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ABSTRACT
Existing compact routing schemes, e.g., Thorup and Zwick
[SPAA 2001] and Chechik [PODC 2013], often have no means
to tolerate failures, once the system has been setup and
started. This paper presents, to our knowledge, the first
self-healing compact routing scheme. Besides, our schemes
are developed for low memory nodes, i.e., nodes need only
O(log2 n) memory, and are thus, compact schemes.

We introduce two algorithms of independent interest: The
first is CompactFT, a novel compact version (using only
O(logn) local memory) of the self-healing algorithm Forgiv-
ing Tree of Hayes et al. [PODC 2008]. The second algorithm
(CompactFTZ) combines CompactFT with Thorup-Zwick’s
tree-based compact routing scheme [SPAA 2001] to produce
a fully compact self-healing routing scheme. In the self-
healing model, the adversary deletes nodes one at a time
with the affected nodes self-healing locally by adding few
edges. CompactFT recovers from each attack in only O(1)
time and ∆ messages, with only +3 degree increase and
O(log∆) graph diameter increase, over any sequence of dele-
tions (∆ is the initial maximum degree).

Additionally, CompactFTZ guarantees delivery of a packet
sent from sender s as long as the receiver t has not been
deleted, with only an additional O(y log ∆) latency, where y
is the number of nodes that have been deleted on the path
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between s and t. If t has been deleted, s gets informed and
the packet removed from the network.
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1. INTRODUCTION
Efficient routing is becoming critical in current networks,

and more so in future networks. Routing protocols have
been the focus of intensive research over the years. Rout-
ing is based on information carried by the traveling packets
and data structures that are maintained at the intermedi-
ate nodes. The efficiency parameters change from time to
time, as the network use develops and new bottlenecks are
identified. It is clear that the size of the network eliminates
the ability to use any centralized decisions, and we are close
to giving up on maintaining long distance routing decisions.
We are a few years before a full scale deployment of IOT (In-
ternet of Things) that will introduce billions of very weak
devices that need to be routed. The size of the network and
the dynamic structure that will evolve will force focusing on
local decisions. The weakness of future devices and the size
of the network will push for the use of protocols that do not
require maintaining huge routing tables.

Santoro and Khatib [44], Peleg and Upfal [40], and Cowen
[12] pioneered the concept of compact routing that requires
only a minimal storage at each node. Moreover, the use of
such routing protocols imposes only a constant factor in-
crease on the length of the routing. Several papers followed



up with some improvements on the schemes (cf. Thorup and
Zwick [45], Fraigniaud and Gavoille [19], and Chechik [8]).
These efficient routing schemes remain stable as long as
there are no changes to the network.

The target of the current paper is to introduce an effi-
cient compact scheme that combines compact routing with
the ability to correct the local data structure stored at each
node in a response to the change. Throughout this paper,
when we say compact, we imply schemes that use o(n) local
memory (in our case, we actually only use O(log2 n) local
memory) per node. Our new scheme has similar cost as
previous compact routing schemes. We will focus on node
failures, since that is more challenging to handle.

Our algorithms work in the bounded memory self-healing
model (Section 1.1). We assume that the network is initially
a connected graph over n nodes. All nodes are involved in
a preprocessing stage in which the nodes identify edges to
be included in building a spanning tree over the network
and construct their local data structures. The adversary
repeatedly attacks the network. The adversary knows the
network topology and the algorithms, and has the ability to
delete arbitrary nodes from the network. To enforce a bound
on the rate of changes, it is assumed the adversary is con-
strained in that it deletes one node at a time, and between
two consecutive deletions, nodes in the neighbourhood of the
deleted node can exchange messages with their immediate
neighbours and can also request for additional edges to be
added between themselves.

Our self-healing algorithm CompactFT ensures recovery
from each attack in only a constant time and ∆ messages,
while, over any sequence of deletions, taking only constant
additive degree increase (of 3) and keeping the diameter as
O(D log ∆), where D is the diameter of the initial graph and
∆ the maximum degree of the initial spanning tree built on
the graph. Moreover, CompactFT needs only O(logn) local
memory (where n is the number of nodes originally in the
network). Theorem 3.1 states the results formally.

