
OCD: Obsessive Consensus Disorder
(or Repetitive Consensus)

Danny Dolev∗
Hebrew University

dolev@cs.huji.ac.il

Ezra N. Hoch
Hebrew University

ezraho@cs.huji.ac.il

ABSTRACT
Consider a distributed system S of sensors, where the goal is
to continuously output an agreed reading. The input read-
ings of non-faulty sensors may change over time; and some
of the sensors may be faulty (Byzantine). Thus, the system
is required to repeatedly perform consensus on the input
values.

This paper investigates the following question: assuming
the input values of all the non-faulty sensors remain un-
changed for a long period of time, what can be said about
the agreed-upon output reading of the entire system? We
prove that no system’s output is stable, i.e. the faulty sen-
sors can force a change of the output value at least once.

We show that any system with binary input values can
avoid changing its output more than once, thus matching the
lower bound. For systems with multi-value inputs, we show
that the output may change at most twice; when n = 3f +1
this solution is shown to be tight. Moreover, the solutions
we present are self-stabilizing.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms, Reliability, Theory

Keywords
Distributed computing, fault tolerance, self-stabilization, Byzan-
tine failures, repetitive consensus, long-lived consensus.

∗This work was funded in part by ISF.

© ACM, (2008). This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version is to be published in the Twenty-Seventh Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Comput-
ing (PODC’08), August 2008.
.

1. INTRODUCTION
Consensus is one of the fundamental problems in dis-

tributed algorithms, and a vast body of literature exists on
the subject (see [8], [10] and [1]). The “common” consensus
problem consists of nodes with static input values that are
required to agree on some output value within a finite time.
Different extensions of the consensus problem study differ-
ent directions; in this paper we consider the case where a
sequence of multiple consensuses takes place.

Executing multiple consensus comes in different flavors;
Continuous Consensus aims at continuously agreeing on the
history of inputs of all nodes in the system (see [12]). Multi-
consensus efficiently executes multiple consensuses sequen-
tially (see [2]), Committee Decision executes multiple con-
sensuses concurrently (see [9]); and others, such as [13]. We
are interested in a different aspect of executing multiple con-
sensuses.

When executing m consensuses, there are m agreed-upon
output values. This raises the following question: What is
the connection between the different outputs of the different
consensuses? Is there any way to guarantee that consecutive
consensuses output the same value - i.e. that the output
of the different consensuses is stable? None of the above
papers has investigated the stability of the output of the
different consensuses in the sequence. The first paper to
discuss the stability of “long-lived” consensus is [7] (from
which the term “long-lived” is taken). [7] (and later, [4])
also defines measurements to estimate solutions of the “long-
lived” consensus problem; in the current work, we consider
similar measurements (see Section 2).

Consider a system consisting of n nodes, where each node
receives an input value from the set V, V = {0, . . . , v − 1};
these input values can change over time, and hence the nodes
need to repeatedly agree on their collective output value.
For example, consider a network of sensors that needs to
agree on a single output: assume some of the nodes are mal-
functioning (Byzantine), and consider the following ques-
tion: if the input of the nodes changes overtime and even-
tually stabilizes, is it possible to ensure that the output will
also stabilize eventually? As will be shown below, the an-
swer is “No”. However: if the input does not change, then
(under certain restrictions) the output can change at most
once. For example, assume a system with V = {0, 1} in
which at some time the input values of all non-faulty nodes
have stopped changing. If no faulty nodes exist, the output
will eventually stop changing. However, we show that even a
single Byzantine node can delay this transition indefinitely.

The above impossibility result is true for any system with

Byzantine presence, regardless of the communication model
(synchronous, asynchronous, etc). However, our solution to
reducing output changes operates in a highly-fault tolerant
manner: it is self stabilizing1 and Byzantine tolerant. That
is, starting from any initial state, in the presence of perma-
nent f Byzantine nodes, the number of output changes is
bounded.
Related work: Overcoming faults in sensors by averaging
the input values has been done in [11]; however the averaging
is done by one node connected to all sensors, and has low
fault resiliency.

Quantifying faulty nodes’ effect on the system’s output
was investigated in [7] and [4]. These papers consider a
geodesic path, which is a list of input vectors (representing
the inputs to each node) in which each node changes its
input value at most once. The two papers concentrate on
the stability assurances that can be guaranteed for geodesic
paths. However, they do not consider the Byzantine case,
in which a small set of faulty nodes repeatedly face changes
in their input values.

Recently, [15] has extended [7]’s worst-case scenario re-
sults to the average case, as well as showing the importance
of memory for the output’s stability. [15] considers paths
that are randomly selected, and thus examines the average
case scenario. However, [15] does not incorporate Byzantine
behavior, which coordinates its failures in a malicious (and
non-random) fashion.

[4] and [7] show that for memory-less consensus functions,
even with a single faulty node, the output may change in-
finitely many times. However, the behavior of Byzantine-
tolerant consensus functions with memory has not been in-
vestigated yet. In addition, the results of [7], [4] and [15]
have not been shown to be self-stabilizing.
Contribution: We define an oblivious path, which is a list
of input vectors in which at most f nodes change their input
values (arbitrarily many times). We then quantify a system
output’s stability for such paths, giving both lower and up-
per bounds. The solution is shown to be self-stabilizing.

2. COMPUTATIONAL MODEL
Following [4] and [7], we begin this paper with an analysis

that ignores the communication and timing model of the
system. Let V , V = {0, . . . , v−1} be the set of allowed input
values, and let F : V n → V ∪{⊥} be a function on an input
vector ~x ∈ V n. Given a list of input vectors ~x0, ~x1, . . . , ~xl,
we are interested in the behavior of F(~x0),F(~x1), . . . ,F(~xl).
To allow F to have memory (adding states to the system)
we consider F : V n ×M → V ∪ {⊥}, and a state transition
function τ : V n ×M → M .

Intuitively, an input vector ~x ∈ V n represents the inputs
of each node in the distributed system, while the state tran-
sition function τ represents the change in the state of the
distributed system (sending/reciving messages and their ef-
fects on each node’s internal memory). Lastly, F represents
the output of all non-faulty nodes in the system. The formal
definitions are as follows (based on those of [4]):

Definition 2.1. A system is defined by a 6-tuple S =
〈n, v, f, M, τ,F〉 , where n is the number of nodes, v is the
size of the input space V = {0, . . . , v − 1}, f is a bound on
the number of faulty nodes, M is a set of memory states, τ

1For more on self-stabilizing see [14].

is a state transition function τ : V n×M → M and F is the
output function F : V n ×M → V ∪ {⊥}.

