new(registration update);group = new(group struct);leave msg:type= ep leave;leave msg:addresses list = fepg;group:group name = r:group name;group:scope = r:scope;leave msg:groups = fgroupg;update end point online state(ep, r:group name, r:scope, reset online);update groups info(delete, r:group name; r:scope; ep; ignore);/* Update open resolve requests queue due to the ep leave */for each request 2 Open resolve requests queue do fif (ep 2 request:waiting set) frequest:waiting set = request:waiting set n fepg;if (request:waiting set == fg)dequeue resolve request(request:id);ggdelivery(local end points of group(r:group name; r:scope; set online),ep leave, group, ep);if (gms status == on)send(fmy gmsg , leave msg);g Figure 10: The LMS End-Point Leave Request Handler.The code given in Figure 10 details the handler that is invoked when an lms receives aleave request r from a local end-point ep where r:group is denoted by g and r:scope isdenoted by s.The handler code is executed only if ep is a member of the group g with thescope s.Initially, the lms forms a registration update message. It contains the request sub-type ep leave, the ep identi�er and the group structure (containing the group name gand scope s). The lms handles the online state of the end-point ep as if it was set tobe reset online. This takes care of updating the gms about the new state in the lmsregarding g. Note that the online state of the lms does not necessarily change. The up-date end point online state handler takes care of all those details (See Section 6.3.7).Next, the lms updates its local data structure, which contains information about thelocal group membership. Then, the lms updates all the open resolve requests that are in28

its queue. For each open resolve request that contains ep in its waiting set �eld, the lmsremoves the ep from this �eld, and if no other end point is waiting for the resolve reply,then the resolve request is dequeued.The lms informs the local end-points of the group that the ep has left, and then if thegms state is on, it sends it the registration update message informing about the leaverequest.6.3.3 The LMS Outgoing Resolve Request Handlerprocedure handle resolve request(ep, g, s):if (gms status == on) f/* g is the group name, and s is its scope. */r = find open requests for group(g; s);/* Note that here r contains only a single request structure */if (r 6= null)r:waiting set = r:waiting setSfepg;else fgroup = new(group struct);group:group name = g;group:scope = s;m = new(resolve request);m:group = group;/* queue the resolve request in the open resolves queue */enqueue resolve request(m:message id; group; fepg;fmy gmsg;resolve);send(fmy gmsg , m);ggelse fgroup = new(group struct);local-end-points = local end points of group(g; s;null);group:group name = g;group:group scope = s;delivery(ep, absolute, group, local-end-points);g Figure 11: The LMS Outgoing Resolve Request Handler.Figure 11 details the handler that is invoked when an lms receives a resolve request froma local end-point ep for a group name g with the scope s.In case the gms status is off then the lms immediately delivers the initiating end-pointits local members of the requested group. Otherwise, the lms checks whether it has an openresolve request for the same group in the queue. If there is already a queued open resolverequest for g, then the lms just adds the id of the requesting end-point to the waiting set29

list of the queued resolve request. If there isn't a previous open resolve request for thisgroup, then it forms a resolve request message m containing the requested group and scope,enqueues it and sends it to the gms.6.3.4 The LMS Incoming Resolve Message Handlerprocedure lms resolve message handler(m):reply msg = new(resolve reply);reply msg:message id = m:message id;reply msg:group = m:group;reply msg:addresses list =local end points of group(m:group:group name;m:group:scope;null);send(fmy gmsg; reply msg);Figure 12: The LMS Incoming Resolve Message Handler.The code in Figure 12 details the handler that the lms invokes when a resolve requestmessage is received from the gms. The invoking lms retrieves the list of its local membersof the group contained in the message, and puts it into a resolve reply message. Themessage id of the incoming message is copied into the reply message, so that the gmss thathad forwarded the request can forward the reply back until it is received by the requestinitiator.6.3.5 The LMS Incoming Resolve Reply Message HandlerThe code in Figure 13 details the handler that the lms invokes when a resolve reply messageis received from the gms.First, the lms searches for the open resolve request matching the message id �eld inthe message m. In case no match is found in the open resolve request queue, the lmsdiscards the message. Note that a mismatch may occur in case the resolve request queuewas either cleared due to a failure suspicion of the gms 14, or if the request was dequeued.The request can be dequeued before the resolve operation is �nished, if the end-point thathas initiated it was the only end-point running on the sc lmss host that requested a resolvefor that group, and if it failed or had issued a leave request for that group.In case a match was found, the lms retrieves the list of end points that are waiting forthe resolve reply. Then it adds its local members of the resolved group, to the resolve reply.Finally it delivers the full reply to the waiting end-points, and dequeues the resolve requestwhich is no longer `open'.6.3.6 The LMS Registration Message HandlerThe code given in Figure 14 details the handler the lms invokes upon reception of a reg-istration update message. The action the lms takes depends on the message sub-type:14If the gms did not fail, it might reply later to that resolve request, and the resolve request would nolonger be in the queue 30

� ep join or ep leave: In this case, the registration update message contains a listof end-points that have either joined or left a group g (that is also speci�ed in themessage). The lms determines the list of local end-points, which are members of gand whose online flag is set online. The lms delivers to these local end-points thelist of end-points speci�ed in the message along with the message sub-type, so thateach end-point can locally calculate the new group membership of the group g;� hd failure: In this case, the registration update message contains an address ofa failed congress server, and its level in the congress hierarchy. The messagealso contains a list of groups which had members in the failed server's domain. Thelms calculates the domain pre�x of the failed server address from its level. For eachgroup g speci�ed in the message, the lms determines the list of local end-points thatshould receive a prompt message about the failure (i.e. are members of g and havethe set online ag set). To each end points in the accumulated list a message isdelivered denoting the failure of the host/domain, with the failure type, which canbe either filter in or filter out. These types of failures should be handled by thereceiving end-point in the following way:{ filter in: The end-point removes all the end-points outside of the given do-main from all their groups membership. The removal is done based on the domainpre�x that was derived from the message;{ filter out: The end-point removes all the end-points belonging to the faileddomain from all their groups. The removal is done based on the domain pre�xthat was derived from the message.6.3.7 The LMS Online State Update HandlerIn Figure 15 we give the procedure that handles the changes of the online state of an end-point ep. This change can happen due to either a user request such as join, leave orset flag, or an ep failure. The procedure receives an end-point address, a group nameand its scope, and an online state ag. It sets the online ag of the end-point to the valueof online state, and reports the change to the gms in case this change has a�ected the lmsonline updates ag for this group. This function is also called when an end-point fails orleaves a group.6.3.8 The LMS End-Point Failure HandlerThe code given in Figure 16 details the handler the lms invokes upon receiving a messagefrom the fault detector module, regarding a suspicion of a failure of a local end-point ep.First, the invoking lms forms a registration update message, with the sub-type ofep leave. The address list �eld of the message is �lled by the end-point address ep, andthe groups �eld of the message is �lled with the groups of which the failed end-point ep wasa member. In case the gms status is on, then the message is sent to it.Next, the invoking lms updates the open resolve queue; The failed end-point ep isremoved from the list of any open resolve request that has ep is in its waiting end-points31

