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Abstract. Consider a fully connected network where up to t processes may crash, and all
processes start in an arbitrary memory state. The self-stabilizing firing squad problem consists of
eventually guaranteeing simultaneous response to an external input. This is modeled by requiring
that the non-crashed processes “fire” simultaneously if some correct process received an external
“go” input, and that they only fire as a response to some process receiving such an input. This
paper presents Fire-Squad, the first self-stabilizing firing squad algorithm.

The Fire-Squad algorithm is optimal in two respects: (a) Once the algorithm is in a safe state,
it fires in response to a go input as fast as any other algorithm does, and (b) Starting from an
arbitrary state, it converges to a safe state as fast as any other algorithm does.
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1. Introduction. The firing squad problem was first introduced in [2, 3]. Infor-
mally, in the context of distributed computing, it is assumed that at any given round
a process may receive an external “go” input, which is considered a request for the
correct processes to simultaneously “fire.” Roughly, a good solution is a protocol sat-
isfying three properties: (a) if some process fires in round r then all the non-crashed
processes fire simultaneously in round r; (b) if a correct process receives a go input in
round r′ then it will fire at some later round r > r′; and (c) a process fires in round r
only if some process received a go input in some round r′ < r. (The formal definition,
presented later, disallows a solution in which a single go input induces multiple firing
events.)

Requiring the processes to fire simultaneously captures an important aspect of
distributed systems: There are cases in which it is important that activities begin in
the same round, e.g., when one distributed algorithm ends and another one begins,
and the two may interfere with each other if their executions overlap. Similarly, many
synchronous algorithms are designed assuming that all sites start participating in the
same round of communication. Finally, simultaneity may be motivated by the fact
that a distributed system interacts with the outside world, and these interactions
should often be simultaneously consistent. A non-simultaneous announcement to
financial (stock) markets may enable unfair arbitrage trading, for example.

This paper focuses on solving the firing squad problem in a self-stabilizing man-
ner. Conceptually, the model is one in which the system may be unstable and undergo
fairly arbitrary changes for an unknown (arbitrarily long) finite period. These changes
are thought of as transient errors. From some point, however, transient errors end and
all processes start behaving accroding to their protocols. A self stabilizing algorithm
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is one in which the system’s behavior is guaranteed to conform to the intended specifi-
cation, within finite time from when the transient errors end. Formally, self stabilizing
algorithms are modelled as starting out at an arbitrary initial state (corresponding to
the result of arbitrary transient failures), and following the protocol with the goal of
converging into correct behavior in finite time. Self stabilization is a broad subfield
of fault-tolerant distributed systems. See [6] for the standard reference to the field.

Coordinating simultaneous actions is not subsumed by the consensus task. In-
deed, even when no transient failures are considered possible (so there is a global clock
and no self-stabilization is required), solving the firing squad problem or simultane-
ously deciding in a consensus task can be considerably harder than plain consensus
[4, 8]. This implies, in particular, that clock synchronization [5, 11, 7, 12, 18] does not
suffice for solving the firing squad problem in a self-stabilizing manner; as it can be
seen as providing round-numbers to a self-stabilizing environment, which still leaves
the firing squad problem as a non-trivial problem.

The firing squad problem is a primary example of a problem requiring simultane-
ously coordinated actions by the non-faulty processes. Simultaneous coordination has
been shown to be closely related to the notion of common knowledge [10, 9], and this
connection has been used to characterize the earliest time required to reach simul-
taneous consensus, firing squad, and related problems in a variety of failure models
[8, 16, 1, 17, 13, 15]. One of the insights obtained from this literature is the fact that
the time at which a simultaneous action that is based on initial values or external
inputs can be performed depends in a crucial way on the pattern in which failures
occur.

A general fault-tolerant service supporting simultaneous agreement, called con-
tinuous consensus, was defined in [13]. In this setting, each of the processes maintains
a list of events of interest that have taken place in the run, and the lists at all non-
faulty processes are guaranteed to be identical at all times. The authors present an
optimal (non-stabilizing) implementation of such a service, which is a protocol called
ConCon. If we define the events monitored by ConCon to be of the form (go, p, k),
corresponding to a go message arriving at process p at the end of round k, then a
firing squad protocol can be obtained from ConCon simply by having the non-faulty
processes fire exactly when a (go, p, k) event first appears in their identical copies of
the “common” list. We shall refer by CCfs to the solution of the firing squad problem
that is based on ConCon.

Traditionally, the firing squad problem assumes that processes do not recover,
i.e., failed processes stay failed forever. Moreover, even though it is easy to extend
the firing squad problem so that it can be repeatedly executed (i.e., allow for multiple
firings over time, given that multiple go inputs are received), it assumes that nothing
in the system goes amiss—except possibly for the crash failures being accounted for.
Adding support for handling transient faults increases the robustness of a firing squad
algorithm in this aspect. Indeed, a self stabilizing solution will, in particular, be able
to cope with process recovery: Following process recoveries, the system will eventually
converge to a valid state and continue operating correctly.

Transient faults alter a process’s memory state in an arbitrary way. A self-
stabilizing algorithm [6] is assumed to start in an arbitrary state and be guaranteed
to eventually reach a state from which it operates according to its intended specifi-
cation. Starting the operation at an arbitrary state enables the adversary to “plant”
false information, such as the receipt of go messages in the past, which can cause
the algorithm to unjustifiably fire, either immediately, or within a few rounds. One
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of the challenges in designing an efficient self-stabilizing firing squad algorithm is in
bounding the damage that can be caused by such false information in the initial state.

Perhaps the first candidate solution would be to initiate an instance of CCfs in
every round, with t+ 1 instances executing concurrently at any given time, where t is
an upper bound on the number of possible crashed processes. Firing would then take
place if it is dictated by any of the instances. Since the component instances of such
a solution are not themselves stabilizing, all we can show is that such a solution is
guaranteed to stabilize after t+ 1 rounds, regardless of the failure pattern. We shall
present a solution that does not consist of such a concurrent composition. Moreover,
it performs subtle consistency checks to restrict the impact of false information that
appears in the initial state. As a result, in some cases we obtain stabilization in as
little as two rounds.

The above discussion points out the stabilization time as an important aspect of
a self-stabilizing firing squad algorithm. Another central performance parameter is
its swiftness: Once the algorithm has stabilized, how fast does it fire given that some
process receives a go input? In addition to solving the self-stabilizing firing squad
problem, the algorithm presented in this paper is also optimal in terms of both its
stabilization time, and its swiftness.

The main contributions of this paper are:
• A self-stabilizing variant of the firing squad problem is defined, and an algo-

rithm solving it in the case of crash failures is presented.
• The proposed algorithm, called Fire-Squad, is shown to be optimal both in

terms of the time it requires to stabilize and in terms of the time it takes,
after stabilization, to fire in response to a go input.

• Finally, the optimality is demonstrated in a fairly strong sense: For every
possible failure pattern, both stabilization time and swiftness are the fastest
possible, in any correct algorithm. In extreme cases this enables stabilization
in two rounds and firing in one round.