CompactFTZ, our compact routing algorithm, is based
on the compact routing scheme on trees by Thorup and
Zwick [45], and ensures routing between any pair of exist-
ing nodes in our self-healing tree without loss of any mes-
sage packet whose target is still connected. Moreover, the
source will be informed if the receiver is lost, and if both
the sender and receiver have been lost, the message will be
discarded from the system within at most twice of the rout-
ing time. Our algorithm guarantees that after any sequence
of deletions, a packet from s to t is routed through a path
of length O(d(s, t) log ∆), where d(s, t) is the distance be-
tween s and t, and ∆ is the maximum degree of any node in
the initial tree. Though CompactFTZ uses only logn local
memory, the routing labels (and, hence, the messages) are
of O(log2 n) size, so nodes may need O(log2 n) memory to
locally process the messages. Theorem 4.2 states the results
formally.

A few modifications are needed to [45] to achieve our com-
pact fault-tolerant scheme. We have to ensure that the pack-
ets are routed despite the deletions, subsequent self-healing,
and, thus, loss and obsolescence of some information, i.e.,
we would like to continue without updating outdated rout-
ing tables and labels. This is partly achieved by using a
post-order DFS labelling that allows the self-healing nodes
to do routing using just simple binary search in the affected
areas ([45] uses pre-order DFS labels). Other modifications

to the algorithm and labels modify the routing according to
the self-healing state of the nodes, ensure packets are not
lost while self-healing and allow undelivered packets to dead
targets to be returned to alive senders.

Related Work.

Algorithm Over Complete Run
Local Diameter Degree

Memory (Orig: D) (Orig: d)
Forgiving Tree [24] O(n) D log ∆† d+ 3
CompactFT O(logn) D log ∆† d+ 3

Per Healing Phase
Parallel Msg # Msges

Repair Time Size
Forgiving Tree [24] O(1) O(logn) O(1)
CompactFT O(1) O(logn) O(δ)‡

† ∆: Highest degree of network.
‡ δ: Highest degree of a node involved in repair (at most ∆).

Table 1: Comparison of CompactFT with Forgiving Tree

CompactFT uses ideas from the Forgiving Tree [24] (FT,
in short) approach in order to improve compact routing.
The main improvement of CompactFT is that no node uses
more than O(logn) local memory and thus, CompactFT is
compact. CompactFT achieves the same bounds and healing
invariants as FT, however, taking slightly more messages (at
most O(∆) messages as opposed to O(1) in FT) in certain
rounds. Table 1 compares both algorithms.

Several papers have studied the routing problem in ar-
bitrary networks (e.g. [2, 3, 12, 8]) and with the help of
geographic information (e.g. [7, 21, 31]), but without fail-
ures. These papers are interested in the trade-off between
the size of the routing tables and the stretch of the scheme:
the worst case ratio between the length of the path obtained
by the routing scheme and the length of the shortest path
between the source and the destination. Here we are mainly
interested in preserving compactness under the presence of
failures.

An interesting line of research deals with labelling schemes.
[29] presents labelling schemes for weighted dynamic trees
where node weights can change. However, it does not deal
with node deletions nor does it claim to deal with rout-
ing. In [30], Korman et al. present a compact distributed
labelling scheme in the dynamic tree model: (1) the net-
work is a tree, (2) nodes are deleted/added one at a time,
(3) the root is never deleted and (4) only leaves can be
added/deleted. In a labelling scheme, each node has a la-
bel and from every two labels, the distance between the
corresponding nodes can be easily computed. The fault-
tolerant labelling scheme is obtained by modifying any static
scheme. Using the previous, they get fault-tolerant (in the
same model) compact versions of the compact tree routing
schemes of [20, 19, 45]. These schemes have a multiplicative
overhead factor of Ω(logn) on the label sizes of the static
schemes. In [27], Korman improves the results in [30], pre-
senting a labelling scheme in the same model that allows to
compute any function on pairs of vertices with smaller la-
bels, at the cost, in some cases, of communication. Our work
differs from the previous in the sense that though we use a
spanning tree of the network, our network can be arbitrary
and any node can be deleted by the adversary.