list. If after this removal the waiting end-points list of a request becomes empty, then thewhole resolve request is removed from the queue.Finally, for each group g of which ep was a member, the invoking lms does the following:� The online state handler is invoked, as if ep initiated a set flag request for gwith the online flag set to reset online. This ensures that in case the end-pointfailure caused a change in the lms online state for group g, then the proper up-date online state message will be send to the gms;� The end-point ep is removed from the local data structures regarding g;� The local end-points the are members of the group g receive a message reporting thatthe end-point ep has left the group.6.3.9 The LMS Handler Of The GMS FailureThe code given in Figure 17 details the handler the lms invokes upon receiving a messagefrom the fault detector module, regarding a failure suspicion in the gms.First, the lms sets its local variable gms status to off. Then it forms a list containingthe id's of all its local end-points that have their online flag set to set online.Next, to this list of end-points the lms delivers a message of type filter in, thatcontains the lms's address. By this message the receiving end-points are noti�ed that onlythe end-points that belong to the domain of the received address (i.e. the lms address)should remain in any of their group memberships.Finally, the lms forms an empty resolve reply message. For each open request in itsopen-request queue it does the following:� It determines the set of local end-points that is waiting for the resolve reply;� It �lls the group from the open resolve request into the group �eld of the resolve replymessage;� It �lls the resolve reply �eld with the list of its local end-points, that are members ofthe resolved group;� It delivers the resolve reply message to the waiting end-points;� It dequeues the open resolve request.Note that by the end of the above process, the open resolve requests queue is emptyand will remain so, until the gms will be reconnected.6.3.10 The LMS Reconnection To The GMS HandlerThe code given in Figure 18 details the handler the lms invokes upon receiving a messagefrom the fault detector module, regarding a re-incarnation or re-connection of the gms.First, the invoking lms sets the gms status to on. Then for each group g that isregistered on the lms, it does the following: 32

� Determine the local members of g, and put them in memb list;� Form a registration update message, and �ll in all its details;� Send the registration update message with the sub-type ep join, and thus cause thelocal end-points re-join to the global group;� Form an update online state, and �ll in the lms online state regarding the groupg;� Send the online update message, and thus setting the lms's online state at the gmsdata structures.� If there are any local end-points that have their online flag set to set online (re-garding to group g), then form a resolve message for the group g, set the waitingend-point list to the list of those end-points, enqueue this resolve request in the queueand send this resolve message to the gms. This would take care of informing theinterested end-points of their new global group membership, after the reconnection tothe gms.6.4 GMS ProtocolIn this section we will describe in greater detail the main event loop of the gms. There aretwo kinds of events that a gms handles. The �rst is the reception of a message from oneof its neighbors. This message can be received from either an lms that is in its cluster, orfrom a neighbor gms. Note that a neighbor gms can be either the parent of the gms, oneof its children, or one of its sibling. The second kind of events is the reception of a reportfrom the fault detector module, which can be either the suspicion of a neighbor to be faulty,or the detection of reincarnation of a neighbor that was suspected to be faulty.One important implementation issue must be dealt here: As a consequence of thecongress hierarchy it is obvious that there can be more than one gms running on thesame host. This can be done in one of two ways: The �rst is by executing a single processthat performs the work of several gmss. This process must be capable to identify the level,and thus the gms to which each message/event relates, and handle it properly. The second,is to use multiple processes for multiple gmss running on the same host. Since the secondway simpli�es the protocol, we chose to write the protocol with respect to it. Hence, whenwe use the notion n in order to refer to some neighbor of the gms, it can be either anothergms running on the same host, or another gms running on another host. In order to distin-guish between the gmss, n would contain the host address on which the neighboring gmsruns, and an additional identi�er, such as the vci in ATM, etc.The gms process resolve requests and registration update messages. Note that if agms receives a resolve request from one of its neighbors, it sends only one reply for thisspeci�c resolve request. This is guaranteed by the way the gms handles this request. It�rst forwards the request to the subset of its neighbors from which it has to collect groupmembership information. Then, it collects all the replies for this resolve request from theseneighbors, and only when all of them have replied, it forwards the aggregated reply to therequest initiator. 33

When a gms detects a neighbor that has reconnected (by the fault detector module), itstarts a re-merge operation. First it determines all the groups that are registered in a scopegreater or equal to the level of the reconnected neighbor. Then it issues a resolve request toall of its children for each of these groups. It enqueues these resolves requests and mark themas resolve join requests. Then for each of these groups it sets the entry in the Groupsmatrix in the position of the reconnected neighbor to be all. Upon the complete receptionof the replies to these resolve requests, the gms forwards the list of end-point addresses as ifthose were join requests by those end points. The target neighbor will be the re-connectedneighbor. Note that in case that a gms was disconnected from the rest of the congresshierarchy, and now it has re-connected, the above process of re-merging would start for eachof the neighbors that are now connected again. This can be easily optimized, by forwardingthe resolve requests replies as join messages to all the new neighbors that were detected,and thus preventing redundant resolve operations. In order to simplify the presentation ofthe protocol this optimization is not presented in this paper.6.4.1 The GMS Fault Suspicion HandlerFigure 20 shows the gms's handler of a fault suspicion concerning a neighbor congressserver as reported by the fault detector module. The invocation of this handler is triggeredby an asynchronous event occuring at a speci�c level in the congress hierarchy. Thefunction accepts a single argument: n - a neighbor's unique identi�er (e.g. , ATM addressand a vci). The operation of the handler proceeds as follows: Initially, the invoking gmsidenti�es all the groups about which the presumably failed neighbor had information, andputs them in the a�ected groups variable. This is done using the local Groups matrix.Next, the gms marks the failed neighbor as disconnected. Afterwards the gms builds thetarget group T G that includes neighbors to which a registration update message aboutthe failed neighbor should be sent. Depending on the hierarchy relationship between theinvoking gms and the failed neighbor, the failure type �eld of the registration updatemessage may hold either:� filter in: this means that the invoking gms and all its siblings become disconnectedfrom the rest of the congress hierarchy. This happens when the gmsl of the invokinggms fails. The end-points residing in the domain of the failed gmsl should removeall the end-points outside of this domain from all the a�ected groups. The removalis done based on the domain pre�x that is easily obtained from the address of thefailed neighbor and its level. The T G of the registration update message of thetype filter in includes only the children that are currently connected and have someinformation on at least one of the a�ected groups;� filter out: this is used when the failed server is either a child or a sibling of theinvoking gms. In this case all the end-points in the failed server domain are discon-nected from the rest of the congress hierarchy. Hence, these end-points should beremoved from all the a�ected groups' memberships throughout the network compo-nent of the invoking gms. If the failed server was a sibling of the invoking gms thenthe T G of the registration update message of the type filter out includes thechildren of the invoking gms only. Otherwise, the message is sent to all the neighbors34