The rest of the paper is organized as follows. Section 2 describes the model and
defines the problem at hand. Section 3 provides lower bounds for the optimality
properties. Section 4 describes the proposed solution, Fire-Squad, and proves its
correctness and optimality. Finally, Section 6 concludes with a discussion.

2. Model and Problem Definition. The system consists of a set P = {1, . . . , n}
of processes. Communication is done via message passing, and the network is syn-
chronous and fully connected. The system starts out at time1 k = 0, and a commu-
nication round r starts at time k = r − 1 and ends at time k = r. At time k each
process computes its state according to its state at time k − 1, the internal messages
it received by time k (sent by other processes at time k − 1) and external inputs (if
any) that it received at time k. In addition, at any time k ≥ 0 a process can produce
an external output (such as “firing”).

We focus on external inputs in the form of go messages, and external outputs
consisting of firing actions. Let Ikp ∈ {0, 1} represent the external input of process
p at time k. We say that p received an external go input at time k if Ikp = 1;
Otherwise, (if Ikp = 0), we say that p did not receive a go input. Let Ip = {Ikp }∞k=0,
let Ik = {Ikp }p∈P and let I = {Ip}p∈P . Thus, I is “the input pattern”, and Ik is
the (joint) input at time k. In a similar manner define Okp ∈ {0, 1},Op,Ok and O as

1All references to “time” in this paper refer to non-negative integer times.
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the output pattern. If Okp = 1 we say that p fires at time k, and if Okp = 0 we say p
does not fire at time k. It will be convenient to say that a fire action occurs at time k
if Okp = 1 for some process p, and similarly that a go input is received at time k if
Ikp = 1 for some p.

Denote by t an a priori bound on the number of faulty processes in the system.
For ease of exposition, we assume that t < n−1, so that there are at least two processes
that need to coordinate their actions. We assume the crash failure model, in which a
faulty process p does not send any messages after its failing round; it behaves correctly
before its failing round, and sends an arbitrary subset of its intended messages during
its failing round.

A failure pattern describes for each time k which processes have failed by time k,
and for each of these processes that fails in round k (i.e., did not fail by time k − 1),
the pattern determines which of its outgoing communication channels are blocked
(and hence do not deliver its messages) in round k. Notice that a process may fail in
round k even if all of its messages are delivered. We denote a failure pattern by F ,
and by Fk the set of processes that fail in F by time k. Observe that Fk ⊆ Fk+1; in
the crash failure model failed processes do not recover. Similarly, we use Gk = P \Fk
to denote the set of processes that are non-faulty at time k. Finally, G will denote the
set of processes that remain non-faulty throughout F , i.e., G =

⋂∞
k=0 Gk. Notice that

the set G is always defined in terms of a failure pattern F , which is typically clear
from the context.

In addition to crashes, there are also transient faults. Formally, we denote by Skp
the state of a process p at time k. We denote by Sk = (Sk1 , . . . ,Skp , . . . ,Skn) the global
state of the entire system at time k. Transient faults are captured by the assumption
that the system may start from any (arbitrary) state, and there is some round r such
that for all rounds r′ ≥ r the intended algorithm operates as written. In other words,
for any possible state S, if S0 = S then eventually (starting from some round r) the
algorithm operates correctly, as defined below.

For the following analysis, each algorithm A is assumed to have an initial state
SAinit. For self-stabilizing algorithms, we fix an arbitrary state as SAinit (as the algo-
rithm should converge starting from any initial state). The a priori bound of t on the
number of failures is assumed to be hard-wired into the algorithm, and is not affected
by transient faults. Such an algorithm is assumed to be executed only in the context
of failure patterns in which at most t processes crash. For such failure patterns F ,
the algorithm A produces an output pattern O starting from state S given an input
I; we denote this output pattern by O = A(S, I,F).

Informally, the Firing Squad problem requires that: (1) all processes fire together
(“simultaneity”); (2) if a go input is received then a fire action occurs (“liveness”);
and (3) the number of fire actions is not larger than the number of received go inputs
(“safety”). Formally,

Definition 2.1. Let O = A(S, I,F) and let G denote the set of processes that
remain non-faulty throughout F . We say that O satisfies the FS(k) properties (captur-
ing correct firing-squad behavior from time k on) w.r.t. I, F , and O, if the following
conditions hold for all k′ ≥ k:

1. (simultaneity) If Ok′

p = 1 for some p ∈ P then Ok′

q = 1 for all q ∈ G;
2. (liveness) If Ik′

p = 1 for some p ∈ G, then there is k′′ > k′ s.t. Ok′′

p = 1;
3. (safety) The number of times k′′ satisfying k ≤ k′′ ≤ k′ at which a fire action

occurs at k′′ is not larger than the number of times h in the range 0 ≤ h < k′

at which go inputs are received.
4



We can use the FS(k) properties to define when an algorithm solves the firing
squad problem in a self stabilizing manner. We first use it to define the stabilization
time of an algorithm as follows:

Definition 2.2 (Stabilization time). The stabilization time of A on S, I and F ,
denoted by stab(A,S, I,F), is the minimal k ≥ 0 such that FS(k) holds with respect
to I, F , and O = A(S, I,F). (If FS(k) holds for no finite k, then stab(A,S, I,F) =
∞.)

Notice that the “safety” property in FS(k) relates outputs starting from time k
to inputs starting from time 0. Here’s why: Since we consider time 0 to be the point
at which transient errors end, if the system starts in a state in which “it appears as
if” go inputs were received before time 0, the good processes may fire after time 0
without a go message actually having been received. Once all firings induced by
such “phantom” go inputs have occurred, we can legitimately require firing events
to happen only in response to genuine go message receipts. We thus think of the
stabilization time, at which in particular the safety property of FS(k) holds, as one
after which no firing will occur in response to phantom go messages. Rather, every
firing will be justifiable as a response to some go message received at or after time 0.

Definition 2.3 (SSFS Algorithm). An algorithm A solves the Self stabilizing
Firing Squad problem (A is an SSFS algorithm, for short) if there exists a k < ∞
such that stab(A,S, I,F) ≤ k for every system state S, input pattern I and failure
pattern F .

Observe that in a setting with no transient faults, an algorithm A solves the
(non-self-stabilizing) Firing Squad problem if it satisfies FS(0) with respect to I, F ,
and O, for every I, F and O = A(SAinit, I,F).

Notice that Definition 2.3 implies that any SSFS algorithm A has at least one
global state from which the firing squad properties are guaranteed to hold. Denote
one of these global states by SAstab, or simply Sstab when A is clear from the context.

2.1. Optimality Measures. In this work we are interested in finding an optimal
SSFS algorithm. We start by defining stabilization time optimality, which measures
how quickly algorithm A stabilizes.

Definition 2.4. An SSFS algorithm A is said to optimally stabilize if the fol-
lowing holds for every SSFS algorithm B and every failure pattern F :

max
S,I
{stab(A,S, I,F)} ≤ max

S,I
{stab(B,S, I,F)} .

Definition 2.4 defines optimality of an algorithm A with respect to its stabilization
time, i.e., how quickly A stabilizes according to all of the FS requirements. The intu-
ition behind defining optimality in terms of worst-case S and I is to avoid algorithms
that are “specific” to an initial global state or input pattern. Thus, by requiring
optimality in the worst-case we ensure that the algorithm cannot be hand-tailored to
a specific setting, but rather needs to solve the SSFS problem in a “generic” manner.

