
An Optimal Self-Stabilizing Firing Squad?

Danny Dolev1,?? Ezra N. Hoch1, Yoram Moses2

1 The Hebrew University of Jerusalem
Jerusalem, Israel

2 Technion—Israel Institute of Technology
Haifa, Israel

Abstract. Consider a fully connected network where up to t processes
may crash, and all processes start in an arbitrary memory state. The
self-stabilizing firing squad problem consists of eventually guaranteeing
simultaneous response to an external input. This is modeled by requir-
ing that the non-crashed processes “fire” simultaneously if some correct
process received an external “go” input, and that they only fire as a
response to some process receiving such an input. This paper presents
Fire-Squad, the first self-stabilizing firing squad algorithm.

The Fire-Squad algorithm is optimal in two respects: (a) Once the
algorithm is in a safe state, it fires in response to a go input as fast as
any other algorithm does, and (b) Starting from an arbitrary state, it
converges to a safe state as fast as any other algorithm does.

1 Introduction

The firing squad problem was first introduced in [2,3]. Informally, it is
assumed that at any given round a process may receive an external “go”
input, which is considered a request for the correct processes to simul-
taneously “fire.” Roughly, a good solution is a protocol satisfying three
properties: (a) if some process fires in round r then all the non-crashed
processes fire simultaneously in round r; (b) if a correct process receives
a go input in round r′ then it will fire at some later round r > r′; and
(c) a process fires in round r only if some process received a go input in
some round r′ < r. (The formal definition disallows a solution in which a
single input induces a constant firing.)

Requiring the processes to fire simultaneously captures an important
aspect of distributed systems: There are cases in which it is important

? This is the authors self-copy of the paper. The original publication is available at
www.springerlink.com

?? This research was supported in part by Israeli Science Foundation (ISF) Grant
number 0397373.

2

that activities begin in the same round, e.g., when one distributed algo-
rithm ends and another one begins, and the two may interfere with each
other if executed concurrently. Similarly, many synchronous algorithms
are designed assuming that all sites start participating in the same round
of communication. Finally, simultaneity may be motivated by the fact
that a distributed system interacts with the outside world, and these in-
teractions should often be simultaneously consistent. A non-simultaneous
announcement to financial (stock) markets may enable unfair arbitrage
trading, for example.

Coordinating simultaneous actions is not subsumed by the consensus
task. Indeed, even when no transient failures are considered possible (so
there is a global clock and no self-stabilization is required), solving the
firing squad problem or simultaneously deciding in a consensus task can
be considerably harder than plain consensus [4,8]. This implies, in partic-
ular, that clock synchronization [7,11,6,12,18] does not suffice for solving
the firing squad problem in a self-stabilizing manner; as it can be seen
as providing round-numbers to a self-stabilizing environment, which still
leaves the firing squad problem as a non-trivial problem.

The firing squad problem is a primary example of a problem requir-
ing simultaneously coordinated actions by the non-faulty processes. Si-
multaneous coordination has been shown to be closely related to the
notion of common knowledge [10,9], and this connection has been used
to characterize the earliest time required to reach simultaneous consen-
sus, firing squad, and related problems in a variety of failure models
[8,15,1,17,13,16]. One of the consequences of this literature is the fact
that the time at which a simultaneous action that is based on initial val-
ues or external inputs can be performed depends in a crucial way on the
pattern in which failures occur.

A general form of simultaneous agreement called continuous consensus
was defined in [13]. In this problem, each of the processes maintains a list
of events of interest that have taken place in the run, and it is guaranteed
that the lists at all non-faulty processes are identical at all times. They
present an optimal (non-stabilizing) implementation of such a service,
which is a protocol called ConCon. If we define as the events to be
monitored by ConCon to be of the form (go, p, k), corresponding to
a go message arriving at process p at the end of round k, then a firing
squad protocol can be obtained from ConCon simply by having the non-
faulty processes fire exactly when a (go, p, k) event first appears in their
identical copies of the “common” list. We shall refer to this solution to
the firing squad problem based on ConCon by CCfs.