of the invoking server. In both cases messages are sent only to the servers that arecurrently connected and have some information on at least one of the a�ected groups.In case the failed server was the last one that should have replied on some of the openedresolve requests, then these requests become accomplished and are handled accordingly.6.4.2 The GMS Server Reincarnation HandlerFigure 21 presents the gms's handler of a neighbor congress server (i.e. another gmsor lms) reincarnation. This function accepts a single argument: n - a neighbor's uniqueidenti�er. The operation of the handler proceeds as following. First, the gms constructs aMerging Groups set MG. MG includes all the multicast groups from the gms's Groupsmatrix such that their scope embraces the recovered entity n. Next, for each group g fromMG, the gms builds the Target Group set T G that holds all the gms's children that arecurrently marked as holding information about the multicast group g. Following that, thegms forms a resolve request message m for group g and enqueues it as a resolve joinmessage in its local Open resolve requests queue. The enqueued message is of type re-solve join in order to ensure that once the reply for m is formulated, it will be forwardedto the recovered entity as a join message. Note that forwarding a join message to therecovered entity is crucial for the protocol's correctness. Indeed, in order for group's mem-bers to be merged, mutual join messages must be exchanged. A resolve reply alone ismeaningless in this case, because it is not expected at the recovered server.6.4.3 The GMS Resolve Request HandlerFigure 22 details the handler that is invoked when a gms receives a resolve requestmessage for a group address. The �rst step the invoking gms takes is to determine whetherit has some information about the requested group at all. If the requested group is notregistered in the gms's Groups matrix, then the invoking gms forwards the resolve requestto all the relevant neighbors. The set of relevant neighbors is determined in the followingmanner: If the resolve request was received by the invoking gms from its parent or oneof its siblings, then the relevant set to which the message should be forwarded consists ofits currently connected and operational children. Otherwise the set of relevant neighborscontains all currently connected and operational siblings. The parent may be added to thisset in case the scope of the requested group spans its level.Next, the invoking gms enqueues the resolve message in the open resolve requests queue(in order to be able to correlate it with the responses received for it later on) and thenforwards the message. If the requested group is already registered at the invoking gmsGroups matrix, then the whole process proceeds exactly as described above with the onlyexception, that the resolve message is not forwarded to any of the neighbors that are markedas none.6.4.4 The GMS Resolve Reply HandlerFigure 23 details the handler that is invoked when a gms receives a resolve reply messageon a previously issued resolve request for a speci�c group address. Basically, upon reception35

of the resolve reply, the invoking gms correlates it with one of the resolve requests fromits open resolve request queue, combines this reply with the previously received repliescorresponding to the same request, and, when the full information about the requestedgroup is obtained, sends it back to the request originator. There are two special cases,however, that demand special treatment.First, it is possible that the reply cannot be matched with any of the requests queuedin the open request queue. This may happen if the originator of the reply was recentlypresumed failed by the invoking gms, and, thus all opened resolve requests concerned withthe presumably failed server were answered and dequeued without waiting for a reply fromthe failed server. If no matching between the id of the reply message and the id of a queuedresolve requests is found, the invoking gms discards the reply message without furtherprocessing.The second case refers to treatment of resolve replies which correlate with a resolverequest of type resolve join. As described in Subsection 6.4.2, such a resolve request is notinitiated by any end-point, but is triggered by the detection of a neighbor's reincarnation.In contrast to a regular resolve request, there is no return address to which the reply on sucha resolve request should be sent. When a reply to this request is received, it is forwarded tothe recovered server as a join message, so that the recovered gms will be able to integratesmoothly (from the point of view of the recovered gms, it is the rest of the world that hadrecovered from a failure and now asks to join back).Note also, that there is an additional ag on any join message that is initiated by thegms when receiving a reply to a resolve join request. This ag is called join and resolveand is set to true if the reincarnated neighbor was a parent of the invoking gms, and falseotherwise. This ag is necessary in order to trigger the resolve and join requests at all thelevels in the congress hierarchy with respect to the scope of each merging group in orderthat the process of groups merging would not stop at a speci�c level. This is furtherexplained in the Subsection 6.4.7.6.4.5 The GMS Online State Message HandlerThe code given in Figure 24 details the handler that is invoked when a gms receives anupdate online state message m for a group g from a neighbor n.First thing the invoking gms does is to check whether the group g is in its Groupsmatrix. If not, nothing is done. Otherwise, the invoking gms determines the current onlinestate ags of its neighboring servers (children, siblings and parent) in its Groups matrix.Then, it update its Groups matrix, i.e. it puts the new online state value from the message,in the neighbor n entry for the group g row. Next it determines again the online state of itschildren and of its parent and siblings. If the online state of any of its neighboring serverswas changed due to this update, then the message m should be forwarded. Otherwise, theinvoking gms �nishes the handling of this message.If the message m is to be forwarded, it is forwarded to a set of neighbors T G that isdetermined in the following manner: if the online state of the children was changed (hencen has to be one of the children) then T G is the group of siblings and the parent, with theexclusion of all the disconnected servers, and the servers that do not need any informationabout the multicast group g. If the online state of either the parent or the siblings was36