There have been numerous papers that discuss strategies
for adding additional capacity and rerouting in anticipation
of failures [10, 9, 11, 16, 18, 22, 26, 36, 47, 48, 49]. In each
of these solutions, the network is fixed and either redundant
information is precomputed or routing tables are updated
when a failure is detected. In contrast, our algorithm runs
in a dynamic setting where edges are added to the network
as node failures occur, maintaining connectivity and pre-
serving compactness at all time. Our bounded memory self-
healing model builds upon the model introduced in [24].
A variety of self-healing topology maintenance algorithms
have been devised in the self-healing models [38, 39, 25, 46,
43]. Our paper moves in the direction of self-healing com-
putation/routing along with topology which is attempted in
other papers e.g. [42] (though in a different model). Finally,
dynamic network topoplogy and fault tolerance are core con-
cerns of distributed computing [1, 35] and various models,
e.g., [32], and topology maintenance and Self-* algorithms
abound [6, 13, 14, 15, 28, 33, 41, 23, 5, 17, 4, 34].

1.1 Bounded Memory Self-healing Model
Let G = G0 be an arbitrary connected (for simplicity)

graph on n nodes, which represent processors in a distributed
network. Each node has a unique ID. Initially, each node
only knows its neighbors in G0, and is unaware of the struc-
ture of the rest of G0.

We allow a certain amount of pre-processing to be done
before the adversary is allowed to delete nodes. In the pre-
processing stage nodes exchange messages with their neigh-
bors and setup data structures as required.

The adversarial process can be described as deleting some
node vt from Gt−1, forming Ht. All neighbors of vt are
informed of the deletion. In the healing stage nodes of
Ht communicate (concurrently) with their immediate neigh-
bors. Nodes may insert edges joining them to other nodes
they know about, as desired. Nodes may also drop edges
from previous phases if no longer required. The resulting
graph at the end of this phase is Gt. Nodes are not ex-
plicitly informed when the healing stage ends. We make no
synchronicity assumption except that all messages after the
deletion of a node, i.e., in a healing phase, are safely received
and processed before the adversary deletes the next node.

The objective is minimizing the following “complexity”
measures (excluding the preprocessing stage):
• Deg. increase: maxt<n maxv(deg(v,Gt)−deg(v,G0))
• Diameter stretch: maxt<n Dia(Gt)/Dia(G0)
• Communication: The maximum number of bits sent

by a single node in each recovery phase
• Recovery time: The maximum total time for a re-

covery phase, assuming it takes a message no more
than 1 time unit to traverse any edge
• Local Memory: The amount of memory a single

node needs to maintain to run the algorithm.

1.2 Compact Routing Model
The algorithm is allowed a pre-processing phase, e.g., to

run a distributed DFS on the graph. Each message has a
label which may contain the node ID and other information
derived from the pre-processing phase. Every node stores
some local information for routing. The routing algorithm
does not change the original port assignment at any node
(however, node deletions may force the self-healing algo-
rithm to do simple port re-assignments). We are interested

in minimizing the sizes of the label and the local information
at each node.

2. THE ALGORITHMS: HIGH LEVEL
As stated, CompactFT (Algorithm 3.1) is an adaptation

of FT [24] for low memory. CompactFTZ (Algorithm 4.2)
then conducts reliable routing over CompactFT. At a high
level, the following happens:
• Preprocessing: A BFS spanning tree T0 of graph G0

is derived followed by DFS traversal and labelling and
careful setup of CompactFT and CompactFTZ fields
(Tables 2 and 4). For CompactFT, every node sets up
and distributes a Will (Section 3), which is the blueprint
of edges and virtual (helper) nodes to be constructed
upon the node’s deletion.
• After each deletion, the repair maintains the spanning

tree of helper and real (original) nodes, i.e., the ith dele-
tion (say, of node vi) and subsequent repair yields tree
Ti. The helper nodes are simulated by the real nodes
and only a real node can be deleted. The two main
cases are as follows:
- non-leaf deletion, i.e., vi is not a leaf in Ti−1 (Sec-
tion 3.1): The neighbours of vi ‘execute’ vi’s will lead-
ing vi to be replaced by a reconstruction tree (RT(vi))
which is a balanced binary search tree (BBST ) having
vi’s neighbours as the leaves and helper nodes as the
internal nodes simulated by vi’s neighbours (Figure 1).
- leaf deletion, i.e., vi is a leaf in Ti−1 (Section 3.2):
This case is more complicated in the low memory setting
since a node (in particular, vi’s parent p) cannot store
the list of its children nor recompute its Will. If p was
dead, vi’s siblings essentially deletes a redundant helper
node while maintaining the structure. If p is alive, no
new edges are made but p orchestrates a distributed
update of its will while being oblivious of the identity
of its children. Thus, when p is eventually deleted, the
right structure gets put in place.
• Routing: Independent of the self-healing, a node s may