3

Traditionally, the firing squad problem assumes that processes do not
recover, i.e., failed processes stay failed forever. Moreover, even though
it is easy to extend the firing squad problem so that it can be repeat-
edly executed (i.e., allow for multiple firings over time, given that multi-
ple go inputs are received), it assumes that nothing in the system goes
amiss—except possibly for the crash failures being accounted for. Adding
support for handling transient faults increases the robustness of a firing
squad algorithm in this aspect. Indeed, a self stabilizing solution will, in
particular, be able to cope with process recovery: Following process re-
coveries, the system will eventually converge to a valid state and continue
operating correctly.

Transient faults alter a process’s memory state in an arbitrary way. A
self-stabilizing algorithm [5] is assumed to start in an arbitrary state and
be guaranteed to eventually reach a state from which it operates according
to its intended specification. Starting the operation at an arbitrary state
enables the adversary to “plant” false information, such as the receipt of
go messages in the past, which can cause the algorithm to unjustifiably
fire, either immediately, or within a few rounds. One of the challenges in
designing an efficient self-stabilizing firing squad algorithm is in bounding
the damage that can be caused by such false information in the initial
state.

Perhaps the first candidate solution would be to initiate an instance
of CCfs in every round, with t + 1 instances executing concurrently at
any given time, where t is an upper bound on the number of possible
crashed processes. Firing would then take place if it is dictated by any
of the instances. Since the component instances of such a solution are
not themselves stabilizing, all we can show is that such a solution is
guaranteed to stabilize after t+1 rounds, regardless of the failure pattern.
We shall present a solution that does not consist of such a concurrent
composition. Moreover, it performs subtle consistency checks to restrict
the impact of false information that appears in the initial state. As a
result, in some cases we obtain stabilization in as little as two rounds.

The above discussion points out the stabilization time as an impor-
tant aspect of a self-stabilizing firing squad algorithm. Another central
performance parameter is its swiftness: Once the algorithm has stabilized,
how fast does it fire given that some process receives a go input? In ad-
dition to solving the self-stabilizing firing squad problem, the algorithm
presented in this paper is also optimal in terms of both its stabilization
time, and its swiftness.
The main contributions of this paper are:

4

– A self-stabilizing variant of the firing squad problem is defined, and
an algorithm solving it in the case of crash failures is given.

– The proposed algorithm, called Fire-Squad, is shown to be optimal
both in terms of the time it requires to stabilize and in terms of the
time it takes, after stabilization, to fire in response to a go input.

– Finally, the optimality is demonstrated in a fairly strong sense: For
every possible failure pattern, both stabilization time and swiftness
are the fastest possible, in any correct algorithm. In extreme cases
this enables stabilization in two rounds and firing in one round.

The rest of the paper is organized as follows. Section 2 describes the
model and defines the problem at hand. Section 3 provides lower bounds
for the optimality properties. Section 4 describes the proposed solution,
Fire-Squad, and proves its correctness and optimality. Finally, Section 5
concludes with a discussion.

2 Model and Problem Definition

The system consists of a set P = {1, . . . , n} of processes. Communication
is done via message passing, and the network is synchronous and fully
connected. The system starts out at time3 k = 0, and a communication
round r starts at time k = r − 1 and ends at time k = r. At time k each
process computes its state according to its state at time k−1, the internal
messages it received by time k (sent by other processes at time k − 1)
and external inputs (if any) that it received at time k. In addition, at any
time k ≥ 0 a process can produce an external output (such as “firing”).

Let Ik
p ∈ {0, 1} represent the external input of process p at time k. We

say that p received an external go input at time k if Ik
p = 1; Otherwise,

(if Ik
p = 0), we say that p did not receive a go input. Let Ip = {Ik

p }∞k=0,
let Ik = {Ik

p }np=1 and let I = {Ip}np=1. I is “the input pattern”, and Ik is
the (joint) input at time k. In a similar manner define Ok

p ∈ {0, 1},Op,Ok

and O as the output pattern. If Ok
p = 1 we say that p fires at time k,

and if Ok
p = 0 we say p does not fire at time k. It will be convenient to

say that a fire action occurs at time k if Ok
p = 1 for some process p, and

similarly that a go input is received at time k if Ik
p = 1 for some p.

Denote by t an a priori bound on the number of faulty processes in
the system. For ease of exposition, we assume that t < n − 1, so that
there are at least two processes that need to coordinate their actions. We

3 All references to “time” in this paper refer to non-negative integer times.

5

assume the crash failure model, in which a faulty process p does not send
any messages after its failing round; it behaves correctly before its failing
round, and sends an arbitrary subset of its intended messages during its
failing round.