changed (hence n was one of them), then T G is the group of children, after similar �ltering.Note that, if the level of the invoking gms is 0, then T G is a subset of lmss residing in thecluster of the invoking gms. In this case, no message is forwarded, since the lmss do notmaintain any information about theirs gms's online state.6.4.6 The GMS Query For A Neighbor's GroupsIn Figure 25 we give a simple function that the gms uses in order to retrieve all the groupsin which a neighbor n has interest, i.e. the groups which have members in the neighbor'sdomain. This information is obtained from the Groups matrix.6.4.7 The GMS End-Point(s) Join Message HandlerThe code given in Figure 26 details the handler that is invoked when a gms receives aregistration update message of the sub-type ep join for a group g from a neighbor n.Several subtle points that require special treatment are described here.congress guarantees to report membership events reecting the chronological orderingof their occurrence. Thus the order between the resolve replies and join messages must bepreserved. However, resolve replies progress in a much slower fashion across the congresshierarchy than ep join messages because resolve replies are delayed by gmss that need toaccumulate replies from other neighbors before forwarding them further.For example, suppose that a resolve reply is issued by an lms as a reaction to aresolve request for a group g initiated by an end-point ep. Suppose further that anep join message for the same group g is initiated by the same lms because a new end-pointep0 appeared in its domain, and that this message follows the resolve reply message. Ifthe resolve reply message will reach ep after15 the ep join message will reach it, then,since the resolve reply message does not include ep0 in its membership, ep will obtain an`old' membership of g. Furthermore, if ep has its online ag set to reset online or if nofurther changes occur in the g's group membership, it has no chance to learn about the newend-point unless another resolve request is initiated.This scenario implies that wasteful delay might be imposed on join messages becauseof preceding resolve messages. For this, we propose the following solution. When anep join message for an end-point ep is received by a gms, the queue of the opened resolverequests is checked. If there are opened resolve requests targeted to the same group g as thereceived ep join message, then ep is added to the reply list of end-points for this resolvemessage and the ep join may be immediately forwarded. Before forwarding the message,the gms updates its Groups matrix, according to the group to which the message relates.Then the message is forwarded to the target set T G that is determined similarly to theway described in the sections above. In this way, although we alter ordering of messages,membership events are still reported in the order that reects their chronological order.A second issue that should be mentioned is the handling of ep join messages that havetheir join and resolve ag set. Such messages are initiated during the domain mergingprocess by gmss through the server reincarnation handler (See Section 6.4.2). In suchcases, two things must be done:15Due to a delay in one of the gmss on its way back to the requesting ep.37

� Information about the end-points from the message's address list must be propagatedto all the relevant servers (i.e. those who have members of the group g in their domain);� the gms must determine the set of end-points that are members of group g and residein its domain, and then should send a join message containing them, back to n.Note that if the neighbor n from which the ep join message (with its join and resolve�eld set to true) was received is a child of the invoking gms, then the invoking gms is notsupposed to do any actions regarding its own domain. This is because these actions werealready performed at the lower levels in the congress hierarchy. Thus, in this case, theinvoking gms should only forward this join message, with its join and resolve �eld set totrue, to the target set T G which is calculated as described earlier.Note also that if n is a sibling of the invoking gms then the resolve and join �eld of themessage will become false before forwarding it to the proper target set (which will be thechildren of the invoking gms, or a subset of them). Thus, the receiving servers will handlethis message as a regular resolve requests message. This is done because the receivingservers do not need to repeat the same process for their domains.During the server reincarnation process, the parent of a congress server that invokesthe handle server reincarnation handler, is passive and does not initiate any protocolmessages caused by its child reincarnation. Thus the congress server invoking the handlerin Figure 26 will never receive ep join message with the resolve and join ag set to true.This is why there is no handling of such a case in Figure 26.6.4.8 The GMS End-Point Leave Message HandlerThe code given in Figure 27 details the handler that is invoked when a gms receives aregistration update message of the sub-type ep leave for a group g from a neighbor n.Most of the operations that the gms should do are the same as in the end-point(s) joinhandler (See Section 6.4.7). The gms determines the target set of neighbors to whom itwill forward the registration update message, and then it forwards it.There is one non-trivial point in this handler: In case there is an open resolve requestfor the group g in the open resolve requests queue, then the gms removes the end-point thatis in the address list �eld of the message from the resolve reply that is in the queue. Thisis done in order to prevent a resolve reply for a group from being received at its initiator,while containing an end-point that had issued a leave request after the resolve reply wassent from its lms. This situation is exactly the same as in 6.4.7, with the only exceptionthat in 6.4.7 the problem referred to ep join messages, and here we deal with ep leavemessages.6.4.9 The GMS Host/Domain Failure Message HandlerThe code given in Figure 28 details the handler that is invoked when a gms receives aregistration updatemessagem of the sub-type hd failure for a group g from a neighborn. First, the invoking gms checks whether the address of the failed host/domain in themessage m is of one of its neighbors. If so, and if this neighbor is already marked asdisconnected, then nothing is done. 38

Otherwise the invoking gms determines the target set of neighbors to which the mes-sage m will be forward. It does so in a similar way to the one described in the previoussubsections. In case the failed server in the message is a neighbor of the invoking gms, thenit adds the groups which had members in the domain of the failed neighbor, to the groupslisted in the message. This is done in order to ensure that all the servers that had membersof any of these groups in their domains (and have an online ag for any of these groups setto set online), would receive the message about its failure. Since the target neighbors setis determined using the groups of the failed server which are in the message, it is importantto keep the groups �eld in the message as updated as possible. Thus, if the invoking gmsis forwarding the message to its children, and the failed server is one of its siblings, then itadds all the groups in which the failed server had interest (from the invoking gms point ofview) to m. This will ensure that all the relevant children will be in the target set.6.5 Utility FunctionsIn this subsection we present a few basic functions that facilitate the protocol. The functionsare divided into three sets. The �rst set contains functions that are used only by the gms.The second set contains functions that are used only by the lms, and the third set containsfunctions that are used by both the gms and the lms.6.5.1 GMS Utility FunctionsIn the functions below, the argument l holds the level of the invoking congress server incongress hierarchy. The gms's at the clusters - at the lowest level belong to level 0, thegmsls of level 0 belong to level 1 and 0, etc.� siblings(l): This function receives a level l in the hierarchy, and returns a set ofaddresses of the gms' siblings in that level;� parent(l): This function returns the address of the parent of the invoking gms inlevel l;� children(l): This function returns a set of the gms's children addresses. If the callinggms is a gmsl of level l � 1, which means that it is a gms member at level l (thisgms can be also a gmsl for level l) children(l) would return its children set of levell � 1. If the gms is not the gmsl for level l � 1, this function returns an empty set;� neighbors set(l): This function returns a set of addresses which comprises all theneighbors of the gms in level l. The neighbors set is the union of the siblings, thechildren and the parent sets of the gms in level l;� neighbor state(neighbor): This functions receives a neighbor id and returns itsstate which can be either connected or disconnected depending on its value inthe Neighbors state vector;� set neighbor state(neighbor; state): This functions sets the proper entry for neighborin Neighbors state vector to be equal to state. The state variable can be either con-nected or disconnected; 39