For the above definition to be “interesting” a “validity”
requirement on F is added: the output of F must be the
input of some correct node. Since F does not “know” which
nodes are faulty and which are not, it can output a value
ν only if it has seen at least f + 1 copies of ν in the input
vector; otherwise it must output ⊥.

We also require that if some value ν′ appears n − f (or
more) times in the input vector, then the output of F is ν′.
More formally, let #ν(~x) be the number of occurrences of ν
in ~x: if F(~x) = ν ∈ V then #ν(~x) ≥ f + 1; if F(~x) =⊥ then
∀ν∈V #ν(~x) < n− f .

The above validity is considered throughout the paper. In
Section 6 a different validity measure is presented.

Definition 2.2. An input path (path for short) P (of
some system S) is a list of input vectors ~x0, ~x1, . . . , ~xl−1 ∈
V n. Component k is said to change on path P if there is
some input vector ~xi such that ~xi[k] 6= ~xi+1[k], where ~x[k] is
the kth entry in the vector ~x.

Definition 2.3. A run of a system S from memory state
m0 on some path P is the sequence m1 = τ(~x0, m0), m2 =
τ(~x1, m1), . . . , ml = τ(~xl−1, ml−1);

The decision output of the above run is the sequence
F(~x0, m0),F(~x1, m1), . . . ,F(~xl−1, ml−1). Denote by Oi :=
F(~xi, mi). The decision output changes at index i > 0 if
Oi−1 6= Oi.

[4] and [7] define a geodesic input path as an input path
in which each component changes at most once. In addition,
they define the instability of a system S as the maximal
number of decision output changes for any geodesic input
path, starting from S’s initial state. In the current work
we are interested in a somewhat different stability measure-
ment, so we henceforth refer to the instability of [4] and [7]
as geodesic-instability, in order to differentiate it from
our usage of the term ”instability”.

Note that Byzantine nodes may “pretend” that their in-
puts are consistently changing. It is therefore important to
design systems that are robust in the face of such behavior,
i.e. , that do not change their output if the correct nodes’
inputs do not change. In other words, the target should be
a system that is oblivious to changes in Byzantine nodes’
input values (as long as the other nodes have stable input
values). Hence, we define the following:

Definition 2.4. An f-oblivious input path (oblivious
path, for short) of a system S is an input path P in which
at most f components change.

Notice that a geodesic path’s length is bounded by n, since
each of its components can change at most once. However,
an oblivious path can be arbitrarily long, since f components
can repeatedly change. Faulty nodes can behave arbitrarily
at any point during the execution of S. Moreover, the in-
put values of non-faulty nodes may change due to external
readings. Thus, we aim at expressing the robustness with
respect to all memory states and to all oblivious paths.

Definition 2.5. Let CT (S, m, P) be the (possibly infi-
nite) number of times the decision output of S changes when

running on oblivious path P from memory state m. Let
MaxCT (S, m) := maxP {CT (S, m, P)}.

Similarly, CL(S, m, P) is the (possibly infinite) largest in-
dex for which the decision output of S changes when running
on oblivious path P from memory state m.
Let MaxCL(S, m) := maxP {CL(S, m, P)}.

Definition 2.6. The count-instability of a system S
is the maximal number of decision output changes during
a run from any memory state m and for any oblivious in-
put path P . Formally, we can define count-instability as:
maxm{MaxCT (S, m)}.

The length-instability of a system S is the smallest in-
dex after which no change occurs to the decision output dur-
ing a run from any memory state m and for any oblivious
input path P . Formally, length-instability can be expressed
as: maxm{MaxCL(S, m)}.

It has been shown (in [4], [7]) that in memory-less sys-
tems S (systems in which M = {m0}) in which some com-
ponent may change its input infinitely many times, a path
can be constructed to cause any number of decision output
changes. In other words, for memory-less S with f ≥ 1,
the count-instability of S is ∞. This is the reason that [4]
and [7] discuss only geodesic-instability, but do not discuss
count-instability or length-instability at all. An interesting
extension to the above oblivious-path definition (and there-
fore to the count/length instability definitions) that is not
discussed in the current paper is one which considers changes
to input values of non-faulty nodes. Notice that the lower
bounds of Section 3 hold for this extension as well.

Table 1 presents the lower and upper bounds appearing
in the following sections.

Table 1: Summary of results

parameters count-instability theorem#
f > 0 ≥ 1 Theorem 1

n ≥ 3f + 1 ≤ 2 Theorem 4
n = 3f + 1, |V | > 2 ≥ 2 Theorem 3
n ≥ 3f + 1, |V | = 2 1 Theorem 5

2.1 A General System Model
The computational model presented above captures com-

mon requirements of any distributed system that tries to
repeatedly reach consensus on changing input values. There-
fore, any lower bound presented in this computational model
holds for any distributed system.

A distributed system T may have richer semantics than
the proposed computational model. However, the properties
of the computational model encompass the very basic behav-
ior of repeatedly reaching consensus; therefore, it should be
possible to “embed” the computational model in T ’s seman-
tics. That is, in certain scenarios (such as when restricting
the behavior of T) there is a reduction from T to the com-
putational model.

For example, suppose that T is a sparsely connected net-
work of nodes that gathers inputs from different nodes, waits
until they do not change (to avoid fluctuations in the out-
put), propagates them throughout the system, and only then
decides on an output. In any system, on a run of T , at some
time t−1, the input will change to ~x−1 and stay there. Even-
tually, T outputs some value O−1 at time t0. Consider m0

to be the state of the system at t0. At some time t′0 ≥ t0
the input changes to ~x0 and eventually - at time t1 - the
system outputs O0. Mark by m1 the state of the system at
t1. In general, at time ti the system is at some state mi, at
time t′i ≥ ti the input changes to ~xi and at time ti+1 ≥ t′i
the system outputs a value Oi; the run continues in this
manner.