We now turn to the issue of comparing the responsiveness of distinct firing squad
algorithms. Specifically, we are concerned with how quickly an algorithm fires after a
go message is received (once the algorithm has stabilized). For simplicity, we consider
receipts of go by non-faulty processes, since the problem specification forces a firing
following such a receipt. Another subtle issue is that if go messages are received in
different rounds between which there is no firing, then it may be difficult to figure
out which go message the next firing is responding to. Again for simplicity, we will
be interested in what will be called sequential input patterns, in which a go is not
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received before all previous go’s have been followed by firings. More formally, we
define:

Definition 2.5 (Sequential inputs). Let A be an SSFS algorithm. We say that
the input I is sequential with respect to (A, S, F) if (i) no go inputs are received
according to I at times k < stab(A,S, I,F), (ii) go inputs are received in I only by
processes from G, and (iii) if k1 < k2 and go inputs are received at both k1 and k2,
then there is an intermediate time k1 < k′ ≤ k2 at which a fire action occurs.

The following definition formally captures the number of firing events that occur
between the stabilization time and a given time k.

Definition 2.6. Let A be an SSFS algorithm and let O=A(S, I,F). We define
#[(A,S, I,F), k] to be the number of rounds k′ in the range stab(A,S, I,F) ≤ k′ ≤ k
such that Ok′

p = 1 holds for some process p ( i.e., a firing occurs at time k′).
By definition, if k < stab(A,S, I,F) then #[(A,S, I,F), k] = 0. With the last

two definitions, we are now able to formally compare the responsiveness of different
SSFS algorithms:

Definition 2.7 (Swiftness). Let A and B be SSFS algorithms. We say that A
is at least as swift as B if A fires at least as quickly as B on all sequential inputs.
Formally, we require that for every failure pattern F , input I, and states SA of A
and SB of B, the following holds. If I is sequential both with respect to (A, SA, F)
and with respect to (B, SB, F), then #[(A,SA, I,F), k] ≥ #[(B,SB, I,F), k] holds
for every time k. An SSFS algorithm A is optimally swift if it is at least as swift as
B for every SSFS algorithm B.

We are now in a position to state the main result of the paper: The Fire-Squad
algorithm of Figure 4.1 is an SSFS algorithm (Theorem 5.16), it optimally stabilizes
(Theorem 5.17) and is optimally swift (Theorem 5.18).

3. Lower Bounds. In this section we provide lower bounds for the stabilization
time and for the swiftness of any SSFS algorithm A. The lower bounds build upon
previous results in the field of simultaneous agreement.

Recall that ifA is a non-self-stabilizing Firing Squad algorithm, then stab(A,SAinit, I,F) =
0 for all I and F . Therefore, in the non-self-stabilizing case, it only makes sense to
compare algorithms in terms of their swiftness. In a non-self-stabilizing setting, the
firing squad protocol CCfs (based on ConCon [13]) is optimally swift. We will use
it as a benchmark and yardstick for expressing and analyzing the performance of self-
stabilizing firing squad protocols. To compare the performance of different algorithms,
we make use of the following definitions.

Definition 3.1. We denote by δ(F , k) the number of processes known at time k
to be faulty by the processes in Gk in a run of CCfs with failure pattern F . Intuitively,
δ(F, k) stands for the number of failures that are discovered by time k in a run with
pattern F . We remark that δ(F , k) is well-defined, because the same number of faulty
processes are discovered (at the same times) in all runs of CCfs that have failure
pattern F . Moreover, since CCfs detects failures as a full-information protocol does,
no algorithm A can discover more failed processes than CCfs does (see [8]). Thus,
δ(F , k) is an upper bound on the number of failed process discovered by time k by
any algorithm A in an execution in which the failure pattern is F .

CCfs makes essential use of a notion of horizon, which is roughly the time by
which past events are guaranteed to become common knowledge. This motivates the
following definitions.

Definition 3.2 (Horizons). Given a failure pattern F , the horizon distance at
time k, denoted by H dis(F , k), is t + 1 − δ(F , k). The absolute horizon at time k,
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denoted absH(F , k), is k + H dis(F , k).
While the absolute horizon is an upper bound on when events become common

knowledge, the publication time is a lower bound on this time. It is defined as follows:
Definition 3.3 (Publication Time). Given a failure pattern F , the publication

time for (time) k, denoted by π(F , k), is mink′≥k{absH(F , k′)}.
When F is clear from the context, it will be omitted, and we write simply δ(k),

H dis(k), absH(k) and π(h).
As shown in [13], for a given failure pattern F , a go input received at time k is

“common knowledge” not before time π(F , k). Thus, for a specific algorithm A, the
publication time for 0 bounds (from below) the time k at which the first firing action
can occur in O = A(Sstab, I,F).

The publication time π(F , k) is a generalization of notions developed in [8] for
Simultaneous (single-shot, non-stabilizing) Consensus. In that paper, a notion of the
waste of F is defined, and information about initial values—which can be viewed in
our setting as being about external inputs at time 0—becomes common knowledge at
time t + 1 − waste. In our terminology, this occurs precisely at the publication time
π(F , 0) for events of time 0.

The intuition behind the first lower bound is that if CCfs receives a go input
at time 0, then it fires at time π(0) (Lemma 3.4). Since CCfs is optimal, an SSFS
algorithm A cannot fire faster. Therefore, if we consider A starting in a global state
where A “thinks” it received a go input 1 round ago, then A will not fire before time
π(0)− 1. The formal proof appears in the proof of Theorem 3.6.

Lemma 3.4. Let F be any failure pattern and let I be an input pattern for which
Ikq = 0 for every process q and time k ≥ 0, except for one process p ∈ G for which

I0
p = 1. The first fire action of O = CCfs(SCCfs

init , I,F) occurs at time π(F , 0).
Proof. This follows directly from the analysis in [13].
Notation 1. For input I and an integer i ≥ 0, denote by I(i→) the input pattern

that is obtained by excluding the first i rounds of I. Formally, I(i→)k = Ik+i for all
k ≥ 0. Similarly denote F(i→) (w.r.t. F).

Lemma 3.5. Let F be a failure pattern. Let F ′ be a failure pattern with no faults
at time k = 0 and F ′(1→) = F . Then π(F ′, 0) ≥ π(F , 0).

Proof. For every time k we have that δ(F ′, k) ≤ δ(F , k). Therefore, absH(F ′, k) ≥
absH(F , k) holds for all k ≥ 0. Thus, mink≥0{absH(F ′, k)} ≥ mink≥0{absH(F , k)},
i.e., π(F ′, 0) ≥ π(F , 0).

We can now prove our first lower bound result, stating that the worst case stabi-
lization time of every SSFS algorithm A is at least π(0).

Theorem 3.6. maxS,I{stab(A,S, I,F)} ≥ π(F , 0) holds for every SSFS algo-
rithm A and every failure pattern F .

Proof. To prove this theorem, we find a state S and input I such that stab(A,S, I,F) ≥
π(F , 0). Since A solves the SSFS problem there is a global state Sstab from which all
of the FS properties hold.