� send(target set;msg): This function receives a set of addresses and a message. Itsends the message to all the addresses in this set. In case the target set is empty, itdoes nothing;� index by group(g): This function receives a group structure g (containing the groupname and its scope) and returns the line number - index of the group in the Groupsmatrix. This is actually the index in the Groups matrix of the vector that holds thegms information about the group g. If there is no group g in the Groups matrix thenthe return value is �1;� insert new group(g): This function receives a group structure g (containing thegroup name and its scope) and inserts a new row into the Groups matrix for thegroup g. Note that all the entries of this row are initialized to all, since the gmsdoes not have more accurate data at the moment of the insertion;� scope to level(scope): This function receives a scope in the congress hierarchy,and returns the matching level l for the scope. This means that the scope scope willnot include any congress servers that are at level l0 s.t l0 > l;� get online state(group; neighbor set): This function receives a group structure(containing group name and its scope) and a neighbor set. The function returns allin case one of the neighbor set congress servers has its online state set to all inthe Groups matrix, and resolve otherwise. In case the group is not represented inthe Groups matrix, a value of �1 is returned.6.5.2 LMS Utility Functions� is permanent(group name; scope): This function receives a group name and itsscope, and returns a boolean value: True, if the group (comprised of the pair< group name; scope >) is a permanent group, and False otherwise;� update groups info(op type; group name; scope; ep; online state): The operationtype op type can be either add, delete or set online. If op type is add thenthe lms will add the end-point ep to the Groups info table in the proper entry forgroup group name with all the additional information (online state, etc). If the groupis new to the Groups info table, then a new entry would be made in the table. Ifthe operation type is delete, then the proper deletion action would be taken. If theoperation type is set online, then this function will set the online state of the endpoint to be online state;� member(ep; group name; scope): This function checks whether a local end-point epis a member of the group group name with the scope scope. It does so by consultingthe Groups info table. The function returns True or False respectively;� local end points of group(group name; scope; online state): This function con-sults the Groups info table and retrieves all the end-points that resides on the lms'shost and that ful�ll the following properties: they are members of group group nameof the scope scope and their online ag is equal to online state. The onlinestate can40

be either set online, reset online or null. If the online state is null, then theonline ag of the end-points is not checked, and all the local members are collected,regardless of their online ag;� groups of local end point(ep): This function receives an end-point ep address,and returns a list containing all the groups (each is a structure comprised of nameand scope) of which this end point is a member of. This function uses only localinformation - the Groups info table;� groups of lms(): This function returns a list containing all the groups (names andscopes) that have members residing on the lms's host;� delivery(end-points, noti�cation type, [group], address(s) list): This function de-livers a noti�cation with a given type for all the end-points in the set end-points.Depending on the noti�cation type there might be a group to which the message re-lates (in the case of ep join for example). Delivery is done locally on the host of thelms via inter process communication;� error(end-points, m): This function delivers the error message m to all the end-points in the set end-points.6.5.3 General Functions� in address scope(ep; scope): This function checks whether an end-point identi�er(address) ep is in the scope scope. It actually checks if scope is a pre�x of the end-point address. If it is, then the end-point is in the scope, and the return value is True,otherwise it returns False. Note that in our implementation the scope is identi�edby an ATM address pre�x. Thus, the scope s consists of all the machines which havean ATM address with a pre�x s. In other network technologies, such as frame-relay,another mechanism may be used to achieve scoping, and thus this function will beimplemented and called with di�erent argument types;� make prefix(addr; l): This function receives an ATM address of a congress server,and a level l in the congress hierarchy. It calculate the proper address pre�x of addrcorresponding to the level l. Note that as l increases, the pre�x becomes shorter, andvice versa;� enqueue resolve request(request id; group; source; request targets; type): The sourceargument can be either a set of congress servers or end-points to which the re-ply to this request should be forwarded. The request targets is a set of congressservers to which this request should be forwarded. In the current description ofthe protocol, the gms uses only a single congress server, but the lms can usethis �eld to hold a list of end-points. This function puts this information in theOpen resolve requests queue, with the request id as a key, to be retrieved upon re-quest. TheOpen resolve requests queue is described in further details in Section 6.2);� dequeue resolve request(request id): This function removes the request struc-ture r with r:id == request id from the Open resolve requests queue;41

� find open request by id(request id): This function �nds and returns the requeststructure with id == request id that is queued in Open resolve requests queue;� find open requests for group(group name; scope): This function �nds and re-turns a list of request structures ri with each ri:group name == group name andri:scope == scope that is queued in Open resolve requests queue. In case no matchis found, then a null value is returned. Note that the gms may hold more than oneopen resolve request for a group. The lms protocol, however, is more optimized, andholds only a single open request for a group, with the possibility for multiple replytargets;� new(type): This function receive a data type, and returns an instance of that datatype (variable).7 Conclusion and Future WorkWe have presented a CONnection-oriented Group-address RESolution Service for the nativeATM environment. congress uses a logical name space for group addressing and enablesmaintenance of dynamic multicast groups. The protocol is sensitive to network and hostfailures. It exploits the network's hierarchical addressing scheme to support a world-widescalability and scoping.congress itself is not fully fault tolerant. If a gms fails, all end-points that reside inits domain are cut o� from congress services outside that domain. The protocol couldbe made much more robust by using replicated gmss to serve each domain and by runningan election algorithm to choose a new gmsl if a gmsl of a domain fails. When this willbe implemented, receiving a noti�cation on a partition from a domain could also indicatewith a higher probability, that there is indeed a partition from that domain and it is notmerely a result of a server crash. We see this as one of the issues where congress can beimproved.Several enhancements could be made to make the registration and scoping mechanismmore exible to various application demands. Although the scoping mechanism reduces thechance that two end-points would want to initiate groups of the same name, the possibilitycertainly exists. This could be a burden for applications that require unique groups andwould have to leave and form a new group in order to operate. A parameter could be addedto the join request that states that the requested group name must be unique. A two-phasecommit protocol can be used to lock the name until the initiator of the group is assuredthat no other end-points are members of the group.Many applications have security requirements concerning multicast groups. For exam-ple, it might be necessary to limit the membership of a multicast group. Closed groups couldbe supported by congress for this purpose. Membership of a closed group is prede�ned byits initiator as a list of end-points that may ever join the group. join and resolve requestsfor such a group would be accepted only from end-points appearing on that list.On the opposite side of the scale are groups for which there is no indication wherethe members will be located. Instead of specifying a group with a world-wide scope andwaste bandwidth, \open" groups for which no scope is speci�ed could be desirable. The42