Consider the scenario where t′i = ti for all i; that is, the
input changes immediately after the output has been de-
termined. T must also operate correctly in the described
scenario. However, in such a setting the following reduction
can be used: m0, m1, . . . will be the states of the system;
~x0, ~x1, . . . will be the input vectors; τ will denote the sys-
tem’s state change between 2 consecutive outputs; and F
will denote the system’s output, given the previous system’s
state and the new input. Notice that T might change its
state more than once between ti and ti+1; however, we are
only interested in the change of state from the state at ti

(mi) to the state at ti+1 (mi+1).
The above example demonstrates how a system that pro-

duces outputs every so often, in accordance to inputs that
change over time, has scenarios in which it can be abstracted
using the computational model. This observation is the
motivation behind using the computational model and the
lower bounds proven in this paper.

3. IMPOSSIBILITY RESULTS
Theorem 1. For any system S with f ≥ 1 the count-

instability of S is at least 1.

Proof. Consider the path P : ~x0 := 0n−f1f , ~x1 :=
0n−f−11f+1, . . . , ~xi := 0n−f−i1f+i, . . . , ~xn−2f := 0f1n−f .
Let m0 be some state of S and consider S’s run on P from
m0. Denote the decision output of S’s run from m0 on
P as O0 := F(~x0, m0), O1 := F(~x1, τ(m0, ~x0)), etc. De-
note by mi the ith memory state of the above run; that is
mi+1 = τ(~xi, mi).

By validity, since #0(~x0) ≥ n − f it holds that O0 = 0,
and for similar reasons On−2f = 1. Let j be the first Oj

that is 1; more formally let j be j = min{i|F(~xi, mi) = 1}
(note that j ≥ 1). Consider the memory state mj−1: when
S is at state mj−1, given the input vector ~xj−1, S’s output
is 0 and it moves to state mj . Then, for ~xj as input, S’s
output is 1. Thus, the path P := ~xj−1, ~xj is a path that
causes S’s run starting from mj−1 to change once. Notice
that P is an oblivious path (for f > 0), since ~xj−1, ~xj differ
by exactly one component.

This implies that for any system S (with f > 0) there
exists an oblivious path P and a state m such that S’s run
starting from m on P changes its decision output at least
once. And so,S’s count-instability is ≥ 1.

Theorem 1 states that any system that is designed to be
tolerant of even a single Byzantine node, must have states
from which the Byzantine nodes can change the decision out-
put value. The following theorem shows that the Byzantine
node(s) can delay this output change indefinitely.

Theorem 2. For any system S with f ≥ 1 the length-
instability of S is ∞.

Proof. Let ~xi := 0n−f−i1f+i and consider the path

P k := ~x0, . . . , ~x0︸ ︷︷ ︸
k

, . . . , ~xi, . . . , ~xi︸ ︷︷ ︸
k

, . . . , ~xn−2f , . . . , ~xn−2f︸ ︷︷ ︸
k

.

P k is a path consisting of n − 2f + 1 “sections”, each of
length k. Each such section consists of a single input vector,
where the ith section consists of k repetitions of ~xi. P k is
k · (n− 2f + 1) vectors long. Denote by ~xj the jth vector in
P k (j ∈ [0, k ·(n−2f +1)]); note that ~xj = ~xb j

k
c. For a given

j, let mj be the memory state before the input vector ~xj is
processed, and let Oj be the decision output of F(mj , ~x

j).
Due to validity, since #0(~x0) ≥ n−f it holds that O0 = 0

and Oj = 0 for j < k. For similar reasons Ok·(n−2f) = 1.
Therefore, Oj 6= Oj−1 for some j ≥ k. Consider the first
such j. Denote the path P := ~xj−k, ~xj−k+1, . . . , ~xj ; P is an
oblivious path, since at most one component changes in P .
When running S from memory state mj−k on the path P
the output starts as “0” and changes to “1” after k input
vectors; that is, CL(S, mj−k, P) ≥ k.

Notice that the above proof is independent of k’s value.
Thus for any k, there exists a memory state m and an obliv-
ious path P such that CL(S, m, P) ≥ k. That is, the length-
instability of S is ∞.

Theorem 2 implies that even a single Byzantine node can
cause a decision output change in a system “whenever it
wants”. More specifically, there is a state of the system
such that even if the inputs of all non-Byzantine nodes do
not change, there is no bound on when a Byzantine node
can cause the decision output of the system to change.

Theorem 3. For any system S with n = 3f+1 and |V | ≥
3 the count-instability of S is at least 2.

Proof. Let m0 be some initial state and let ~x := 02f+11f .
Due to validity, F(~x, m0) = 0. Now, consider the vector
~y := 0f+11f+12f−1 and m1 := τ(~x, m0). F(~y, m1) can be
“0”, “1” or ⊥.

If it is “1” or ⊥, then the path P := ~x, ~y, ~x causes S to
change its output twice.

Similarly, assume that F(~y, m1) = 0 and let m2 := τ(~y, m1).
Let ~z := 0f1f+12f . Now, F(~z, m2) can be either “1” or ⊥.
If it is ⊥ then the path P := ~y, ~z, 0f12f+1 causes the sys-
tem S to change its output twice. On the other hand, if
F(~z, m2) = 1 then the path P := ~y, ~z, 0f1f2f+1 changes the
output twice. Thus, there exists an f -oblivious path that
causes S to change its output twice.

Remark 3.1. The |V | ≥ 3 limit (in Theorem 3) is re-
quired. Moreover, if |V | = 2 then it is possible to construct
a system S that has count-instability of 1. In Theorem 5 we
show how to achieve exactly that.

4. REPETITIVE CONSENSUS
In the above sections a formal analysis of the computa-

tional model was given, together with lower bounds regard-
ing the count-instability of any distributed system. In the
rest of the paper we concentrate on a more “practical” ap-
proach; that is, the repetitive consensus problem is defined
and solved in a “synchronous” network in a self-stabilizing
and Byzantine tolerant manner.

We start by defining the Global-Beat-System (a self-stabilizing
equivalent of the classical synchronous network); then we
present and solve the repetitive consensus problem as ap-
plied to this model.

4.1 Model and Definitions
The “Global Beat System” model (GBS for short) consists

of n nodes that can communicate via message passing, where
the sender of each message can be identified. Nodes have
access to a common “global beat system”, which produces
signals/beats at regular intervals, such that a message sent
by any node p to any node q upon receiving some beat,
reaches q before the following beat. All nodes receive a
signal/beat at the same time, and can perform computations
and/or send messages upon its receipt. The beats are spaced
in such a way as to allow a correct node to send one message
to each correct node (and process such messages) in the time
span between two consecutive beats.