Let p ∈ G be a process that is non-faulty throughout F , and consider the following
input pattern Î, where Îkq = 0 for all q, k, except that Î0

p = 1. Consider F̂ to be a
failure pattern with no failures at time k = 0 (i.e., F̂0 = ∅) and F̂(1→) = F for the
rest. Due to “liveness”, A’s run from Sstab with input Î and failures F̂ will eventually
fire; denote the firing time as k (i.e., Okp = 1 for some process p).

By Lemma 3.4, π(F̂ , 0) is the optimal time for simultaneous firing, and since
starting from Sstab all properties hold, including “simultaneity”, it holds that k ≥
π(F̂ , 0).
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Consider global state S of A after executing a single round with Î as input and F̂
as failure pattern and Sinit as starting global state. Consider the run of A from S with
input I and failure pattern F . Amust fire at time k−1, as it cannot distinguish the run
from Sinit, Î, F̂ and from S, I,F . By Lemma 3.5, π(F̂ , 0) ≥ π(F , 0), and therefore
A will not fire before time k − 1 ≥ π(F̂ , 0) − 1 ≥ π(F , 0) − 1. However, notice that
I contains only “0” inputs, implying that “safety” does not hold for A when starting
from S with input I and failure F for the first π(F , 0) − 1 rounds. I.e., “safety”
can hold starting from time π(F , 0) and on. Therefore, maxS,I{stab(A,S, I,F)} ≥
π(F , 0).

Our second lower bound result, informally stating that no SSFS algorithm can
fire faster than CCfs, is captured by the following theorem. (Notice that the claim
is made with respect to sequential input patterns.)

Theorem 3.7. Let A be an SSFS algorithm, I a sequential input, F a failure
pattern and O = A(Sstab, I,F). For every k ≥ 0 for which a go input is received in
Ik there is no fire action in O during times k′ satisfying k < k′ < π(F , k).

Proof. Let A, I, F and O be as assumed in the claim. Suppose, by way of
contradiction, that there are k and k′ such that k < k′ < π(F , k), a go message is
received in Ik, and a fire action takes place in Ok′

. Assume, without loss of generality,
that no fire action occurs in O(k′′) for earlier times k < k′′ < k′. Denote by Sk the
global state of A at time k.

Since A started to run from Sstab, FS(0) holds with respect to I,F and O. Since
I is sequential, and k′ is the minimal time for which O has a fire action after time k,
we have that I(k→) contains a go input at time 0 and does not contain a go input
until time k′. Therefore, O = A(Sk, I(k→),F(k→)) will have its first fire action at
time k′ − k.

From the optimality of CCfs and Lemma 3.4, we have that A cannot fire be-
fore time π(F(k→), 0). Thus k′ − k ≥ π(F(k→), 0), which implies that k′ ≥ k +
π(F(k→), 0). By definition of π and F(k→) we have that π(F , k) ≤ k+ π(F(k→), 0),
contradicting the assumption that k < k′ < π(F , k).

4. Solving SSFS. The algorithm Fire-Squad in Figure 4.1 is an SSFS algo-
rithm that both optimally stabilizes and is optimally swift. For swiftness, the algo-
rithm is based on the approach used in the CCfs algorithm, in which the horizon is
computed by monitoring the number of failures that occur, and a firing action takes
place when the receipt of a go becomes common knowledge. The horizon computa-
tion at a process p makes use of reports that p receives from other processes regarding
failures that they have observed. Following a transient fault, the state of a process
may contain arbitrary (including false) information about failures. In the crash fail-
ure model, a process q will learn about (truly) crashed processes in the first round.
Consequently, p will compute a correct horizon one round later, once it receives re-
ports from all such processes q. Roughly speaking, this can be used as a basis for a
(nontrivial) solution that stabilizes within two rounds of the optimal time.

In order to improve on the above and obtain an optimal algorithm, Fire-Squad
employs a couple of subtle consistency checks. The first one (termed “consistency
check I” in Figure 4.1) involves checking the information obtained from other processes
regarding failures they observed before the current round started. In the crash failure
model, every failure observed by q before time k − 1 must be directly observable
by p no later than time k. So if the set of failures reported to p contains failures
that p has not directly observed, then it must be time k ≤ 1, and in computing the
horizon p will use the set of failures that it has directly observed instead of the set
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Algorithm Fire-Squad (t)

0: do forever: /* executed on process p at time k */
/* process p is unaware of the value of k */

1: receive all available (Requestsq , Failed q , Viewsq) messages from process q ∈ P;

/* update variables according to messages of round k and external input */
2: set Requests[0] := Ik

p ;
3: for 1 ≤ i ≤ t + 1: set Requests[i] := maxq{Requestsq [i− 1]};
4: set F̂ailed :=

S
q Failed q ;

5: set Failed := {q : p did not hear from q in this round};
6: for 1 ≤ i ≤ t: set Views[i− 1] := minq{Viewsq [i]}+ 1;

/* calculate horizon at time k − 1 */

7: set Horizon := t + 1−min{|F̂ailed |, |Failed |}; /* consistency check I */
8: set Views[Horizon-1] := 1;
9: for 0 ≤ i ≤ t: set Views[i] := max{Views[i], Horizon− i}; /* check II */

/* should we fire? */
10: if for some i′ ≥ Views[0] it holds that Requests[i′] = 1 then
11: for i′ ≤ i′′ ≤ t + 1: set Requests[i′′] := 0;
12: do “Fire”;
13: fi;

/* send round k + 1 messages to all processes */
14: send (Requests, Failed , Views) to all;
15: od.

Clean up:

Requests contains only {0, 1} values. Views contains only values ∈ {0, . . . , t + 1}.

Fig. 4.1. Fire-Squad: a self-stabilizing firing squad algorithm.

of reported failures. A subtle proof shows that, in this case, the computed horizon
works correctly if k = 1, which is crucial for the algorithm’s stabilization optimality
(Lemma 5.5). The second consistency check (termed “check II”) is based on the fact
that in normal operation the horizon distance is (weakly) monotone decreasing. The
local state contains information about previous horizon computations, and our second
consistency check forces it to satisfy weak monotonicity.

We now turn to describe the details of Fire-Squad. The following discussion
and lemmas are stated w.r.t. the algorithm and its components. For a variable var,
we denote by varkp the value of var at process p after the computation step at time k.

Each process p has a vector Requestsp[i] that represents p’s information about a
go input received by some process i time units ago, which was not as yet followed
by a firing action. More precisely, if Requestskp[i] = 1, then some process received a
go input at time k− i, and no firing action occurred between time k− i+ 1 and time
k. The vector Requests contains values for values of 0 ≤ 0 ≤ t + 1 referring to the
previous t+ 1 time units and the current time; a total of t+ 2 entries.

In addition, each process has a set Failed , which consists of the processes it has
seen to be failed in the current round. That is, at time k, process p’s Failed k

p set
contains all processes from which process p did not received messages during round k
(i.e., messages sent at time k− 1). F̂ailed is the union of all Failed q sets (as received

from other processes) of the previous round. That is, at time k, F̂ailed
k

p is the union
of Failed k−1

q as computed at time k − 1 by every process q from which p received
9



messages in round k.
Finally, each process keeps track of a vector Views. If Viewskp[i] = z it means that

at time k+ i, data from time k− z is common knowledge. The vector Views contains
t+ 1 entries, i = 0, . . . , t, for the current round and the coming t rounds.