scopes for such groups would be determined by the current membership of the group. Ifthe current membership of the group spans a small domain, the current scope of this groupwould be that domain. Once a distant end-point desires to join the group, the scope of thegroup could be dynamically expanded to include that end-point. An additional research isnecessary in order to �nd how to map such groups into a most e�ective representation.The protocol presented in Section 6 assumes that an lms runs on each host participatingin congress. As mentioned earlier, a support for remote lms' clients could be given. Thiswould limit the ability to support process-level failure-detection using the lmss but wouldenable the use of congress in cases where otherwise would be impossible (such as withPCs running DOS) or wasteful (when only a few processes per machine use congress).The sensitivity of congress to host failures and network partitions might prove asa handy tool for a class of fault-tolerant reliable multicast packages such as Transis [2],Isis [10, 11] and Horus [24] when operating in an ATM environment. These packages makeuse of failure detectors in order to provide strong group semantics to applications using them.Members in a group need to reach agreement on membership in order to make conclusionsabout common knowledge. Instead of directly using failure detectors, which would reportfailures separately, the aggregate membership information supplied by congress could beused by group members to reach agreement on membership faster. This area is still to beinvestigated.AcknowledgmentsWe are thankful to Prof. Israel Cidon for his helpful comments and suggestions. Specialthanks to Idit Keidar, Gadi Shamir and the other members of the Transis project for theirvaluable remarks.References[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership algorithms for multicastcommunication groups. In Proceedings of the 6th International Workshop on Dis-tributed Algorithms, Lecture Notes in Computer Science 647, pages 292{312, November1992.[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication sub-systemfor high availability. In Proceedings of the 22nd Annual International Symposium onFault-Tolerant Computing, pages 76{84, July 1992. The full version of this paper isavailable as TR CS91-13, Dept. of Comp. Sci., the Hebrew University of Jerusalemhttp://www.cs.huji.ac.il/labs/transis/transis.html.[3] G. Armitage. Internet Draft: Support for Multicast over Uni 3.0/3.1 based ATMNetworks. Bellcore, February 1996. Work In Progress.[4] ATM Forum. ATM User Network Interface (UNI) Speci�cation Version 3.1. PrenticeHall, Englewood Cli�s, NJ, June 1995. ISBN 0-13-393828-X.43

[5] The ATM Forum Technical Committee. ATM User-Network Interface (UNI) SignallingSpeci�cation Version 4.0, af-sig-0061.000, July 1996.[6] The ATM Forum Technical Committee. ATM User-Network Interface (UNI) SignallingSpeci�cation Version 4.0, af-sig-0061.000, July 1996. Section 7, pages 55-58.[7] The ATM Forum Technical Committee. Native ATM services: Semantic DescrptionVersion 1.0, af-saa-0048.000, February 1996.[8] The ATM Forum Technical Committee. Private Network-Network Interface Speci�ca-tion Version 1.0 (PNNI 1.0), af-pnni-0055.000, March 1996.[9] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recoveryin Database Systems, chapter 7. Addison Wesley, 1987.[10] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in distributed systems.In Proceedings of the 11th Annual ACM Symposium on Operating Systems Principles,pages 123{138, November 1987.[11] K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures.ACM Transaction on Computer Systems, 5(1):47{76, February 1987.[12] G. Carle. Reliable group communication in atm networks. In Proceedings of theTwelve Annual Conference on European Fibre Optic Communications and NetworksEFOC&N'94, June 21-24 1994.[13] G. Carle and S. Dresler. Adaptable error control for e�cient provision of reliableservices in atm networks, December 1995. First Workshop on ATM Tra�c ManagementWATM'95, IFIP, WG.6.2 Broadband Communication, Paris, 6.-8. December 1995.[14] I. Cidon, T. Hsiao, A. Khamisy, A. Parekh, R. Rom, and M. Sidi. OPENET: An Openand E�cient Control Platform for ATM Networks. December 1995.[15] Cornell University. The CU-SeeMe Home Page, URL: http://cu-seeme.cornell.edu/.[16] D. Waitzman, C. Partridge, and S. Deering. Distance Vector Multicast Routing Proto-col. IETF, November 1988.[17] Day, J.D. and Zimmermann, H. The OSI reference model. In Proceedings of the IEEE,volume 71, pages 1334{1340, December 1983.[18] S. Deering. Host Extensions for IP Multicasting, RFC 1112. Stanford University,August 1989.[19] D. Dolev, D. Malki, and H. R. Strong. An Asynchronous Membership Protocol thatTolerates Partitions. submitted for publication, 1995.[20] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus withone faulty process. Journal of the ACM, 32:374{382, April 1985.44

[21] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang. A reliable multi-cast framework for light-weight sessions and application level framing. To appear inIEEE/ACM Transactions on Networking.An earlier version of this paper appeared in ACM SIGCOMM 95, August 1995, pp.342-356., November 1995.[22] S. Paul, K. K. Sabnani, and D. M. Kristol. Multicast transport protocols for highspeed networks. AT&T Bell Laboratories, 1993.[23] Romanow A. and Floyd S. Dynamics of TCP Tra�c over ATM Networks. IEEEJSAC, 13(4):633{641, May 1995.[24] R. van Renesse, T. M. Hickey, and K. P. Birman. Design and performance of Ho-rus: A lightweight group communications system. Technical Report 94-1442, CornellUniversity, Department of Computer Science, August 1994.[25] W. Vogels. World Wide Failures. Dept. of Computer Science, Cornell University, 1996.[26] A. Yair, D. Breitgand, D. Dolev, and G. Chockler. Group communication as an infras-tructure for distributed system management. In Proceedings of the Third InternationalWorkshop on Services in Distributed and Networked Environments (SDNE'96), June1996.

45

procedure lms resolve reply handler(m):open request = find open request by id(m:message id);if (open request == null)/* This might happen if the gms was suspected to be failed and* the queue was reset because of that.*/discard (m);else f/* note that there would be only one relevant reply:* the gms would collect all the replies from the* neighbors that have information on the group in theirs* domains, and only after the full information was* obtained, it would forward the aggregated reply to the* lms. Thus only one full reply should be received.* If the enqueued request is of the type resolve join,* then it is a reconnection to the gms that initiated this* resolve, and the reply will be forwarded as a ep join message.*/if (open request:type == resolve join)delivery(open request:waiting set, ep join, m:group, m:reply);else f/* add the local membership to the total reply */m:reply = m:replyS local end points of group(m:group:group name;m:group:scope;null);delivery(open request:waiting set, absolute, m:group, m:reply);gdequeue resolve request(open request:id) ;g Figure 13: The LMS Incoming Resolve Reply Message Handler.
46

procedure handle registration update msg(m):switch (m.type) fcase ep join or ep leave:local-set =[g2m:groupslocal end points of group(g:group name; g:scope; set online);delivery(local-set, m:type, g, m:addresses list);case hd failure:/* m holds the server's address and its level , and list* of groups which had members in this domain.*/list of groups = m:groups;address prefix = make prefix(m:s address;m:level);local-set= fg;for each group 2 list of groups dolocal-set=local-setS local end points of group(group:group name; group:scope; set online);delivery(local-set, m:failure type, address prefix);/* When the m:failure type is filter out, the end-points have to remove all the* members with the same domain pre�x from their membership. If the m:failure type* is filter in, then the end-points have to KEEP in theirs membership* ONLY those members with the SAME domain pre�x as the address prefix*/gg /* switch m:type */Figure 14: The LMS Registration Message Handler.