In non-self-stabilizing synchronous systems, usually there
is a common counter that all correct nodes are aware of (the
current round number). This is not the case in the GBS
model; however, for the sake of clarity we will refer to an
“external” beat/round number r, that the nodes are not
aware of. In the rest of this paper, “rounds” and “beats”
will be used interchangeably. These terms are not to be
confused with “pulses”, which refer to the output of pulsing
algorithms.

While the system is “unstable” (due to transient faults),
any number of nodes may behave in a Byzantine manner and
the communication network may behave arbitrarily. How-
ever, once the system “stabilizes”, there will be at most f
Byzantine nodes, the global beat system will produce beats
regularly and the communication network will deliver mes-
sages on time (before the following beat).

Definition 4.1. A node is non-faulty when it follows
the given protocol2, and faulty otherwise.

Remark 4.1. In the current work processing time of in-
coming messages is ignored. This assumption does not weaken
the result, it only simplifies the exposition.

Definition 4.2. The communication network is non-faulty
when the following conditions hold:

1. A message by a correct node p sent upon a receipt of
a beat from the global beat system, arrives (and is pro-
cessed) at its destination before the following beat is
issued by the global beat system;

2. The sender’s identity and the message context of any
message received are not tampered with.

3. A message received by p was sent by some node no
more than one beat ago. That is, “phantom” messages
are not delivered.

In real-world networks, it may take some time for the com-
munication network to overcome transient faults. Specifi-
cally, the communication networks’ buffers may contain mes-
sages that were not sent by any node, and the network may
eventually deliver them. We consider the communication
network to be non-faulty only after all of these “phantom”
messages have been delivered or cleared away.

According to the above definition, once the network is
non-faulty, it adheres to the GBS model. Which means that

2Notice that a non-faulty node p may exhibit unwanted be-
havior, due to its arbitrary state. However, given p’s state,
its behavior is determined by the protocol.

messages cannot be lost and old messages cannot be stored
for an arbitrarily long time.

The transition from being faulty to becoming a “valid”
participant of the protocol can’t be instantaneous. There-
fore, a continuous period of non-faulty behavior is required
before the system or a node can be considered correct.

Definition 4.3. A node is correct following ∆node beats
of continuous non-faulty behavior in which the communica-
tion network is non-faulty.

Definition 4.4. The system is coherent when the com-
munication network is non-faulty and there are n−f correct
nodes.

The values of n and f are fixed constants and are consid-
ered part of the “code” of the protocols and thus non-faulty
nodes cannot initialize with arbitrary values for these con-
stants.

4.2 The Repetitive Consensus Problem
Let Ir

p and Or
p be the input and output value of p at beat

r. Input values are from some finite set V , and output values
are from V ∪ {⊥}. Let Gr be the set of non-faulty nodes at
beat r; (we will use G when r is clear from the context.)

Definition 4.5. The inputs (of non-faulty nodes) are sta-
ble during [r1, r2] if for every node p ∈ G the value of Ir

p

does not change, for all r ∈ [r1, r2]. This condition can be
expressed formally as: ∀p∈G∀r1≤r≤r2 [I

r
p = Ir1

p].
Similarly, we say that the outputs are stable during [r1, r2]

if ∀p∈G∀r1≤r≤r2 [O
r
p = Or1

p].

Let Ir denote the vector of inputs of all nodes Ir :=
(Ir

p1 , . . . , Ir
pn

) and let Or denote the vector of outputs at
beat r. When talking about outputs we consider only out-
puts of non-faulty nodes, since no requirements can be given
on outputs of Byzantine nodes. Likewise, only non-faulty
nodes’ inputs are considered, as a Byzantine node can have
any input it wishes.

Definition 4.6. The outputs are in agreement at some
beat r if ∀p,p′∈G [Or

p = Or
p′]; denote by Vr the agreement value

and let Vr := Or
p for some p ∈ G.

The outputs are decisive during beat interval R = [r1, r2]
if the outputs are stable during R and the outputs are in
agreement during beat r1. Denote by V [r1,r2] the agreement
value and let V [r1,r2] := Vr1 .

For the outputs to become stable, the inputs must not
change for a “long-enough” period of time, leading to the
following definition:

Definition 4.7. A beat interval R = [r1, r2] is ∆-applicable
if r2 − r1 ≥ ∆ and the inputs are stable during R. We use
the notation R|∆ := [r1 + ∆, r2].

Hopefully, there exists some ∆, s.t. for any ∆-applicable
interval R, the outputs are decisive in R|∆. That is, if the
inputs do not change for long enough, then as long as they
continue not to change, the outputs are in agreement and
do not change. However, due to Theorem 1 and Theorem 2
this is impossible; we therefore add the following definitions:

Definition 4.8. The outputs are k-decisive during beat
interval R = [r1, r2] if the outputs are in agreement during
R; and R consists of k disjoint intervals R1, . . . , Rk, such
that: a.

⋃
Ri = [r1, r2]; b. for each interval Ri the outputs

are stable.

Definition 4.9. A system k-changes its mind in the
interval [r1, r2] if k is the minimal value such that the out-
puts are (k+1)-decisive. Alternatively, we say that the system
changes its mind k times.

Notice that “decisive” as defined in Definition 4.6 is the
same as “0-changes its mind” as defined in Definition 4.9.

The system is considered to uphold (k, ∆)-repetitive con-
sensus behavior, if (for ∆-applicable intervals) the non-faulty
nodes agree on their output, “validity” holds, and the out-
put does not change more than k times. The following is a
formal definition:

Definition 4.10. A system upholds a (k, ∆)-repetitive
consensus behavior during interval R, if for any ∆-applicable
interval R′ ⊂ R:

1. Agreement: The outputs are in agreement in R′|∆;

2. Validity: For any beat r ∈ R′|∆, if Vr 6=⊥ then some

non-faulty node has Vr as its input value (during R′);
if all non-faulty nodes have the same input value ν
(during R′), then Vr = ν;

3. Bounded changes: The system changes its mind
during R′|∆ at most k times.

Note that the above definition is applicable only for R’s
larger than ∆. Definition 4.10 defines “desired behavior”,
in the context of the repetitive consensus problem. It refers
to any subinterval R′ = [r1, r2] of length at least ∆, saying
that if the inputs are stable throughout R′ then the follow-
ing holds: “agreement” states that all outputs in the interval
[r1 + ∆, r2] are the same at all non-faulty nodes. “validity”
extends the definition from Section 2 to the distributed syn-
chronous model at hand. Lastly, “bounded changes” states
that the output of the system (in the interval [r1 + ∆, r2])
may change at most k times. The motivation behind such a
definition is straightforward: if the inputs are stable for long
enough, then the system agrees on its output, the output is
related (in a reasonable way) to the input, and the output
does not change more than k times.