For uniformity and ease of exposition every process p is assumed to send messages
to itself in every round. Moreover, due to the nature of transient faults, a process
executing the algorithm is unaware of the current round number. However, for ease
of exposition in describing and analyzing the algorithm, we refer to such rounds using
numbers k etc.

5. Correctness Proof. A central notion in the analysis of simultaneous actions
under crash failures is that of a clean round [8]. We say that p fails silently in round k
if it is not blocked according to F from sending messages in round k to any of the
processes q ∈ Gk. Thus, no process surviving round k can detect p’s failure in this
round.

Definition 5.1 (Clean Round). Round r in failure pattern F is a clean round
if (i) no process fails silently in round r − 1, and (ii) all processes (if any) that fail
in round r fail silently. This definition of a round r being clean in F coincides with
the standard definition of clean rounds previously used in non-stabilizing systems [8].
In protocols such as Fire-Squad, in which every process sends the same message to
all other processes in every round, all (non-crashed) processes receive the same set of
messages in a clean round (see Lemma 5.2).

The main result of the paper is stated in three theorems (Theorem 5.16, Theo-
rem 5.17, Theorem 5.18) and can be summarized as follows: The Fire-Squad algo-
rithm is an SSFS algorithm that optimally stabilizes and is optimally swift.

We start with an outline of the proof, followed by a detailed proof.

5.0.1. Proof outline:.
1. Once a clean round has occurred, different processes agree on the value of

Requests (Lemma 5.2 and Lemma 5.3);
2. Lemma 5.5 ensures monotonocity of the horizon value based on consistency

check I. Lemma 5.4 shows that check I does not affect the computation after
time k = 1. Similarly, Lemma 5.6 shows that the impact of check II is limited
in time, in a manner that ensures later on to establish swiftness optimality.

3. As decision to fire depends solely on the value of Views[0] and the Requests
array (Line 10), if processes agree on the value of Views[0] they are guaranteed
to act simultaneously, either firing together or, together, refraining from firing
(Lemma 5.7);

4. Lemma 5.8 and Lemma 5.9 show that Views[0] is the same at all non-crashed
process (once a clean round has occurred);

5. Points 1, 2 and 3 above lead to Lemma 5.10, stating that once a clean round
occurs, “simultaneity” holds;

6. “liveness” holds by Lemma 5.11;
7. Lemma 5.12 and Lemma 5.13 lead to Lemma 5.14, which states that “safety”

holds starting from round π(0). This, according to the lower bounds, is
optimal;

8. Lemma 5.15 (together with Lemma 5.13) shows that Fire-Squad fires by
time π(k) given a go input at time k. The lower bound in Theorem 3.7
implies that this is optimal;

9. Finally, Theorem 5.16, Theorem 5.17 and Theorem 5.18 show that Fire-
Squad is an SSFS algorithm that optimally stabilizes and is optimally swift.

10



The first lemma shows that different nodes agree on their variables following a
clean round.

Lemma 5.2. If round r is clean, then the sets Failed r, F̂ailed
r
, and the array

Viewsr are identical for all non-faulty processes.
Proof. In the Fire-Squad algorithm every process sends its Failed set and Views

array to all other processes in every round. If round r is clean, then all processes
receive the same information about the values of Failed and Views in the system.
Thus, the value of Views computed on Line 6, which depends on the Viewsq values
received in the current round, is the same for all p ∈ G. Similarly, the value of F̂ailed
calculated on Line 4, which depends on the Failed q sets received is the same at all
p ∈ G. Finally, in a clean round, all non-faulty processes receive messages from the
same set of processes. As a result, the value of Failed (computed on Line 5) is the
same for all p ∈ G. Since changes to Failed , F̂ailed and Views performed on Line 7-13
depend only on the values of Failed, F̂ailed and Views, the same changes are performed
by all non-faulty processes. The claim follows.

The previous lemma is focused on the end of a clean round. The following lemma
talks about the dth round after a clean round.

Lemma 5.3. Let r be a clean round, let 0 ≤ d ≤ t and let p, p′ ∈ Gr+d. Then
Requestsr+dp [i] = Requestsr+dp′ [i] holds for all i in the range d < i ≤ t.

Proof. We prove the claim by induction on d. The base case is d = 0, in which
round r + d = r is a clean round, and all non-faulty processes receive the same
set of messages. Thus, by Line 3, we have that Requestsrp[i] = Requestsrp′ [i] for all
i in the range d = 0 < i ≤ t. Let 0 < d ≤ t, and assume inductively that the
claim holds for d− 1. The inductive assumption guarantees that when the Requestsq
arrays are sent in round r + d they agree for all i satisfying d − 1 < i ≤ t. In
particular, maxq{Requestsq[i − 1]} is the same for all i > d. Since Requestsp[i] is set
to maxq{Requestsq[i − 1]} on Line 3, it follows that Requestsr+dp [i] = Requestsr+dp′ [i]
holds for all d < i ≤ t, as claimed.

The purpose of Line 7 is to perform consistency check I, which compares the
reported Failed q values (from the previous round) to failures directly observed by p
in the current round (stored in Failed p). The next lemma shows that this can matter
only at times k ≤ 1. At all times k ≥ 2, Line 7 can be viewed as having the simpler
form of setting the horizon to t+ 1− |F̂ailedp|.

Lemma 5.4. Horizonkp = t + 1 − |F̂ailed
k

p| holds after Line 7 is executed, for all
times k ≥ 2 and p ∈ Gk.

Proof. If k ≥ 2 then k− 1 ≥ 1, and so the values of F̂ailed received by p at time k
contain only processes that were indeed faulty by the end of round k−1. Since failure
patterns are monotone, none of these failed processes sends p a message in round k.

Hence, by Line 5 we obtain that F̂ailed
k

p ⊆ Failed kp.
We denote the first clean round in an execution of Fire-Squad by rc. By def-

inition, rc ≥ 1. One of the properties underlying the use of horizons for ensuring
simulatneity has to do with the (downward) monotonicity of the horizon value as
time proceeds. Roughly speaking, if the horizon of a given correct process is H at
time k, then the horizon of all other processes at later times k′ > k will not exceed H.
More formally, we can show:

Lemma 5.5. If k ≥ 1 then Horizonk+1
p′ ≤ Horizonkp for every p, p′ ∈ Gk+1.

Moreover, for k ≥ min{2, rc} Horizonk+1
p′ ≤ Horizonkp for every p ∈ Gk and p′ ∈

11



Gk+1.
Proof. We start with the second case of the lemma: Let k ≥ min{2, rc} and let

p ∈ Gk and p′ ∈ Gk+1. In particular, either k ≥ 2, or k = rc = 1. We consider each of
these cases separately. Assume that k ≥ 2, and let q ∈ P be a process that updates
Failed q at time k − 1. According to Line 5, Failed q contains processes that q does
not receive messages from during round k − 1. All of these processes do in fact fail
no later than round k − 1. Thus, the set F̂ailed computed by process p at time k
contains only faulty processes. The set Failed q at time k contains all processes of

Failed k−1
q . Thus, the set F̂ailedp′ at time k + 1 contains all processes from F̂ailed

k

p.