A failure pattern describes for each time k which processes have failed
by time k, and for each process that fails in round k (i.e., did not fail by
time k − 1), which of its outgoing communication channels are blocked
(and hence do not deliver its messages) in round k. Notice that a process
may fail in round k even if all of its messages are delivered. We denote
a failure pattern by F , and by Fk the set of processes that fail in F
by time k. Observe that Fk ⊆ Fk+1; in the crash failure model failed
processes do not recover. Similarly, we use Gk = P \ Fk to denote the
set of processes that are non-faulty at time k. Finally, G will denote the
set of processes that remain non-faulty throughout F , i.e., G =

⋂∞
k=0 Gk.

Notice that the set G is always defined in terms of a failure pattern F ,
which is typically clear from the context.

In addition to crashes, there are also transient faults. Formally, we
denote by Sk

p the state of a process p at time k. We denote by Sk =
(Sk

1 , . . . ,Sk
p , . . . ,Sk

n) the state of the entire system at time k. Transient
faults are captured by the assumption that the system may start from
any (arbitrary) state, and there is some round r such that for all rounds
r′ ≥ r the intended algorithm operates as written. In other words, for any
possible state S, if S0 = S then eventually (starting from some round r)
the algorithm operates correctly.

For the following analysis, each algorithm A is assumed to have an
initial state SAinit. For self-stabilizing algorithms, we fix an arbitrary state
as SAinit (as the algorithm should converge starting from any initial state).
The a priori bound of t on the number of failures is assumed to be hard-
wired into the algorithm, and is not affected by transient faults. Such
an algorithm is assumed to be executed only in the context of failure
patterns in which at most t processes crash. For such failure patterns F ,
the algorithm A produces an output pattern O starting from state S
given an input I; we denote this output pattern by O = A(S, I,F).

Informally, the Firing Squad problem requires that: (1) all processes
fire together (“simultaneity”); (2) if a go input is received then a fire
action occurs (“liveness”); and (3) the number of fire actions is not larger
than the number of received go inputs (“safety”). Formally,

Definition 1. Let O = A(S, I,F) and let G denote the set of pro-
cesses that remain non-faulty throughout F . We say that O satisfies the

6

FS(k) properties (capturing correct firing-squad behavior from time k on)
w.r.t. I, F , and O, if the following conditions hold for all k′ ≥ k:

1. (simultaneity) If Ok′
p = 1 for some p ∈ P then Ok′

q = 1 for all q ∈ G;
2. (liveness) If Ik′

p = 1 for some p ∈ G, then there is k′′ > k′ s.t. Ok′′
p = 1;

3. (safety) The number of times k′′ satisfying k ≤ k′′ ≤ k′ at which a
fire action occurs at k′′ is not larger than the number of times h in
the range 0 ≤ h < k′ at which go inputs are received.

We can use the FS(k) properties to define when an algorithm solves
the firing squad problem in a self stabilizing manner. We first use it to
define the stabilization time of an algorithm as follows:

Definition 2 (Stabilization time). The stabilization time of A on S,
I and F , denoted by stab(A,S, I,F), is the minimal k ≥ 0 such that
FS(k) holds with respect to I, F , and O = A(S, I,F). (If FS(k) holds for
no finite k, then stab(A,S, I,F) =∞.)

Notice that the “safety” property in FS(k) relates outputs starting
from time k to inputs starting from time 0. Here’s why: Since we consider
time 0 to be the point at which transient errors end, if the system starts in
a state in which “it appears as if” go inputs were received before time 0,
the good processes may fire after time 0 without a go message actually
having been received. Once all firings induced by such “phantom” go
inputs have occurred, we can legitimately require firing events to happen
only in response to genuine go message receipts. We thus think of the
stabilization time, at which in particular the safety property of FS(k)
holds, as one after which no firing will occur in response to phantom go
messages. Rather, every firing will be justifiable as a response to some go
message received at or after time 0.

Definition 3 (SSFS Algorithm). An algorithm A solves the Self sta-
bilizing Firing Squad problem (A is an SSFS algorithm, for short) if there
exists a k < ∞ such that stab(A,S, I,F) ≤ k for every system state S,
input pattern I and failure pattern F .