47

procedure update end point online state(ep, group name, scope, online state):if (:member(ep; group name; scope)return;memb list = local end points of group(group name; scope;null);if (9 end-point 2 memb list with on-line bit set to set online)prev state = set online;else prev state = reset online;update groups info(set online, group name; scope; ep; online state);if (9 end-point 2 memb list with on-line bit set to set online)current state = set online;else current state = reset online;if (prev state 6= current state) fonline state msg = new(update online state);online state msg:group:group name = group name;online state msg:group:scope = scope;if (current state == set online)online state msg:state = all;else online state msg:state = resolve;if (gms status == on)send(fmy gmsg, online state msg);g Figure 15: The LMS Online State Update Handler.procedure lms ep failure handler(ep):list of groups = groups of local end point(ep);m = new(registration update);m:type = ep leave;m:addresses list = fepg;m:groups = list of groups;if (gms status == on)send(fmy gmsg , m);/* Update open resolve requests queue due to the ep failure */for each request 2 Open resolve requests queue do fif (ep 2 request:waiting set) frequest:waiting set = request:waiting set n fepg;if (request:waiting set == fg)dequeue resolve request(request:id);ggfor each group 2 list of groups do fupdate end point online state(ep, group:group name, group:scope, reset online);update groups info(delete; group:group name; group:scope; ep;null);delivery(local end points of group(group:group name, group:scope, set online),ep leave, group, ep);g Figure 16: The LMS End-Point Failure Handler.48

procedure lms handle gms failure():gms status = off;local-set = [g2groups of lms() local end points of group(g:group name; g:scope; set online);delivery(local-set, filter in, lms address);m = new(resolve reply);for each req 2 Open resolve requests queue do flocal-end-points = req:waiting set;m:group = req:group;m:reply = local end points of group(m:group:group name;m:group:scope;null);delivery(local-end-points, absolute, m:group, m:reply);dequeue resolve request(req:id);g Figure 17: The LMS Handler of The GMS Failure.

49

procedure lms reconnect gms():gms status = on;foreach group 2 groups of lms() do fmemb list = local end points of group(group:group name; group:scope;null);if (9 end-point 2 memb list with on-line bit set to set online)/* since there is at least one end-point on the lms's* host that requires the membership noti�cations,* then the gms must be noti�ed about this - using a* global online ag.*/ online flag = all;else online flag = resolve;join msg = new(registration update);join msg:type = ep join;join msg:addresses list = memb list;join msg:groups = fgroupg;send(fmy gmsg , join msg);online state msg = new(update online state);online state msg:group = group;online state msg:state = online flag;send(fmy gmsg , online state msg);put all members 2 memb list with on-line bit set to set online,into waiting end points set;if (waiting end points set 6= fg) fresolve msg = new(resolve request);resolve msg:group = group;enqueue resolve request(resolve msg:message id; group;waiting end points set;fmy gmsg, resolve join);send(fmy gmsg , resolve msg);gg Figure 18: The LMS Reconnection to the GMS Handler.
50

procedure gms-main-loop():Loop forever fswitch (event) fcase fault suspicion of neighbor n :handle fault suspicion(n);case receive resolve request message m for group g from neighbor n:handle resolve request(m;n);case receive resolve reply r on resolve request from neighbor n:handle resolve reply(r; n);case receive registration update message m from neighbor n:switch (m.type) fcase ep join:handle ep join(m;n);case ep leave:handle ep leave(m;n);case hd failure: /* host or domain failure */handle hd failure(m;n);gcase receive update online state message m from neighbor n:handle online state message(m;n);case detect reincarnation of neighbour n:handle server reincarnation(n);gg Figure 19: The GMS Main Event Loop.

51

procedure handle fault suspicion(n):if (neighbor state(n) == disconnected) return;a�ected groups = groups of neighbor(n);set neighbor state(n; disconnected);if (n 2 children(my level)) ftmp = neighbors set(my level);if (6 9g 2 a�ected groups s.t scope to level(g:scope) � my level+ 1)tmp = tmp n fparent(my level)g;level = my level� 1;failure type = filter out;gelse ftmp = children(my level);if (n == parent(my level)) flevel = my level+ 1;failure type = filter in;gelse flevel = my level;failure type = filter out;ggT G = fn0jn0 2 tmpV(neighbor state(n0) 6= disconnected)V(groups of neighbor(n0)T a�ected groups 6= fg)g;m = new(registration update);m:type = hd failure;m:s address = n;m:level = level;m:failure type = failure type;m:groups = a�ected groups;send(T G , m);for each r 2 Open resolve requests queue doif (n == r:from) dequeue resolve request(r:id);else if (n 2 r:waiting set) fr:waiting set = r:waiting set n fng;if (r:waiting set == fg) f/* all operational entities have replied */m0 = new(resolve reply);m0:message id = r:id;m0:group = r:group;m0:addresses list = r:reply;send(r:from, m0);dequeue resolve request(r:id);ggelse ffailed domain = make prefix(n; level);if (failure type == filter out)r:reply = fepjep 2 r:replyV:in address scope(ep; failed domain)g;else r:reply = fepjep 2 r:replyV in address scope(ep; failed domain)g;g Figure 20: The GMS Fault Suspicion Handler.52

procedure handle server reincarnation(n):set neighbor state(n; connected);for each group 2 Groups doGroups(index by group(group); n) = all;if (n 2 children(my level))/* if it's a child, then the re-merge process would be* triggered by the child himself, nothing to do here...*/return;if (n == parent(my level))MG = fgjg 2 GroupsV scope to level(g:scope) > my levelg;else /* its a sibling *//* all the groups in Groups matrix has a scope at least of my level */MG = fgjg 2 Groupsg;for each group 2MG do fi = index by group(group);T G = fcjc 2 children(my level)Vneighbor state(c) 6= disconnectedV(Groups(i; c) == allWGroups(i; c) == resolve)g;if (T G 6= fg) fm = new(resolve);m:group = group;/* the reply to m will be forwarded to n, as a join message */enqueue resolve request(m:message id; group; n; T G;resolve join);send(T G, m);gg Figure 21: The Server Reincarnation Handler.