send a message to node r (along with s’s own label) us-
ing the CompactFTZ protocol. The label on the mes-
sage (for r) along with the local routing fields at a real
node tells the next node, say w, on the path. If, how-
ever, w had been deleted earlier, there could be a helper
node on that port which is part of RT(w). Now, the
message would be routed using the fact that the RT(w)
is a BBST and make it to the right node at the end
of RT(w). The message eventually reaches r, but if r
is dead, the message is ‘returned to sender’ using s’s
label.

3. CompactFT: DETAILED DESCRIPTION
CompactFT maintains connectivity in an initially con-

nected network with only a total constant degree increase
per node and O(log ∆) factor diameter increase over any se-
quence of attacks while using only O(logn) local memory
(where n is the number of nodes originally in the network).
The formal theorem statement is given in Theorem 3.1.

As stated, in CompactFT, a deleted node is replaced by
a RT formed by (virtual) helper nodes simulated by its chil-
dren (siblings in case of a leaf deletion) (Figure 1). This
healing is carried out by a mechanism of wills:
Will Mechanism: A Will(v) is the set of actions, i.e.,
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Figure 1: Deleted node v replaced by Reconstruc-
tion Tree (RT(v)). Nodes in oval are virtual helper
nodes. The circles are regular helper nodes and the
rectangle is ‘heir’ helper node. The ‘Will’ of v is
RT(v), i.e., the structure that replaces the deleted v.

Current fields Fields having information about a
node’s current neighbors

parent(v) Parent of v
parentport(v) Port at which parent(v) is attached
numchildren(v) Number of children of v
maxportnumber(v) Maximum port number used by v
heir(v),<heir(v)> The heir of v and its port
Helper fields Fields for a helper node v may be

simulating. (Empty if none)
hparent(v) Parent of the helper node v simulates
hchildren(v) Children of helper node v simulates.
Reconstruction
fields / WillPortion
/LeafWillPortion

Fields used by v to reconstruct its
connections when its neighbor is
deleted.

nextparent(v) Node which will be next Parent(v)
nexthparent(v) Node which will be next hparent(v)
nexthchildren(v) Node(s) that will be next

hchildren(v)
Flags Boolean fields telling node’s status.
hashelper(v) True if v is simulating a helper node

Table 2: The fields maintained by a node v for Com-
pact FT. Each reference to a sibling is tagged with
the port number at which it is attached to parent
(not shown above for clarity) e.g. nextparent(v) is
nextparent(v), <nextparent(v)>.

Message Description
BrLeafLost (<x>) Node v broadcasts, informing that

the leaf node at v’s port<x> has been
deleted.

BrNodeReplace
((x,<x>), (h,<x>))

Node v broadcasts, asking receivers to
replace (in their willportions) at v’s
port <x>, node x with node h.

PtWillConnection
((y,<y>), (z,<z>))

Node v asks receivers (in their
v.Willportion) to make an edge be-
tween node y and node z.

PtNewLeafWill
((y,<y>),
(z,<z>),W (y))

Node v informs node z that it is the
new LeafHeir(y) and gives it W (y) (=
LeafWill(y)).

Table 3: Messages used by CompactFT (sent by a
node v).

the subgraph to be constructed on the deletion of node v.
When v is a non-leaf node, this is essentially the encoding
of the structure RT(v) and is distributed among v’s chil-
dren. Each part of a node’s Will stored with another node
is called a Willportion. We denote Willportion(p, v) to be
the part of Will(p) that involves v, i.e., the relevant sub-
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Figure 2: The network of a node v, v’s Will = RT(v)
and Willportions for its children a and d.

graph, and is stored by node v. When v is a leaf node,
however, Will(v) differs in not being a RT(v) and is stored
with siblings of v. For clarity, we call this kind of Will
a LeafWill, the Willportions as LeafWillportions and a leaf
node’s heir as LeafHeir. Thus, a Will of a node is distributed
among the node’s neighbours such that the union of those
Willportions makes the whole Will. Note that a Willportion
(or LeafWillportion) is of only constant size (in number of
node IDs). Figure 2 shows the Will of a node v and the
corresponding Willportions.