Observe that in a setting with no transient faults, an algorithm A
solves the (non-self-stabilizing) Firing Squad problem if it satisfies FS(0)
with respect to I, F , and O, for every I, F and O = A(SAinit, I,F).

Notice that Definition 3 implies that any SSFS algorithm A has at
least one memory state from which the firing squad properties are guar-
anteed to hold. Denote one of these memory states by SAstab, or simply
Sstab when A is clear from the context.

7

2.1 Optimality Measures

In this work we are interested in finding an optimal SSFS algorithm.
We start by defining stabilization time optimality, which measures how
quickly algorithm A stabilizes.

Definition 4. An SSFS algorithm A is said to optimally stabilize if the
following holds for every SSFS algorithm B and every failure pattern F :

max
S,I
{stab(A,S, I,F)} ≤ max

S,I
{stab(B,S, I,F)} .

Definition 4 defines optimality of an algorithm A with respect to its
stabilization time, i.e., how quickly A starts to operate according to all
of the FS requirements. The intuition behind defining optimality in terms
of worst-case S and I is to avoid algorithms that are “specific” to an
initial memory state or input pattern. Thus, by requiring optimality in
the worst-case we ensure that the algorithm cannot be hand-tailored to a
specific setting, but rather needs to solve the SSFS problem in a “generic”
manner.

We now turn to the issue of comparing the responsiveness of distinct
firing squad algorithms. Specifically, we are concerned with how quickly
an algorithm fires after a go message is received (once the algorithm
has stabilized). For simplicity, we consider receipts of go by non-faulty
processes, since the problem specification forces a firing following such
a receipt. Another subtle issue is that if go messages are received in
different rounds between which there is no firing, then it may be difficult
to figure out which go message the next firing is responding to. Again
for simplicity, we will be interested in what will be called sequential input
patterns, in which a go is not received before all previous go’s have been
followed by firings. More formally, we define:

Definition 5 (Sequential inputs). Let A be an SSFS algorithm. We
say that the input I is sequential with respect to (A, S, F) if (i) no go
inputs are received according to I at times k < stab(A,S, I,F), (ii) go
inputs are received in I only by processes from G, and (iii) if k1 < k2 and
go inputs are received at both k1 and k2, then there is an intermediate
time k1 < k′ ≤ k2 at which a fire action occurs.

The following definition formally captures the number of firing events
that occur between the stabilization time and a given time k.

Definition 6. Let A be an SSFS algorithm and let O = A(S, I,F).
We define #[(A,S, I,F), k] to be the number of rounds k′ in the range

8

stab(A,S, I,F) ≤ k′ ≤ k such that Ok′
p = 1 holds for some process p

(i.e., a firing occurs at time k′).

By definition, if k < stab(A,S, I,F) then #[(A,S, I,F), k] = 0.
With the last two definitions, we are now able to formally compare the
responsiveness of different SSFS algorithms:

Definition 7 (Swiftness). Let A and B be SSFS algorithms. We say
that A is at least as swift as B if A fires at least as quickly as B on all
sequential inputs. Formally, we require that for every failure pattern F ,
input I, and states SA of A and SB of B, the following holds. If I is
sequential both with respect to (A, SA, F) and with respect to (B, SB,
F), then #[(A,SA, I,F), k] ≥ #[(B,SB, I,F), k] holds for every time k.
An SSFS algorithm A is optimally swift if it is at least as swift as B for
every SSFS algorithm B.

We are now in a position to state the main result of the paper: The
Fire-Squad algorithm of Figure 1 is an SSFS algorithm, is optimally
stabilizing and is optimally swift (Theorem 3).

3 Lower Bounds

In this section we provide lower bounds for the stabilization time and for
the swiftness of any SSFS algorithm A. The lower bounds build upon
previous results in the field of simultaneous agreement.

Recall that if A is a non-self-stabilizing Firing Squad algorithm, then
stab(A,SAinit, I,F) = 0 for all I and F . Therefore, in the non-self-
stabilizing case, it only makes sense to compare algorithms in terms of
their “swiftness.” In a non-self-stabilizing setting, the firing squad proto-
col CCfs (based on ConCon [13]) is optimally swift. We will use it as a
benchmark and yardstick for expressing and analyzing the performance
of self-stabilizing firing squad protocols. To compare the performance of
different algorithms, we make use of the following definitions.