53

procedure handle resolve request(m,n):g = m:group;group index = index by group(g);if (group index == �1)send to all = True;if (n == parent(my level) or n 2 siblings(my level))T G = fn0jn0 2 children(my level)Vneighbor state(n0) 6= disconnectedV(send to allWGroups(group index; n0) 6= none)g;else f/* n 2 children(my level) */if (scope to level(g:scope) � (my level+ 1))/* include the parent in target set */T G = fn0jn0 2 (siblings(my level)Sfparent(my level))Vneighbor state(n0) 6= disconnectedV(send to allWGroups(group index; n0) 6= none)g;else T G = fn0jn0 2 siblings(my level)Vneighbor state(n0) 6= disconnectedV(send to allWGroups(group index; n0) 6= none)g;if (my level == 0)T G = T GSfn0jn0 2 children(my level)Vneighbor state(n0) 6= disconnectedV(send to allWGroups(group index; n0) 6= none)g n fng;gif (T G == fg) fr = new(resolve reply);r:message id = m:message id;r:group = m:group;r:addresses list = fg;send(fm.fromg, r);gelse fenqueue resolve request(m:message id; g; fm:fromg;T G;resolve);send(T G, m);g Figure 22: The GMS Resolve Request Handler.
54

procedure handle resolve reply(r,n):/* �nd the open resolve request whose id matches the reply's id */req info = find open request by id(r:message id);if (req info == null)/* A reply for a request that was already handled is received from a neighbor.* This can happen if the neighbor was suspected to be disconnected.*/ return;g = req info:group;if ((r:end points list == fg) and (index by group(g) 6= �1))/* update groups matrix:*/Groups(index by group(g); n) = none;/* add the current resolve reply to the total reply */req info:reply = req info:replyS r:end points list;/* remove the reply source from the waiting list of* the open resolve request*/req info:waiting set = req info:waiting set n fng;if (req info:waiting set == fg) fif (req info:type == resolve join) f/* convert the resolve reply into a join message */join msg = new(registration update);join msg:type= ep join;join msg:addresses list = req info:reply;join msg:groups = fgg;online state msg = new(update online state);online state msg:group = fgg;if (9c 2 children(my level) s:t Groups(index by group(g); c) == all)online state msg:state = all;else online state msg:state = resolve;if (req info:from == parent(my level))/* if the destination for this resolve/join is the parent* then mark the join message as a join and resolve message,* else, mark it as a usuall join message.*/join msg:join and resolve = true;else join msg:join and resolve = false;send(req info:from, join msg);send(req info:from, online state msg);gelse fr = new(resolve reply);r:message id = req info:id;r:group = req info:group;r:addresses list = req info:reply;send(req info:from, r);gdequeue resolve request(req info:id);g Figure 23: The GMS Resolve Reply Handler.55

procedure handle online state message(m,n):g = m:group;group index = index by group(g);if (group index == �1)return;prev outer state = get online state(g; fparent(my level)gS siblings(my level));prev inner state = get online state(g;children(my level));Groups(index by group(g); n) = m:online state;current outer state = get online state(g; fparent(my level)gS siblings(my level));current inner state = get online state(g;children(my level));if (prev outer state 6= current outer state or prev inner state 6= current inner state) fif (n == parent(my level) or n 2 siblings(my level))if (my level == 0)/* No need to update the lms's about the change in the gms state./*return;elseT G = fn0jn0 2 children(my level)Vneighbor state(n0) 6= disconnectedVGroups(group index; n0) 6= noneg;else T G = fn0jn0 2 (fparent(my level)gS siblings(my level))Vneighbor state(n0) 6= disconnectedVGroups(group index; n0) 6= noneg;send(T G;m);g Figure 24: The GMS Online State Messages Handler.
procedure groups of neighbor(n):list of groups = fgj(index by group(g) 6= �1)V(Groups(index by group(g); n) 6= none)g;return (list of groups);Figure 25: Routine For Determining The Groups A Neighbor Interests In.

56

procedure handle ep join(m ,n):g = m:groups; /* in this case the groups list contains only a single name! */req list = find open requests for group(g:group name; g:scope);for each r 2 req list doif ((r 6= null) and (n 2 r:full waiting set))r:reply = r:replySm:addresses list;if (index by group(g) == �1)insert new group(g);if (n == parent(my level) or n 2 siblings(my level))tmp set = children(my level);else f /* n is a child */tmp set = siblings(my level);if (scope to level(g:scope) � (my level+ 1))tmp set = tmp setS parent(my level);if (my level == 0)/* n is an lms, so add all the lmss. */tmp set = tmp setSchildren(my level) n fng;gT G = fn0jn0 2 tmp setVneighbor state(n0) 6= disconnectedVGroups(group index; n0) == allg;if (m:join and resolve == true) fif (n 2 siblings(my level)) f/* No need to forward it as a `join and resolve', since it will be* forwarded only to the children.*/m:join and resolve = false;send(T G, m);T G0 = fn0jn0 2 tmp setVneighbor state(n0) 6= disconnectedV(Groups(group index; n0) == resolveWGroups(group index; n0) == all)g;m0 = new(resolve request);m0:group = g;/* the reply to m0 will be forwarded to n, as a join message */enqueue resolve request(m0:message id; g; n; T G0;resolve join);send(T G0, m0);gelse send(T G, m);gelse send(T G, m);Figure 26: The GMS End-Point Join Message Handler.57

procedure handle ep leave(m ,n):g = m:groups; /* in this case the groups list contains only a single name! */req list = find open requests for group(g:group name; g:scope);for each r 2 req list doif ((r 6= null) and (n 2 r:full waiting set))r:reply = r:reply nm:addresses list;if (n == parent(my level) or n 2 siblings(my level))tmp set = children(my level);else f /* n is a child */tmp set = siblings(my level);if (scope to level(g:scope) � (my level+ 1))tmp set = tmp setS parent(my level);if (my level == 0)/* n is an lms, so add all the lmss. */tmp set = tmp setSchildren(my level) n fng;gT G = fn0jn0 2 tmp setVneighbor state(n0) 6= disconnectedVGroups(group index; n0) == allg;send(T G, m); Figure 27: The GMS End-Point Leave Message Handler.

58

procedure handle hd failure(m ,n):if ((m:s address 2 neighbors(my level)) and (neighbor state(m:s address) == disconnected))return;/* m holds the failed server (host/domain) address */address = m:s address;if (address 2 neighbors(my level)) fm:groups = m:groupsSgroups of neighbor(address);set neighbor state(m:s address;disconnected);glist of groups = m:groups;for g 2 list of groups do freq list = find open requests for group(g:group name; g:scope);for each r 2 req list doif ((r 6= null) and (n 2 r:full waiting set)) ffailed domain = make prefix(m:s address;m:level);/* message is received from a child so m:failure type == filter out) */r:reply = fepjep 2 r:replyV:in address scope(ep; failed domain)g;g /* if */g /* for */if (n == parent(my level) or n 2 siblings(my level))tmp set = children(my level);else f /* n is a child */tmp set = siblings(my level);if (9g 2 list of groups s.t scope to level(g:scope) � (my level+ 1))tmp set = tmp setS parent(my level);gT G = fn0jn0 2 tmp setVneighbor state(n0) 6= disconnectedV((groups of neighbor(n0)T list of groups) 6= fg)g;send(T G, m);Figure 28: The GMS Host/Domain Failure Message Handler.
59