Hence, F̂ailed
k

p ⊆ F̂ailed
k+1

p′ . Therefore, by Lemma 5.4, following Line 7 by p′ at time
k + 1 we have that Horizonk+1

p′ ≤ Horizonkp.
Now consider the case k = rc = 1. Thus, p and p′ receive the same set of messages

during round 1, and compute Failed and F̂ailed in the same manner. Thus, Horizon1
p =

Horizon1
p′ . Moreover, by Line 4 we have that F̂ailed

2

p′ ⊇ Failed 1
p′ . It follows that

min{|Failed 1
p|, |F̂ailed

1

p|} = min{|Failed 1
p′ |, |F̂ailed

1

p′ |} ≤ |F̂ailed
2

p′ |. By Lemma 5.4

Horizon2
p′ := t+ 1− |F̂ailed

2

p′ |, hence Horizon2
p′ ≤ t+ 1−min{|Failed 1

p|, |F̂ailed
1

p|} =
Horizon1

p. That is, we obtain that Horizonk+1
p′ ≤ Horizonkp.

To finish the proof, we are left to handle the case when k = 1 and p, p′ ∈ G2.
Since p ∈ G2 by time 2 we have that p′ received p’s round 2 messages. Implying

that Failed 1
p ⊆ F̂ailed

2

p′ . Moreover, due to the monotonicity of crashes, also Failed 1
p ⊆

Failed2
p′ . Therefore, min{|F̂ailed

2

p′ |, |Failed2
p′ |} ≥ |Failed1

p| ≥ min{|F̂ailed
1

p|, |Failed1
p|}.

Hence, by Line 7 Horizon2
p′ ≤ Horizon1

p.
Denote by minH(F , k) the lowest value of Horizonkp, i.e., minH(F , k) = minp{Horizonkp}.

When F is clear from the context, we write minH(k). Notice that minH is the equiva-
lent of the horizon distance H dis with respect to Fire-Squad (recall that H dis is
computed according to CCfs).

The following lemma shows that consistency check II does not affect the compu-
tation after time 2, and if the first round is clean, it is not felt after time 1. Formally,
we have:

Lemma 5.6. Let k ≥ min{2, rc} + 1 and let p ∈ Gk. Then for all 0 ≤ i < t,
Line 9 does not change the value of Viewskp[i].

Proof. Since k ≥ min{2, rc}+1 we have that k−1 ≥ min{2, rc} ≥ 1. At time k−1,
for every process q and every 0 ≤ i ≤ t it holds that Viewsk−1

q [i] ≥ Horizonk−1
q − i,

due to Line 9. At time k all processes update Views according to Line 6, thus setting
every entry i (for i 6= t) to be ≥ minH(k − 1) − i. Since k − 1 ≥ min{2, rc}, we
have by Lemma 5.5 that maxq{Horizonkq} ≤ minH(k − 1). Since for every i 6= t,
Viewsp[i] ≥ minH(k − 1) − i it also holds that Viewsp[i] ≥ Horizonp − i. Hence,
max{Viewsp[i],Horizonp− i} = Viewsp[i]. Thus, Line 9 does not change Viewsp[i] for
all i 6= t.

Observation 1. δ(k − 1) ≤ |Failed k
p | ≤ δ(k) holds for every k ≥ 1. In a similar

manner, δ(k − 1) ≤ |F̂ailed
k+1

p | ≤ δ(k).
To establish correct behavior with respect to simultaneity, the following lemma

shows that for all rounds after the first clean round, if two non-faulty nodes have the
same value of Views[0], then they either both fire or both refrain from firing.

Lemma 5.7. Let k ≥ rc and let p, p′ ∈ Gk. If Viewskp[0] = Viewskp′ [0] then p and
12



p′ have the same external output at time k ( i.e., they either both fire or they both do
not fire at time k).

Proof. Consider the value of Viewskp[0]. Let k′ ≤ k be the maximal time at which
Viewskp[k−k′] was updated due to Line 8. Notice that Viewsk

′

p [k−k′] = 1, and by the
update in Line 6 it holds that Viewskp[0] ≥ k−k′+1. Moreover, Horizonk

′

p = k−k′+1,

i.e., t+ 1− |F̂ailed
k′

p | = k − k′ + 1.
Between time k′ − 1 and time k there are k − k′ + 1 rounds. From the above

discussion, at time k′−1 there were at least t+k′−k failed processes. Thus, between
time k′ − 1 and time k there was some clean round. Denote this clean round by r.

By Lemma 5.3, for every i, k−r < i ≤ t, it holds that Requestskp[i] = Requestskp′ [i].
Since Viewskp[0] ≥ k−k′+1 ≥ k−r+1, we have that for every i satisfying Viewskp[0] ≤
i ≤ t it holds that Requestskp[i] = Requestskp′ [i]. Thus, p and p′ either both pass the
condition of Line 10 or they both do not pass. Leading to the fact that either p, p′

both fire, or they both do not fire.
To use the above lemma, we need to show that Viewsk[0] is the same at all non-

faulty nodes. This is done in two stages: First, Lemma 5.8 proves this for the case
that minH(k) = 1. Second, Lemma 5.9 proves that all non-faulty nodes have the same
value of Viewsk[0] when minH(k) > 1.

Lemma 5.8. For every k ≥ min{2, rc} and p ∈ Gk, if minH(k) = 1 then
Viewskp[0] = 1.

Proof. If k = rc then by Lemma 5.2 every process p has Horizonkp = minH(k).
Therefore, if minH(k) = 1 then by Line 8, p sets Viewskp[0] = 1.

Now assume that k 6= rc, and so k ≥ 2. If minH(k) = 1, then some process q

has Horizonkq = 1. Thus q has |F̂ailed
k

q | = t. Notice that F̂ailed
k

q contains processes

that were faulty during round k − 1. Therefore, Failed k
q = F̂ailed

k

q , which leads to
the conclusion that all Failed k−1

q′ sets received by q and used in the construction of

F̂ailed
k

q were received from non-faulty processes. Thus, all processes receive these sets,

and process p also has |F̂ailed
k

p| = t, leading to Horizonkp = 1. Thus, by Line 8, p has
Viewskp[0] = 1.

Lemma 5.9. Let r ≥ rc and p, p′ ∈ Gr. If minH(r) > 1 then Viewsrp[i] = Viewsrp′ [i]
holds for all 0 ≤ i < minH(r)− 1.

Proof. The proof is by induction on r ≥ rc. For r = rc, we have by Lemma 5.2
that Viewsp = Viewsp′ , and the claim immediately follows. For the inductive step,
assume that r > rc and that the claim holds for r − 1. We consider two cases. First
assume that minH(r) = minH(r − 1). In this case, no process failure is discovered in
round r. Thus, round r is clean, and the claim follows by Lemma 5.2 as in the base
case.