Definition 8. We denote by δ(F , k) the number of processes known at
time k to be faulty by the processes in Gk in a run of CCfs with failure
pattern F .

Intuitively, δ(F, k) stands for the number of failures that are discovered by
time k in a run with pattern F . We remark that δ(F , k) is well-defined,
because the same number of faulty processes are discovered (at the same
times) in all runs of CCfs that have failure pattern F . Moreover, since

9

CCfs detects failures as a full-information protocol does, no algorithm A
can discover more failed processes than CCfs does (see [8]). Thus, δ(F , k)
is an upper bound on the number of failed process discovered by time k
by any algorithm A.

CCfs makes essential use of a notion of horizon, which is roughly the
time by which past events are guaranteed to become common knowledge.
This motivates the following definitions.

Definition 9 (Horizons). Given a failure pattern F , the horizon dis-
tance at time k, denoted by disH(F , k), is t + 1 − δ(F , k). The absolute
horizon at time k, denoted absH(F , k), is k + disH(F , k).

While the absolute horizon is an upper bound on when events become
common knowledge, the publication time is a lower bound on this time.
It is defined as follows:

Definition 10 (Publication Time). Given a failure pattern F , the
publication time for (time) k, denoted by π(F , k), is mink′≥k{absH(F , k′)}.

When F is clear from the context, it will be omitted from δ(k),
disH(k), absH(k) and π(h).

As shown in [13], for a given failure pattern F , a go input received
at time k is “common knowledge” not before time π(F , k). Thus, for a
specific algorithm A, the publication time for 0 bounds (from below) the
time k at which the first firing action can occur in O = A(Sstab, I,F).

The publication time π(F , k) is a generalization of notions developed
in [8] for Simultaneous (single-shot, non-stabilizing) Consensus. In that
paper, a notion of the waste of F is defined, and information about ini-
tial values—which can be viewed in our setting as being about external
inputs at time 0—becomes common knowledge at time t+ 1− waste. In
our terminology, this occurs precisely at the publication time π(F , 0) for
events of time 0.

The intuition behind the first lower bound is that if CCfs receives a
go input at time 0, then it fires at time π(0) (Lemma 1). Since CCfs is
optimal, an SSFS algorithm A cannot fire faster. Therefore, if we consider
A starting in a memory state where A “thinks” it received a go input 1
round ago, A will fire not before time π(0)− 1.

Lemma 1. Let F be any failure pattern and let I be an input pattern
for which Ik

q = 0 for every process q and time k ≥ 0, except for one pro-

cess p ∈ G for which I0
p = 1. The first fire action of O = CCfs(SCCfs

init , I,F)
occurs at time π(F , 0).

10

Following is the first lower bound result, stating that the worst case
stabilization time of every SSFS algorithm A is at least π(0).

Theorem 1. maxS,I{stab(A,S, I,F)} ≥ π(F , 0) holds for every SSFS
algorithm A and every failure pattern F .

Our second lower bound result, informally stating that any SSFS algo-
rithm cannot fire faster than CCfs, is captured by the following theorem.
(Notice that the claim is made with respect to sequential input patterns.)

Theorem 2. Let A be an SSFS algorithm, I a sequential input, F a
failure pattern and O = A(Sstab, I,F). For every k ≥ 0 for which a
go input is received in Ik there is no fire action in O during times k′

satisfying k < k′ < π(F , k).

4 Solving SSFS

The algorithm Fire-Squad in Figure 1 is an SSFS algorithm that is both
optimally stabilizing and is optimally swift. For swiftness, the algorithm is
based on the approach used in the CCfs algorithm, in which the horizon
is computed by monitoring the number of failures that occur, and a firing
action takes place when the receipt of a go becomes common knowledge.
The horizon computation at a process p makes use of reports that p
receives from other processes regarding failures that they have observed.
Following a transient fault, the state of a process may contain arbitrary
(including false) information about failures. In the crash failure model,
a process q will learn about (truly) crashed processes in the first round.
Consequently, p will compute a correct horizon one round later, once it
receives reports from all such processes. Roughly speaking, this can be
used as a basis for a (nontrivial) solution that stabilizes within two rounds
of the optimal time.