Definition 4.11. The k-repetitive consensus prob-
lem (k-RC for short) is solved by an algorithm A if there
exists a constant ∆ such that for any interval R the system
upholds a (k, ∆)-repetitive consensus behavior.

Definition 4.12. The self-stabilizing k-repetitive con-
sensus problem (k-SSRC for short) states that: there exist
constants ∆, ∆stabilize, s.t. for any interval [r1, r2] with no
transient faults, where r2 − r1 ≥ ∆stabilize, the system up-
holds the (k, ∆)-repetitive consensus behavior in the interval
[r1 + ∆stabilize, r2]. ∆stabilize is called the convergence
time.

The distributed model presented above is a weaker model
(has less assumptions) than the computational model of

Algorithm ss-Rep-Cons /* executed at node p */
/* P is a self-stabilizing pulse with Cycle > ∆agree

a */
On beat: (signal from global beat system)

1. Execute a single beat of P;

2. If P invoked a pulse at the current beat:

/* “vals” represents the agreed input vector */

(a) If vals contains (at least) n− f same value ν then set Outputp := ν;
Else if Outputp does not appear f + 1 times in vals, set Outputp :=⊥;

(b) Start executing Byzantine agreement on Ip; /* Ip is p’s current input */
(denoted by Byz-Agreep)

(c) Start executing Byzantine consensus on Outputp;
(denoted by Byz-Cons)

/* vals[q] holds q’s input value */

3. Once a q’s Byz-Agreeq agreement terminates with v, update vals[q] := v;

4. Once the Byz-Cons consensus terminates with v′, update Outputp := v′;

5. Set Op := Outputp; /* Op is p’s current output */

a∆agree is the number of rounds to execute Byzantine agreement.

Figure 1: An algorithm that solves the 2-SSRC problem in the GBS model.

Section 2. Therefore, the lower bounds of Section 3 hold
for the distributed model as well. 3

Corollary 1. The 0-RC problem cannot be solved; The
0-SSRC problem cannot be solved, for any value of ∆stabilize.

Proof. Immediate from Theorem 1, Theorem 2 and the
discussion in Section 2.1.

Remark 4.2. Notice that the first part of the above corol-
lary holds for both self-stabilizing and non-self-stabilizing mod-
els. That is, the 0-RC problem cannot be solved even in
a non-self-stabilizing synchronous model in the presence of
even a single Byzantine fault.

5. SOLVING SS-REPETITIVE CONSENSUS
It is impossible to solve the 0-SSRC problem (or even

the 0-RC problem) for any value of f > 0; in addition, for
n = 3f +1, |V | ≥ 3 it is impossible to solve the 1-SSRC (and
the 1-RC) problem. In the following section we present a
solution for the 2-SSRC problem for any value of n ≥ 3f +1
(see Figure 1).

The ss-Rep-Cons algorithm (see Figure 1) has three main
goals: to have all correct nodes agree on the same vector of
input values vals, to agree on Outputp and to have Outputp

change as little as possible. The first goal is achieved by ex-
ecuting Byzantine agreements on each node q’s input value
(Line 2.b) and by storing the result in vals[q] (Line 3). This
ensures that, all correct nodes have a vector, vals, of agreed
input values.

The second and third goals are achieved by the update
rule in Line 2.a; however, this update is dependent on the
previous value of Outputp. Thus, all correct nodes are also
required to agree on the previous value of Outputp; which is
done by executing a Byzantine consensus Byz-Cons (Line 2.c).
The feedback update rule used in Line 2.a (specifically, the

3For a detailed discussion on the applicability of the com-
putational model’s lower bounds, see Section 2.1.

second line) is essential to the stabilizing nature of ss-Rep-
Cons. If there was a “static” update rule instead (one which
ignores the previous value of Outputp) it would incur more
output changes than required by the present value.

To facilitate the above method of operation, the Byz-Cons
instance and the different Byz-Agreep instances must start
their execution at all correct nodes at the same round, and
be executed properly by all correct nodes (Byz-Cons, and
Byz-Agreep are not self-stabilizing). Thus, a self-stabilizing
pulsing algorithm P is used as a building block4.
P’s convergence time is ∆P and P’s Cycle is set to be long

enough to execute Byz-Cons and Byz-Agree between two
consecutive pulses. Once P stabilizes, each time it pulses the
correct nodes start executing a new instance of Byz-Cons
and the different Byz-Agreeps. These algorithms terminate
before the next pulse of P and thus all correct nodes have an
agreed view of vals and of Outputp. From this point on, all
correct nodes continue to agree on vals and on the previous
value of Outputp and thus also on the new value of Outputp

(Outputp is dependent only on the value of vals and on the
previous value of Outputp).

Remark 5.1. In the context of ss-Rep-Cons ∆node is
defined to be equal to ∆P .

5.1 Correctness Proof

Lemma 1. If the system has been coherent for ∆P beats,
then for as long as the system stays coherent: all correct
nodes enter Line 2 once every Cycle beats and do so in uni-
son.

Proof. Follows immediately from the properties of a self-
stabilizing Byzantine tolerant pulsing algorithm. See [5] for
more information on pulsing algorithms.

4A pulsing algorithm invokes “pulses” every Cycle rounds
at all correct nodes simultaneously (see [5]).

P is a self-stabilizing pulsing algorithm. Thus, after ∆P
rounds, P stabilizes and starts pulsing in a regular pattern.
Denote the round at which P has stabilized by rstabilize.
Consider rstart to be the first round at which P invokes a
pulse after rstabilize; in other words, rstart is the first round
in which a pulse is invoked after P has stabilized.

Lemma 2. If the system is coherent for Cycle rounds af-
ter rstart, then for as long as the system stays coherent: all
correct nodes have the same value of vals and the same value
of Outputp.