Next, assume that minH(r) < minH(r − 1). The Viewsp[i] values can change
only on Line 6, Line 8, and Line 9. First consider the change by Line 6. In this
case, Views[i − 1] is set to minq{Viewsq[i]} + 1 for 1 ≤ i ≤ t. By the inductive
assumption we have that Viewsp[i] = Viewsp′ [i] holds for all 0 ≤ i < minH(r) − 1
before Line 6 is applied. Since the values of Views[j] before Line 6 are shifted down
by one, and become the values of Views[j − 1] after it is applied, we obtain that
Viewsp[i] = Viewsp′ [i] for all 0 ≤ i < minH(r−1)−2 once Line 6 has completed. Since
minH(r) < minH(r − 1), we have that minH(r) − 1 ≤ minH(r − 1) − 2. Consequently,
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Viewsp[i] = Viewsp′ [i] for all 0 ≤ i < minH(r)− 1 when Line 7 is reached.
On Line 8, Viewsp[Horizonrp − 1] is set to 1. By definition, minH(r) ≤ Horizonrp,

so the update does not affect values Views[i] for i < minH(r)−1. Hence, the fact that
Viewsp[i] = Viewsp′ [i] for all 0 ≤ i < minH(r) − 1, which was shown above to hold
when Line 7 is reached, also holds when Line 9 is reached.

By Lemma 5.6, since r− 1 ≥ rc Line 9 does not change the value of Viewsrp[i], for
all 0 ≤ i < t. Since minH(r)− 1 ≤ t we have that after Line 9 Viewsp[i] = Viewsp′ [i]
for all 0 ≤ i < minH(r)− 1.

The following two lemmas show that “simultaneity” and “liveness” eventually
hold.

Lemma 5.10. “simultaneity” holds for all times k ≥ rc.
Proof. By Lemma 5.8 and Lemma 5.9, for two processes p, p′ it holds that

Viewsp[0] = Viewsp′ [0]. Together with Lemma 5.7 we have that every pair p and p′

of non-crashed processes either both fire or both refrain from firing in round r, for
every r ≥ rc.

Lemma 5.11. “liveness” holds for all times k ≥ 0.
Proof. If some non-faulty process p received a request to fire at time k, then it

sets Requestskp[0] = 1. Line 11 is the only place where Requestskp[0] can be altered to 0.
However, since Viewskp[0] ≥ Horizonkp ≥ 1, only Requestskp[i] for i ≥ 1 may be set to 0
in Line 11. Thus, at time k+ 1 it holds that Requestsk+1

p [1] = 1; and in general, if by
time k+i p does not set Requestsk+ip [i] = 0 then it holds that Requestsk+i+1

p [i+1] = 1.
Notice that if p sets Requestsk+ip [i] = 0 (for i ≥ 1), then p executes Line 11,

indicating that p fires. Notice that Viewsk+t+1
p [0] ≤ Horizonk+t+1

p ≤ t + 1. Thus, if
by time k + t+ 1 p has not set Requestsk+t+1

p [t+ 1] = 0, then at time k + t+ 1 p will
fire. We conclude that within t+ 1 rounds p will fire, and so “liveness” holds.

We now show another property of the horizon: The algorithm ensures that, intu-
itively, once the current horizon is reached, current round information is guaranteed
to be common knowledge. Formally:

Lemma 5.12. Let k ≥ 1, and let p ∈ P. If k′ is such that p ∈ Gk
′

and k′ =
k + Horizonkp − 1, then Viewsk

′

p [0] ≤ Horizonkp.
Proof. Let p be any process and consider time k: by Line 8 process p sets

Viewskp[Horizonkp − 1] = 1. For Horizonkp = 1, it holds that Viewskp[Horizonkp − 1] =
Viewskp[0] = 1 ≤ Horizonkp.

The rest of the proof concentrates on the case that Horizonkp > 1. At time k′ = k+
1 if p does not update Viewsk+1

p [Horizonkp−2] due to Line 8, then Viewsk+1
p [Horizonkp−

2] ≤ 2; and in general, if at time k′ = k + j p does not update Viewsk+jp [Horizonkp −
1 − j] then Viewsk+jp [Horizonkp − 1 − j] ≤ 1 + j. Notice that if p does update
Viewsp[Horizonkp−1−j] due to Line 8 then p has Viewsp[Horizonkp−1−j] = 1 ≤ 1+j.
Therefore, for the case where Horizonkp > 1 we have shown that Viewsk+jp [Horizonkp−
1 − j] ≤ 1 + j holds for j ≥ 1. Setting j = k′ − k for k′ = k + Horizonkp − 1
we have that j = Horizonkp − 1; replacing it in the above leads to the claim that
Viewsk

′

p [0] ≤ Horizonkp holds at time k′ = k + Horizonkp − 1.

Thus, both for Horizonkp = 1 and Horizonkp > 1, the inequality Viewsk
′

p [0] ≤
Horizonkp holds at time k′ = k + Horizonkp − 1.

Define minHG(F , k) = minp∈G Horizonkp and use it to define bestH(F , k) = mink′≥k{k′+
minHG(F , k′ + 1)}. If F is clear from the context, we use bestH(k).
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Notice that minHG is similar to minH except that minHG considers only Horizon
values of processes that never crash, while minH considers processes that haven’t
crashed yet. Also, notice that bestH is the equivalent of the publication time π with
respect to Fire-Squad (recall that π is computed according to CCfs). The following
lemma shows that bestH does not exceed the publication time π.

Lemma 5.13. bestH(k) ≤ π(k), for every k ≥ 0.
Proof. Consider the value of π(k) = mink′≥k{absH(k′)}, and denote by k′′ the

latest time for which the minimum is reached. I.e., π(k) = absH(k′′) = k′′ + t + 1 −
x(k′′), and for all k′ > k′′ it holds that absH(k′) > π(k). Thus, δ(k′′ + 1) = δ(k′′)
(otherwise, absH(k′′ + 1) ≤ absH(k′′), contradicting the choice of k′′).

Since δ(k′′ + 1) = δ(k′′) it holds that no new failed processes are discovered
at round k′′ + 1. Consider two cases: k′′ ≥ 1 and k′′ = 0. When k′′ ≥ 1 we
have that k′′ + 1 ≥ 2 and therefore every non-faulty process p at time k′′ + 1 has
Horizonk

′′+1
p = t + 1 − δ(k′′). Thus, minHG(k′′ + 1) = t + 1 − δ(k′′) leading to

k′′ + minHG(k′′ + 1) = k′′ + H dis(k′′) = absH(k′′).
Consider the case that k′′ = 0. By Definition 3.1, δ(k′′) = δ(0) = 0 leading to

H dis(k′′) = t + 1. Since Horizon1
p ≤ t + 1 it follows that k′′ + minHG(k′′ + 1) ≤

k′′ + H dis(k′′) = absH(k′′).
For both k′′ ≥ 1 and k′′ = 0 we conclude that k′′ + minHG(k′′ + 1) ≤ absH(k′′).