In order to improve on the above and obtain an optimal algorithm,
Fire-Squad employs a couple of subtle consistency checks. The first one
involves checking the information obtained from other processes regard-
ing failures they observed before the current round started. In the crash
failure model, every failure observed by q by time k − 1 must be directly
observable by p no later than time k. So if the set of failures reported
to p contains failures that p has not directly observed, then it must be
time k ≤ 1, and p will use the set of failures that it has directly observed
in computing the horizon, instead of the set of reported failures. A subtle

11

Algorithm Fire-Squad (t)

0: do forever: /* executed on process p at time k */
/* process p is unaware of the value of k */

1: receive all available (Requestsq, Failedq, Viewsq) messages from process q ∈ P;

/* update variables according to messages of round k and external input */

2: set Requests[0] := Ik
p ;

3: for 1 ≤ i ≤ t + 1: set Requests[i] := maxq{Requestsq[i− 1]};
4: set Failed ′ :=

⋃
q Failedq;

5: set Failed := all processes that p did not hear from this round;
6: for 1 ≤ i ≤ t: set Views[i− 1] := minq{Viewsq[i]}+ 1;

/* calculate horizon at time k − 1 */
7: set Horizon := t + 1−min{|Failed ′|, |Failed|}; /* consistency check I */
8: set Views[Horizon-1] := 1;
9: for 0 ≤ i ≤ t: set Views[i] := max{Views[i], Horizon− i}; /* check II */

/* should we fire? */
10: if for some i′ ≥ Views[0] it holds that Requests[i′] = 1 then
11: for i′ ≤ i′′ ≤ t + 1: set Requests[i′′] := 0;
12: do “Fire”;
13: fi;

/* send round k + 1 messages to all processes */
14: send (Requests, Failed, Views) to all;
15: od.

Clean up:

Requests contains only {0, 1} values. Views contains only values ∈ {0, . . . , t + 1}.

Fig. 1. Fire-Squad: a self-stabilizing firing squad algorithm.

proof shows that, in this case, the computed horizon works correctly if
k = 1, which is crucial for the algorithm’s stabilization optimality. The
second consistency check is based on the fact that in normal operation the
horizon distance is (weakly) monotone decreasing. The local state con-
tains information about previous horizon computations, and our second
consistency check forces it to satisfy weak monotonicity.

We now turn to describe the details of Fire-Squad. The following
discussion and lemmas are stated w.r.t. the algorithm and its components.
For a variable var, we denote by vark

p the value of var at process p after
the computation step at time k.

Each process p has a vector Requestsp[i], which represents p’s infor-
mation about a go input received by some process i time units ago; and
this request was not fulfilled yet. More precisely, if Requestsk

p[i] = 1, then

12

some process received a go input at time k − i, and no firing action oc-
curred between time k − i + 1 and time k. The vector Requests contains
values for the previous t + 1 time units and the current time; a total of
t+ 2 entries.

In addition, each process has a set Failed, which consists of the pro-
cesses it has seen to be failed in the current round. That is, at time k,
process p’s Failedk

p set contains all processes that process p did not re-
ceived messages from during round k (i.e., messages sent at time k − 1).
Failed ′ is the union of all Failed sets (as received from other processes) of
the previous round. That is, at time k, Failed ′kp is the union of Failedk−1

q

as computed at time k − 1 by every process q that p received messages
from during round k.

Finally, each process keeps track of a vector Views. If Viewsk
p[i] = z

it means that at time k + i, data from time k − z is common knowledge.
The vector Views contains t + 1 entries, for the current round and the
coming t rounds.

For ease of exposition every process p is assumed to send messages
to itself. Moreover, a process executing the algorithm is unaware of the
current round number. We refer to such rounds using numbers k etc. for
ease of exposition in describing and analyzing the algorithm.

4.1 Correctness Proof

A central notion in the analysis of simultaneous actions under crash fail-
ures is that of a clean round [8]. In the non-stabilizing setting, a round r
is clean according to failure pattern F if no process considered non-faulty
by all processes at time r− 1 is known to be faulty by one or more (non-
crashed) processes at time r. In a setting that allows transient faults, we
use a slightly different definition for the exact same notion. Consider a
process p that fails in round k. We say that p fails silently in round k if it
is not blocked according to F from sending messages in round k to any of
the processes q ∈ Gk. Thus, no process surviving round k can detect p’s
failure in this round.