The fields used by a node for executing CompactFT are
given in Table 2. Unlike FT, the node cannot have either
the list of its children or its own RT (since these can be as
large as O(n)). Rather, a node v will store the number of
its children (numchildren(v)), highest port number in use
(maxportnumber) and will store every node reference in the
form (nodeID, port), e.g., in Willportion(p, v), a reference
to a node x will be stored as (x,<x>), where <x> is the
port of p at which x is connected.

Algorithm 3.1 gives a high level overview of CompactFT.
The detailed algorithms are presented in the full version
of this paper. Also, Table 3 describes some of the special
messages used by CompactFT. CompactFT begins with
a preprocessing phase (Algo 3.1 line 1) in which a rooted
BFS spanning tree of the network from an arbitrary node
is computed. The algorithm will then maintain this tree in
a self-healing manner. Each node sets up the CompactFT
data structures including its Will. We do not count the re-
sources involved in the preprocessing but note that at the
end of that phase all the CompactFT data structures are
contained within the O(logn) memory of a node. As stated,
the basic operation is to replace a (non-leaf) node by a RT.
A leaf deletion, however, leads to a reduction in the num-
ber of nodes in the system and the structure is then main-
tained by a combination of a ‘short circuiting’ operation and
a helper node reassignment (this is also encoded in the leaf
node’s LeafWill and is discussed later). An essential invari-
ant of CompactFT is that a real node simulates at most one
helper node and since each helper node is a node of a binary
tree, the degree increase of any node is restricted to at most
3. Similarly, since RTs are balanced binary trees, distances
and, hence, the diameter of the CompactFT, blows up by
at most a log ∆ factor, where ∆ is the degree of the high-
est node (ref: Theorem 3.1). In the following description,
we sometimes refer to a node v as Real(v) if it is real, or
helper(v) if it is a helper node, or by just v if it is obvious
from the context.



Algorithm 3.1 CompactFT(Graph G): High level view

1: Preprocessing and INIT: A rooted BFS spanning tree
T (V,E′) of G(V,E) is computed. For every node v, its
Will (non-leaf or leaf as appropriate) is computed. Every
node x in a Will is labeled as (x,<x>), where x is x’s ID
and <x> is x’s parent’s port number at which x is con-
nected (if it exists). Each node only has a Willportion
and/or LeafWillportions (O(logn) sized portion of par-
ent’s or sibling’s Will, respectively).

2: while true do
3: if a vertex x is deleted then
4: if x was not a leaf (i.e., had any children) then //

Fix non leaf deletion.
5: x’s children execute x’s Will using x’s

Willportions they have; Heir(x) takes over
x’s Will/duties.

6: All Affected Wills (i.e. neighbours of x and of
helper(x)) are updated by simple update of rele-
vant Willportions.

7: else // Fix leaf deletion.
8: Let node p (if it exists) be node x’s parent //

If p does not exist, x was the only node in the
network, so nothing to do

9: if p is real/alive then // Update Wills by simu-
lating the deletion of p and x

10: if x was p’s only child then
11: p computes its LeafHeir and LeafWill and

forwards it. // p has become a leaf
12: else
13: p informs all children about x’s deletion.
14: p’s children update p’s Willportions using x’s