Since π(k) = absH(k′′) we conclude that bestH(k) ≤ π(k).
Based on the last two lemmas, we can now show:
Lemma 5.14. “safety” holds at all times k ≥ π(0).
Proof. Let p ∈ G be a process such that Horizonk

′+1
p = minHG(k′ + 1). Since

k′+ 1 ≥ 1 and p ∈ Gk
′′
, we have, by Lemma 5.5, that Horizonk

′′

p ≤ Horizonk
′+1
p holds

for all k′′ ≥ k′ + 1.
Consider time k′ + i (for i ≥ 1). We have, by Lemma 5.12, that Viewsk

′′

p [0] ≤
Horizonk

′+i
p ≤ Horizonk

′+1
p holds for every time k′′ = k′ + i + Horizonk

′+i
p − 1.

Thus, for every time k′′ ≥ k′ + Horizonk
′+1
p = bestH(0) it holds that Viewsk

′′

p [0] ≤
Horizonk

′+1
p ≤ bestH(0).

By Lemma 5.13 we have that bestH(0) ≤ π(0). Hence, for every time k′′ ≥ π(0)
it holds that Viewsk

′′

p [0] ≤ π(0). Consider time π(0). Since rc ≤ π(0), “simultaneity”
holds by Lemma 5.10. Therefore, if some process fires then all processes in Gπ(0)

fire. For any process q ∈ Gπ(0). If q fires, then it sets all Requestsπ(0)
q [i] = 0 for

all i ≥ Viewsπ(0)
q [0]. If q does not fire, then it is because Requestsπ(0)

q [i] = 0 for all
i ≥ Viewsπ(0)

q [0]. Moreover, since Viewsπ(0)
q [0] ≤ π(0), it holds that Requestsπ(0)

q [i] = 0
for all i ≥ π(0).

Since for every k′′ ≥ π(0) it holds that Viewsk
′′

p [0] ≤ π(0), we have that if process
p has Requestskp[i] = 1, it must have been set at some time ≥ 0. In other words, if a fire
action occurs then there was a previous go input received; and because Requestskp[i] is
zeroed once a fire action occurs, each go can induce at most a single fire action. Thus,
the number of times k′ in the range bestH(0) ≤ k′ ≤ k for which a fire action occurs
is not larger than the number of times 0 ≤ k′ < k during which a go input is received.

The following lemma (together with Lemma 5.13) shows that Fire-Squad fires by
time π(k) given a go input at time k. The lower bound in Theorem 3.7 implies that
this is optimal.

Lemma 5.15. Let input I be sequential w.r.t. (Fire-Squad,S,F). If Ikp = 1 for
process p at time k then Ok′

p = 1 for some k′ satisfying k < k′ ≤ bestH(k).
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Proof. Since I is sequential and Ikp = 1 it holds that p ∈ G. Consider bestH(0) =
mini{i + minHG(i + 1)}, and denote by k′ a time that satisfies k′ + minHG(k′ + 1) =
bestH(0). Let q ∈ G be some process such that Horizonk

′+1
q = minHG(k′ + 1). Since

k′ + 1 ≥ 1 and q ∈ G, we have by Lemma 5.12 that Viewsk
′′

q [0] ≤ Horizonk
′+1
q holds

at time k′′ = k′ + Horizonk
′+1
q = bestH(0).

If p fires at some time k < k′′ < bestH(k) then the claim is proved. Otherwise, at
time k′′ = bestH(k) it holds that Viewsk

′′

q [0] ≤ Horizonk
′+1
q . Since Ipk = 1 and p ∈ G,

by time k + 1 we have that Requestsk+1
q [1] = 1. Since p does not fire before time

bestH(k) and since “simultaneity” holds, we have that Requestsk
′′

q [Horizonk
′+1
q ] = 1

holds by time k′′ = bestH(k). Therefore, at time k′′ = bestH(k) q will fire and due
to “simultaneity” p will fire as well. We conclude that Ok′′

p = 1 is guaranteed to hold
for some k′′ satisfying k < k′′ ≤ bestH(k).

Following are the main results of the paper, stated in three different theorems.
Theorem 5.16. Fire-Squad solves the SSFS problem.
Proof. Consider any initial state S, any input pattern I and any failure pattern

F . By definition, π(F , 0) ≤ t+1. Thus, by Lemma 5.14, “safety” holds starting from
time t+ 1. Since by time t+ 1 there is a clean round, by Lemma 5.10, “simultaneity”
holds starting from time t + 1. Lemma 5.11 completes the proof, and we have that
stab(Fire-Squad,S, I,F) ≤ k holds at time k = t+ 1.

Theorem 5.17. Fire-Squad optimally stabilizes.
Proof. By Lemma 5.14, the “safety” property of Fire-Squad holds from time

π(F , 0). Moreover, by Lemma 5.10 together with the fact that by time π(F , 0) there is
a clean round, the “simultaneity” property of Fire-Squad holds from time π(F , 0).
Combined with Lemma 5.11 we have that stab(Fire-Squad,S, I,F) ≤ π(F , 0); for
any state S, input pattern I and failure pattern F . I.e., maxS,I{stab(Fire-Squad,S, I,F)} ≤
π(F , 0).

LetA be any SSFS algorithm. By Theorem 3.6 for every failure pattern F we have
that maxS,I{stab(A,S, I,F)} ≥ π(F , 0). Thus, for every F : maxS,I{stab(Fire-Squad,S, I,F)} ≤
maxS,I{stab(A,S, I,F)}.

Theorem 5.18. Fire-Squad is optimally swift.
Proof. Let input I be sequential w.r.t. (Fire-Squad,SFire-Squad,F). By Lemma 5.15,

if Ikp = 1 for some process p at time k then Ok′

p = 1 holds for some k′ satisfying k <
k′′ ≤ bestH(k). Therefore, by time bestH(k) we have that #[(Fire-Squad,SFire-Squad, I,F), bestH(k)]
is no smaller than the number of go inputs received by time k.

Let A be an SSFS algorithm and let I be sequential w.r.t. (A,SA,F). By Theo-
rem 3.7, for every k ≥ 0 for which a go input is received in Ik there is no fire action in
O=A(SA, I,F) during times k′ satisfying k < k′ < π(F , k). Since bestH(k) ≤ π(k)
(Lemma 5.13), it holds that by time bestH(k), the value of #[(A,SA, I,F), bestH(k)]
is at most equal to the number of go inputs received by time k.

Thus, for every SA,SFire-Squad,F and sequential I it holds that
#[(Fire-Squad,SFire-Squad, I,F), k] ≥ #[(A,SA, I,F), k], for all k.

6. Conclusions and Open Problems. This paper presents Fire-Squad, the
first self-stabilizing firing squad algorithm. Fire-Squad is optimal in two important
respects: It optimally stabilizes, and is optimally swift. There are many directions in
which this work can be extended. These include:

• Fire-Squad assumes the crash fault model. What can be said about the
omission fault model? And what about the Byzantine fault model? Each
such extension seems to be a nontrivial step.
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• Fire-Squad works when we assume that failures are permanent. Being an
ongoing and everlasting service, firing squad is expected to operate for long
periods, in which processes may recover. A more reasonable assumption in
this case is that there is a bound (of t) on the number of failures over every
interval of m rounds, for some m. (Non-stabilizing) Continuous consensus
has recently been studied in this model [14], and it would be interesting to
see if the same can be done for self-stabilizing firing squad.
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