Definition 11 (Clean Round). Round r in failure pattern F is a clean
round if (i) no process fails silently in round r − 1, and (ii) all processes
(if any) that fail in round r fail silently.

This definition of a round r being clean in F coincides with the standard
definition of clean rounds previously used in non-stabilizing systems [8].
In protocols such as Fire-Squad, with the property that every process

13

sends the same message to all other processes in every round, all (non-
crashed) processes receive the same set of messages in a clean round.

Due to lack of space we present an overview of the proof. The full
proof will appear in the full version of the paper. Following is the main
result of the paper:

Theorem 3. Fire-Squad solves the SSFS problem, it optimally stabi-
lizes and is optimally swift.

Proof overview: First, notice that once a clean round has occurred,
all processes receive the same set of messages, and different processes
agree on the value of Requests (except for Requests[0]). Moreover, in the
following round all processes agree on the value of Requests perhaps except
for the value of Requests[0] and Requests[1]. In a similar manner, k rounds
after a clean round the values of Requests[k + 1],Requests[k + 2], . . . are
the same at all processes.

Second, consider the value of Viewsk[0]. By Line 6, Viewsk[0] equals
the value of Viewsk−1[1]+1. In a similar manner, if Viewsk[i] is updated by
Line 8 then Viewsk+i[0] = Viewsk[i]+i. If k was the last clean round prior
to round k+i, then Views[0] = i+1 holds at time k+i. Together with the
claim from the previous paragraph, we have that once there was a clean
round, if different processes agree on the value of Views[0], then they all
agree on the values of Requests[Views[0]],Requests[Views[0]+1], · · · . Thus,
if processes agree on the value of Views[0] then they are guaranteed to act
simultaneously, either firing together or, together, refraining from firing.
Therefore, we turn our attention to analyzing the behavior of Views[0] at
the different processes.

Intuitively, the reason the above discussion does not show that all
processes agree on the value of Views[0], is the following: Even though
all processes update the value of Views in a similar manner (Line 6)
each process p updates its own Viewsp according to the failures that p
has seen in the current round. To show that all processes have the same
value of Views[0] (for all rounds following a clean round) we show two
things: (1) if Viewsk[0] is updated in round k, then Horizon = 1, i.e.,
|Failed ′| = t. This will be observed by all processes, and so they will all
set Viewsk[0] = 1; (2) if Viewsk[0] was not updated in round k, then let
k − i be the latest round in which the value of Viewsk−i[Horizonk−i − 1]
was updated. The proof shows that there must be a clean round between
round k − i and round k, thus ensuring that all processes will agree on
the value in Views[0] by round k.

14

Up till now, we have given an overview of the proof that Fire-Squad
solves the SSFS problem. To show that it optimally stabilizes and is
optimally swift a precise analysis of the convergence of SSFS is required,
along with a proof that SSFS will fire no later than any other algorithm
(on sequential inputs). To illustrate the tools used in those proofs, we
define the following:

Definition 12. Let
– minHG(F , k) = minp∈G Horizonk

p, and
– bestH(F , k) = mink′≥k{k′ + minHG(F , k′ + 1)}.

We write bestH(k) when F is clear from the context.

The main point behind this definition is that bestH is the equivalent
of π with respect to Fire-Squad (recall that π is computed according to
CCfs). In the non-self-stabilizing model π is shown to be a lower bound
on when a go input becomes “common knowledge”. Thus, the following
two lemmas conclude that Fire-Squad is optimally swift.

Lemma 2. bestH(k) ≤ π(k), for every k ≥ 0.

Lemma 3. Let input I be sequential with respect to (Fire-Squad,S,F).
If Ik

p = 1 for process p at time k then Ok′
p = 1 for k < k′ ≤ bestH(k).

Finally, we wish to point out a main difference between the proofs of
the lower and upper bounds in the self-stabilizing model as opposed to
the classical model (with respect to the firing squad problem): in the first
round of Fire-Squad the value of Failed ′ (the set of processes that have
failed in the previous round) might be contaminated. That is, a process
may start in a state where it thinks that some other processes are failed,
even though they are correct. Thus, a major property that is used in the
classical proofs cannot be used freely in the self-stabilizing model’s proofs:
the monotonicity of crash failures. In the classical model, the perceived
set of crashed processes can only increase, while in the self-stabilizing
model it may decrease following the first round.