LeafWillportions.
15: Children issue updates to p’s Willportions

and other LeafWillportions via p.
16: p forwards updates via broadcast or point-

to-point messages, as required.
17: p’s neighbours receiving these messages up-

date their data structures.
18: end if
19: else // p had already been deleted earlier.
20: Let y be x’s LeafHeir.
21: y executes x’s Will.
22: Affected nodes update their and their neigh-

bour’s Willportions.
23: end if
24: end if
25: if x was node z’s LeafHeir then
26: z sets a new neighbour as LeafHeir following a

simple rule.
27: end if
28: end if
29: end while

3.1 Deletion of a Non-Leaf Node:
Assume that a node x is deleted. If x was not a leaf

node (Algorithm 3.1 lines 5 - 6), it’s neighbours simply exe-
cute x’s Will. One of x’s children (by default the rightmost
child) is a special child called the Heir (say, h) and it takes
over any virtual node (i.e., helper(x)) that x may have been
simulating, otherwise it is the one that connects the rest of
the RT to the parent of x (say, p). This past action may
lead to changes in the Wills of other live nodes. In par-
ticular, p will have to tell its children to replace x by h in
p’s Will. Due to the limited memory, p does not know the
identity of x. However, when h contacts p, it will inform
p that x has been deleted and p will broadcast a message
BrNodeReplace((x,< x >), (h,< x >)) asking all neigh-
bours to replace x by h in their Willportions at the same
port (Table 3).

(a) helper(v) is the parent of v.

(b) helper(w) is not the parent of w.

Figure 3: Deletion of a leaf node whose parent is a
helper node: two cases.

3.2 Deletion of a Leaf Node:
If the deleted node x was, in fact, a leaf node, the situation

is more involved. There are two cases to consider: whether
the parent p of x is a helper node (implying the original
parent had been deleted earlier) or a real node. The second
case, though trivial in FT (withO(n) memory) is challenging
in CompactFT. Before we discuss the cases, we introduce
the ‘short-circuiting’ operation used during leaf deletion:

bypass(x): (from [24]) Precondition: |hchildren(x)| = 1,
i.e., the helper node has a single child.
Operation: Delete helper(x), i.e., Parent of helper(x)
and child of helper(x) remove their edges with helper(x)
and make a new edge between themselves.
hparent(x)← EMPTY; hchildren(x)← EMPTY.

1. Parent p of x is a helper node

If p is a helper node, this implies that the original
parent of x (in G0) had been deleted at some stage
and x has exactly one helper node in one of the RTs
in the tree above. Since x has been deleted, p has only
one child now and Bypass(p) can now be executed.
There are two further cases:

(a) helper(x) is parent of x (Figure 3(a)): In this
case, the only thing that needs to be done is
Bypass(x) since this bypasses the deleted nodes
and restores connectivity. However, the issue is
that helper(x) has already been deleted, so how
is Bypass(x) to be executed? For this, we use
the mechanism of a LeafWill. Assume helper(x)
had two children, x and y. When x sets up its
LeafWill (which consists only of Bypass(x)), it
designates y as its LeafHeir and sends its LeafWill.
In Figure 3(a), the LeafHeir of node v is w and the
LeafWill(v) consists of the operation Bypass(v).

(b) helper(x) is not the parent of x (Figure 3(b)): Let
p be the parent of the deleted node x. Since
p now has only one child left, it will have to
be short-circuited by Bypass(p). However, the
node helper(x) has also been lost. Therefore, if
we don’t fix that, we will disconnect the neigh-
bours of helper(x). However, since p has been by-
passed, Real(p) is not simulating a helper node



anymore and, thus, Real(p) will take over the
slot of helper(x) by making edges between its ex-
neighbours. In this case, x simply designates p as
its LeafHeir and leaves LeafWill(x) (which is of
only O(logn) size) with p. In Figure 3(b), node
w is deleted, its parent and LeafHeir is helper(v)
and, thus, when w is deleted, following LeafWill(w),
Bypass(v) is executed and v takes over helper(w).

The only situation left to be discussed is when x was a
LeafHeir of another node. In this case, the algorithm
follows the rules apparent from the cases before. Let v
be the node that had x as its LeafHeir. Assume that
after healing, p is the parent of Real(v) and assume
for now that p is a helper node (the real node case
is discussed later). Then, if p is helper(v), v makes
the other child of p (i.e., v’s sibling) as v’s LeafHeir,
otherwise v sets p as its LeafHeir and hands its Will
over to the LeafHeir.