Proof. Starting at round rstart, all correct nodes start
executing Byz-Agreep for each node p. Since P’s Cycle is
long enough to allow a Byzantine agreement to terminate, all
correct nodes terminate all the Byz-Agreep instances (even
for a Byzantine node p) with agreed output values. Thus,
when updating the values of the vector vals at Line 3, all
correct nodes update it in the same manner. Since Line 3 is
the only line in which vals is updated, we have that starting
from round rstart + Cycle, all correct nodes have the same
value for vals.

Notice that Outputp is updated in two locations: Line 1.a
and Line 4. For the same reason as in the above para-
graph, all correct nodes update Outputp in the same man-
ner in Line 4. In addition, since all correct nodes have
the same view of vals and Outputp (starting from round
rstart + Cycle), they all update Outputp in the same way
also in Line 1.a. And we have that starting from round
rstart + Cycle, all correct nodes have the same view of vals
and of Outputp.

Lemma 2 implies that the “agreement” property holds
from round rstart + Cycle and onwards. This is because the
output Op of node p is determined by Line 5 - which sets
Op := Outputp - and from the above lemma all correct nodes
have the same value of Outputp = Op.

Let rstart be as defined above, and let rend, rend ≥ rstart +
3 · Cycle be any round such that the system is coherent in
the interval [rstart, rend].

Lemma 3. “Validity” of the (k, 2 · Cycle)-repetitive con-
sensus behavior holds for ss-Rep-Cons during the interval
[rstart + Cycle, rend] (for any k).

Proof. According to the previous lemma, all correct nodes
have the same view of vals in the interval [rstart+Cycle, rend].
Let [r1, r2] ⊂ [rstart + Cycle, rend] be the round interval in
which all non-faulty nodes have stable input values. Within
Cycle rounds of r1, a pulse will be invoked by P, causing
all non-faulty nodes to start executing Byz-Agreep; all the
Byz-Agreep instances terminate before the next pulse is
invoked (no later then r1 + 2 · Cycle). Thus, during the
interval [r1 + 2 · Cycle, r2] all correct nodes have the same
view of vals, which reflects the “real” input values of each
correct node. Since correct nodes enforce Outputp’s adher-
ence to the validity requirement (see Line 2.a), then during
the interval [r1 + 2 · Cycle, r2] the output of ss-Rep-Cons
conforms to validity.

Lemma 4. The “Bounded changes” property of the
(2, 2 ·Cycle)-repetitive consensus behavior holds for ss-Rep-
Cons during the interval T = [rstart + Cycle, rend].

Proof. Let [r1, r2] ⊂ T (where r2− r1 ≥ 2 ·Cycle) be an
interval in which the inputs are stable. Recall that all nodes

see the same value of vals, and that vals reflects the input
values of the correct nodes. Let Cv be the number of non-
faulty nodes with input value v. Clearly,

∑
v Cv = n − f .

Assume by contradiction that two different Cv, Cv′ ≥ n−2f ;
therefore Cv + Cv′ ≥ 2n − 4f ; and since 3f < n we have
that Cv + Cv′ > n − f . But this contradicts the fact that
Cv + Cv′ ≤

∑
v Cv = n− f . Thus, Cv ≥ n− 2f holds for at

most one Cv.
First, consider the case in which no Cv is ≥ n − 2f . In

this case, when executing Line 2.a, the value of Outputp is
either unchanged or changes to ⊥. That is, it changes at
most once.

Now consider the case in which some Cv is ≥ n − 2f . In
this case, when executing Line 2.a, the value of Outputp is
either unchanged, v, or ⊥. In addition, notice that once
Outputp = v it cannot change to some other value unless a
correct node has changed its value. Thus, Outputp changes
at most twice (to ⊥ and then to v).

Theorem 4. ss-Rep-Cons solves the 2-SSRC problem,
for ∆ := 2 · Cycle (with ∆stabilize := ∆P + 4 · Cycle).

Proof. From Lemma 1, Lemma 2, Lemma 3 and Lemma 4
we have that if the system has been coherent for a period of
∆P + 4 · Cycle, then the following holds:

1. P “stabilizes” after ∆p rounds; denote by rstabilize the
round at which P “stabilizes”.

2. P will invoke a pulse at some round in the interval
[rstabilize, rstabilize+Cycle]; let rstart denote this round.

3. Let rend be the maximal round such that during the
interval [rstart + Cycle, rend] no transient faults occur.
The properties of the (2, 2 ·Cycle)-repetitive consensus
behavior hold during [rstart + Cycle, rend].

From the above, ss-Rep-Cons solves the 2-SSRC prob-
lem, for ∆ := 2 ·Cycle, and ∆stabilize := ∆P +4 ·Cycle.

In the binary setting (the input value range contains 2
values) ss-Rep-Cons matches the lower bound.

Theorem 5. ss-Rep-Cons solves the 1-SSRC problem
when |V | = 2.

Proof. The proof is the same as above, with the follow-
ing observation: when |V | = 2, the output can change only
once.

We can thus follow the lines of the proof of Lemma 4, with
a single change: in the case where some Cv ≥ n − 2f , exe-
cuting Line 2.a can change Outputp only to v: if Outputp =
v then Outputp never changes. If Outputp = 1 − v, then it
cannot change to ⊥, since if Outputp does not appear f + 1
times in vals then 1− Outputp = v appears n− f times in
vals. Thus, Outputp is changed to v.

With the above modification, Lemma 4 proves that when
|V | = 2 there is at most a single change in output. Thus,
together with the rest of the lemmata, ss-Rep-Cons solves
the 1-SSRC problem.

6. RANGE VALIDITY
In the above sections, the “exact value” (EV for short)

validity was discussed. It is interesting to consider a differ-
ent validity requirement: the “range value” validity (RV for

short)5, which states that the output of the function F is
in the range of input values of correct nodes. Notice that
EV may output ⊥, while RV must always output a value
v ∈ V . Formally, RV is defined as follows: if F(~x) = ν then∑

ν′≤ν #ν′(~x) ≥ f + 1 and
∑

ν′≥ν #ν′(~x) ≥ f + 1.
In the next subsections, we show that 0-SSRC cannot be

solved for RV-validity, for any value of f > 0. In addition, we
also show how to solve the 1-SSRC problem for RV-validity,
when n > 4f , thus matching the lower bound. Table 2
presents the lower and upper bounds regarding RV-validity.

Table 2: Summary of results for RV-validity

parameters count-instability theorem#
f > 0 ≥ 1 Theorem 6

v ≥ n, n + bn−1
2
c < 5f ≥ 2 Theorem 7

n ≥ 4f + 1 1 Theorem 8

We start with the impossibility results followed by upper
bounds.