This explains the purpose of Line 7, which is to perform a consistency
check, comparing the reported Failedq values (from the previous round)
to failures that are directly observed by p in the current round (stored
in Failedp). This comparison together with a delicate treatment in the
proofs, ensures the optimality of Fire-Squad. That is, to prove that
Fire-Squad is optimal up to an additive constant of 1 round is much
easier than to prove that Fire-Squad is optimal. We prove the latter,
stronger, property.

15

5 Conclusions and Open Problems

This paper presents Fire-Squad, the first self-stabilizing firing squad
algorithm. Fire-Squad is optimal in two important respects: It optimally
stabilizes, and is optimally swift. There are many directions in which this
work can be extended. These include:

– Fire-Squad assumes the crash fault model. What can be said about
the omission fault model? And what about the Byzantine fault model?
Each such extension seems to be a nontrivial step.

– Fire-Squad works when we assume that failures are permanent. Be-
ing an ongoing and everlasting service, firing squad is expected to
operate for long periods, in which processes may recover. A more rea-
sonable assumption in this case is that there is a bound (of t) on
the number of failures over every interval of m rounds, for some m.
(Non-stabilizing) Continuous consensus has recently been studied in
this model [14], and it would be interesting to see if the same can be
done for self-stabilizing firing squad.

References

1. Rida Bazzi and Gil Neiger. The possibility and the complexity of achieving fault-
tolerant coordination. In PODC ’92, pages 203–214, New York, USA, 1992. ACM.

2. J. E. Burns and N. A. Lynch. The byzantine firing squad problem. Advances in
Computing Research: Parallel and Distributed Computing, 4:147–161, 1987.

3. Brian A. Coan, Danny Dolev, Cynthia Dwork, and Larry J. Stockmeyer. The
distributed firing squad problem. SIAM J. Comput., 18(5):990–1012, 1989.

4. Danny Dolev, Ruediger Reischuk, and Raymond H. Strong. Early stopping in
byzantine agreement. J. ACM, 37(4):720–741, 1990.

5. S. Dolev. Self-Stabilization. The MIT Press, 2000.
6. S. Dolev and J. L. Welch. Self-stabilizing clock synchronization in the presence of

byzantine faults. Journal of the ACM, 51(5):780–799, 2004.
7. Shlomi Dolev. Possible and impossible self-stabilizing digital clock synchronization

in general graphs. Real-Time Systems, 12(1):95–107, January 1997.
8. C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine envi-

ronment: crash failures. Information and Computation, 88(2):156–186, 1990.
9. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.

MIT Press, Cambridge, Mass., 1995.
10. J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed

environment. Journal of the ACM, 37(3):549–587, 1990. A preliminary version
appeared in PODC ’84.

11. E. N. Hoch, D. Dolev, and A. Daliot. Self-stabilizing byzantine digital clock syn-
chronization. In Proc. of 8th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS’06), pages 350–362, Nov 2006.

12. L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of
faults. Journal of the ACM, 32(1):52–78, 1985.

16

13. Tal Mizrahi and Yoram Moses. Continuous consensus via common knowledge.
Distributed Computing., 20(5):305–321, 2008.

14. Tal Mizrahi and Yoram Moses. Continuous consensus with failures and recoveries.
In DISC’08, pages 408–422, 2008.

15. Y. Moses and M. R. Tuttle. Programming simultaneous actions using common
knowledge. Algorithmica, 3:121–169, 1988.

16. Yoram Moses and Michel Raynal. Revisiting simultaneous consensus with crash
failures. J. Parallel Distrib. Comput., 69(4):400–409, 2009.

17. Gil Neiger and Mark R. Tuttle. Common knowledge and consistent simultaneous
coordination. Distrib. Comput., 6(3):181–192, 1993.

18. B. Patt-Shamir. A Theory of Clock Synchronization. Doctoral thesis, MIT, Oct
1994.

	An Optimal Self-Stabilizing Firing Squad
	Danny Dolev, Ezra N. Hoch, Yoram Moses
	Introduction
	Model and Problem Definition
	Optimality Measures

	Lower Bounds
	Solving SSFS
	Correctness Proof

	Conclusions and Open Problems