6.1 Impossibility Results: Lower Bounds
Both Theorem 1 and Theorem 2 hold for RV-validity, as

Theorem 6 states. Theorem 7 extends the bounds for RV-
validity only.

Theorem 6. For any RV system S with f ≥ 1 the count-
instability of S is at least 1, and the length-instability of S
is ∞.

Proof. Same proof as for EV-validity.

Theorem 7. For any RV system S with v ≥ n and n +
bn−1

2
c < 5f the count-instability of S is at least 2.

Proof. Let m0 be any state and ~x0 = (0, 1, . . . , n − 1).
Due to RV-validity, f ≤ F(~x0, m0) ≤ n − f − 1. There are
2 cases: F(~x0, m0) ≤ bn−1

2
c and F(~x0, m0) > bn−1

2
c; for

symmetry reasons they are equivalent.
We can thus consider only the case F(~x0, m0) ≤ bn−1

2
c.

Mark by k := F(~x0, m0), thus f ≤ k ≤ bn−1
2
c < 2f . Let

~x1 = (n, n, . . . , n︸ ︷︷ ︸
k−f+1

, k − f + 1, k − f + 2, . . . , n− 1︸ ︷︷ ︸
n−k+f−1

) .

Consider F(~x1, m1), where m1 := τ(~x0, m0). Notice that ~x1

contains k−f+1 values of “n”, thus (due to RV-validity) f−
(k−f +1) = 2f−k−1 additional values are “to be ignored”.
Therefor, the output must be ≤ n − 1 − (2f − k − 1) =
n+k−2f . That is, due to RV-validity we have that k+1 ≤
F(~x1, m1) ≤ n + k − 2f . Since k = F(~x0, m0) it holds that
F(~x0, m0) 6= F(~x1, m1).

Define k′ = F(~x1, m1). If k′ < 2f then define

~x2 := (n, n, . . . , n︸ ︷︷ ︸
f

, f, f + 1, . . . , n− 1︸ ︷︷ ︸
n−f

) .

In this case, 2f ≤ F(~x2, m2) ≤ n−1 (where m2 := τ(~x1, m1)).
And we have that F(~x1, m1) 6= F(~x2, m2). Therefore, the
run from m0 on the path ~x0, ~x1, ~x2 has 2 output changes.

On the other hand, consider the case where k′ ≥ 2f . Let

~x2 := (0, .., 0︸ ︷︷ ︸
k−f+1

, k − f + 1, k − f + 2, .., n + k − 2f︸ ︷︷ ︸
n−f

, 0, .., 0︸ ︷︷ ︸
2f−k−1

) .

5RV’s definition is taken from [7]. Note that the current
paper’s EV definition differs from the EV in [7].

Notice that ~x2 contains exactly f “0”s. Moreover, ~x2 con-
tains exactly f values that are > n + k − 3f ; thus, due to
RV-validity we have that F(~x2, m2) ≤ n + k − 3f . Since
k ≤ bn−1

2
c, it holds that that F(~x2, m2) ≤ n + bn−1

2
c − 3f .

We assumed k′ ≥ 2f and since n + bn−1
2
c < 5f , thus

F(~x2, m2) < k′ = F(~x1, m1). That is, there were 2 output
changes.

6.2 Solving 1-SSRC for RV-validity

6.2.1 Definitions
Prior to solving the 1-SSRC problem, a definition of the

problem in the context of RV-validity is required. The only
change in the definition from EV-validity is in the “Validity”
property of the (k, ∆)-repetitive consensus behavior defini-
tion. We thus adapt this definition in the following manner:

Definition 6.1. For RV-validity let the “Validity” prop-
erty of the (k, ∆)-repetitive consensus behavior be:
For any beat r ∈ R′|∆, if Vr is the output value then some
non-faulty node has input value ν1 ≤ Vr and some non-
faulty node has input value ν2 ≥ Vr.

Corollary 2. If v ≥ n and n + bn−1
2
c < 5f , the 1-RC

(and 1-SSRC) problem cannot be solved for RV-validity.

Proof. Follows immediately from Theorem 7.

6.2.2 Algorithm
The algorithm ss-Rep-Cons also solves the 1-SSRC prob-

lem - for n ≥ 4f + 1 - in the RV-validity setting, provided
that we replace Line 2.a with the following:

• Remove f lowest and f highest values from vals. Let
high be the new highest value in vals, and low be the
new lowest value (after the removal);

• If Outputp /∈ [low, high] then set Outputp to be the
median value in vals.

This change incorporates the difference between EV-validity
and RV-validity.

6.2.3 Proofs

Theorem 8. ss-Rep-Cons (with the above changes) solves
the 1− SSRC problem for n ≥ 4f + 1.

Proof. Notice that Lemma 1, Lemma 2 and Lemma 3
all hold for RV-validity. Thus, it is left to show that once
the system has stabilized, it does not change its output more
than once. Consider v′ to be the value of Outputp at all
nodes after ss-Rep-Cons has stabilized (v′ is well defined
due to Lemma 2).

Consider the first beat in which Outputp changes to v 6=
v′; Sort the input values of the correct nodes, and let vlow

be the f +1st input value from the bottom, and vhigh be the
f +1st from the top. The median value v has at least 2f +1
values that are lower or equal to it. There are at most f
faulty nodes, and thus there are at least f +1 correct nodes
lower or equal to v. Thus, vlow ≤ v. For the same reason
vhigh ≥ v. Thus, the calculated median is in the range
[vlow, vhigh]; in other words, v ∈ [vlow, vhigh].

In any future beat, when values are removed from vals,
the values vlow and vhigh are not discarded, since only the f

lowest and f highest values are removed. Thus, when calcu-
lating low and high (see algorithm in previous subsection)
the following holds: low ≤ vlow and high ≥ vhigh. Thus,
Outputp ∈ [low, high], which means that Outputp is not up-
dated; i.e. , Outputp = v. Thus, the output value of the
correct nodes changes at most once after ss-Rep-Cons has
converged.

7. DISCUSSION

7.1 Related Problems
There are two problems that seem to be related to repet-

itive consensus: self-stabilizing Byzantine agreement, and
continuous consensus. However, both problems differ from
repetitive consensus on the same major issue.

Self-stabilizing Byzantine Agreement (SSBA):
This problem consists of having a Byzantine agreement that
is self-stabilizing (see [3] for more information). That is,
starting from an arbitrary memory state, any node p can
initiate an agreement procedure on its value. Due to the
self-stabilizing property, p can repeatedly initiate agreement
procedures on its value; thus, in a sense, SSBA can be seen
as a repetitive Byzantine agreement. The main difference
between repetitive consensus and SSBA lies in the difference
in their validity property. SSBA requires that if the leader
is non-faulty, then all non-faulty nodes agree on the leader’s
value. Since SSBA requires an agreement on a single (leader)
node’s value, if this value changes then the agreement should
change with it. However, in repetitive consensus, we require
a consensus of all nodes’ values: thus, if one node’s value
changes, and this node is Byzantine, then the output value
should not change. Therefore, in repetitive consensus, a sin-
gle node changing its input value must not lead to a change
in the output, where as in SSBA a single node’s change of
input value should lead (if it is the leader) to the change of
the output value.

Continuous Consensus (CC):
The CC problem involves continuously agreeing on all the
inputs of all the nodes in the system. That is, each node
should have a list of all the inputs that each node in the
system has had until now (see [12] for more information).
However, the property that all nodes agree on the input
values of all other nodes during the entire execution is still
not sufficient to solve the 0-RC problem.

As in SSBA, the essence of this impossibility lies in the
requirement that if a Byzantine node changes its input value,
the output value of the repetitive consensus does not change.
Thus, in CC, even if all non-faulty nodes have all the input
values of all nodes, they cannot differentiate between a non-
faulty node that has changed its value, and a Byzantine node
mimicking a new input value.

Remark 7.1. The above comparison leads to the conclu-
sion that the impossibility result of Corollary 1 stems from
the requirements of the repetitive consensus problem, and
not from the ability to gather information from the entire
system. In other words, it is not missing data that prohibits
the repetitive consensus output; there simply does not exist a
function on the nodes’ inputs that satisfies the requirements
of the 0-RC problem.

7.2 Pseudo Self-stabilization
In the context of self-stabilization, algorithms that con-

verge to a “safe” state and leave the safe states at most a

constant number of times are called “pseudo self-stabilizing”
algorithms (see [6]). Depending on how one defines a safe
configuration in the context of Byzantine faults, the algo-
rithms presented in the current paper may be considered as
pseudo self-stabilizing, where the constant number of times
they may leave “safe” states is 1 or 2.

7.3 Bounded-delay Network
In the full paper the results herein are extended to the

bounded-delay model, in which there is no global-beat-system;
instead, a bound on messages’ delivery time is assumed. The
main idea behind this extension is the usage of a “trans-
former” from the global-beat-system model to the bounded-
delay model, which conserves the properties of ss-Rep-Cons.

7.4 Open Questions
We have shown that for any system with f > 0 the count-

instability is at least 1, and that this is tight for |V | = 2.
In addition, for systems with n = 3f + 1 (where |V | ≥ 3)
we have shown that the count-instability is at least 2, and
ss-Rep-Cons reaches this bound. This raises the following
question: what is the exact relation between |V |, n and f
regarding count-instability and what algorithm can achieve
it?

When considering the RV-validity scenario it becomes even
more interesting: we have shown how to solve the 1-SSRC
problem for any n ≥ 4f + 1. What happens for smaller n?
For n ≤ 4f we have only given lower bounds. Can upper
bounds be given for n ≤ 4f?

Acknowledgements
We would like to thank Yoni Peleg for contributing Theorem 5.

8. REFERENCES
[1] Hagit Attiya and Jennifer Welch. Distributed

Computing: Fundamentals, Simulations and Advanced
Topics (2nd edition). John Wiley Interscience, March
2004.

[2] A. Bar-Noy, X .Deng, J. Garay, and T. Kameda.
Optimal amortized distributed consensus. Information
and Computation, 120(1):93–100, 1995.

[3] A. Daliot and D. Dolev. Self-stabilizing byzantine
agreement. In Proc. of the Twenty-fifth ACM
Symposium on Principles of Distributed Computing
(PODC’06), Denver, Colorado, Jul 2006.

[4] L. Davidovitch, S. Dolev, and S. Rajsbaum. Stability
of multivalued continuous consensus. SIAM Journal
on Computing, 37(4):1057–1076, 2007.

[5] D. Dolev and E. N. Hoch. On self-stabilizing
synchronous actions despite byzantine attacks. In
Proc. the 21st Int. Symposium on Distributed
Computing (DISC’07), Lemesos, Cyprus, Sep. 2007.

[6] S. Dolev. Self-Stabilization. The MIT Press, 2000.

[7] S. Dolev and S. Rajsbaum. Stability of long-lived
consensus. J. Comput. Syst. Sci., 67(1):26–45, 2003.

[8] Michael J. Fischer. The consensus problem in
unreliable distributed systems (a brief survey). In
Marek Karpinski, editor, FCT, volume 158 of Lecture
Notes in Computer Science, pages 127–140. Springer,
1983.

[9] Eli Gafni, Sergio Rajsbaum, Michel Raynal, and
Corentin Travers. The committee decision problem. In
José R. Correa, Alejandro Hevia, and Marcos A. Kiwi,
editors, LATIN, volume 3887 of Lecture Notes in
Computer Science, pages 502–514. Springer, 2006.

[10] N. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[11] Keith Marzullo. Tolerating failures of
continuous-valued sensors. ACM Trans. Comput.
Syst., 8(4):284–304, 1990.

[12] Tal Mizrahi and Yoram Moses. Continuous consensus
via common knowledge. In TARK ’05: Proceedings of
the 10th conference on Theoretical aspects of
rationality and knowledge, pages 236–252, Singapore,
Singapore, 2005. National University of Singapore.

[13] Roberto De Prisco, Butler Lampson, and Nancy
Lynch. Revisiting the PAXOS algorithm. Theoretical
Computer Science, 243(1–2):35–91, 2000.

[14] Marco Schneider. Self-stabilization. ACM Comput.
Surv., 25(1):45–67, 1993.

[15] F. Becker and S. Rajsbaum and I. Rapaport and E.
Re’mila. Average binary long-lived Consensus:
quantifying the stabilization role played by memory.
In Proc. 15th International Colloquium on Structural
Information and Communication Complexity
(SIROCCO’08), Switzerland, June. 2008.