2. Parent p of x is a real node

This case is trivial in FT as all that p needs to do
is remove x from the list of its children (children(p)
in FT), recompute its Will and distribute it to all its
children. However, in CompactFT, p cannot store the
list of its children and thus, update its Will. There-
fore, we have to find a way for the Will to be up-
dated in a distributed manner while still taking only
a constant number of rounds. This is accomplished
by using the facts that the Willportions are already
distributed pieces of p’s Will and each leaf deletion af-
fects only a constant number of other nodes allowing
us to update the Willportions Notice that since p is
real, nodes cannot really execute x’s Will as in case 1.
However, Will(p) is essentially the blueprint of RT(p).
Hence, what p and its neighbours do is execute Will(x)
on Will(p): this has the effect of updating Will(x) to
its correct state and when ultimately p is deleted, the
right structure is in place.

This ‘simulation’ is done in the following manner: p
detects the failure of x and informs all its neighbours
by a BrLeafLost(<x>) message (Table 3). The node
that is LeafHeir(x), say v, will now simulate execution
of LeafWill(x). As discussed in Case 1, a LeafWill has
two parts: a Bypass operation and a possible helper
node takeover by another node. Suppose the Bypass
operation is supposed to make an edge between nodes
a and b. Node v simulates this by asking p to send
a PtWillConnection((a,<a>), (b,<b>)) message to its
ports <a> and <b>. This has the effect of node a and
b making the appropriate edge in their Willportion(p).
Similarly, for the node take over of helper(x), v asks p
to send PtWillConnection messages to make edges (in
Willportions) between the node taking over and the
previous neighbours of helper(x) in Will(p).

Another case is when x was the LeafHeir of another
node, say w. Since LeafHeir(x) has already done the
healing, the Willportions are now updated and it is
easy for w to find another LeafHeir. This is straightfor-
ward as per our previous discussion. The new LeafHeir
will either be Real(w)’s Parent or (if Parent(w) =
helper(w)) Parent(w)’s other child. Notice this infor-
mation is already present in Willportion(p, w). The

new LeafWill(w) is also straightforward to calculate.
As stated earlier, every LeafWill has a Bypass and/or
a node takeover operation. All the nodes involved are
neighbours of w in Willportion(p, w). Therefore, this
information is also available with w enabling it to re-
construct its new LeafWill which it then sends to the
new LeafHeir via p using the PtNewLeafWill() mes-
sage (Table 3). Finally, there is a special case:

• x was the only child of (real) parent p:

Finally, there is also the possibility of node x be-
ing the only child of its parent p in which case p
will become a leaf itself on x’s deletion. Node p
can only be a Real node (a helper node cannot
have one child) and since x does not have any
sibling, x will not have any LeafHeir or LeafWill
(rather, these fields will be set to NULL). Thus,
when x will be deleted, there will be no new edges
added. However, p will detect that it has become
a leaf node and using p’s parent’s Willportion,
it will designate a new LeafHeir, compute a new
LeafWill (as discussed previously) and send it to
its LeafHeir by messages (if p’s parent is Real) or
directly.

Theorem 3.1 (proof deferred to the full paper) summarises
the properties of CompactFT.

Theorem 3.1. The CompactFT has the following prop-
erties:

1. CompactFT increases degree of any vertex by only 3.
2. CompactFT always has diameter O(D log ∆), where
D is the diameter and ∆ the maximum degree of the
initial graph.

3. Each node in CompactFT uses only O(logn) local mem-
ory for the algorithm.

4. The latency per deletion is O(1) and the number of
messages sent per node per deletion is O(∆); each mes-
sage contains O(1) node IDs and thus O(logn) bits.

4. A COMPACT SELF HEALING ROUTING
SCHEME

In this section, we present CompactFTZ, a fault toler-
ant, self-healing routing scheme. First, we present a vari-
ant of the compact routing scheme on trees of Thorup and
Zwick [45] (which we refer to as TZ in what follows), and
then we make this algorithm fault-tolerant in the self-healing
model using CompactFT (Section 3).

4.1 Compact Routing on Trees
We present a variant of TZ that mainly differs in the order

of DFS labelling of nodes. The local fields of each node
are changed accordingly. This variant allows us to route
even in the presence of adversarial deletions on nodes when
combined with CompactFT (Lemma 4.1).

Let T be a tree rooted at a node r. Consider a constant
b ≥ 2. The weight sv of a node v is the number of its
descendants, including v. A child u of v is heavy if su ≥
sv/b, and light otherwise. Hence, v has at most b− 1 heavy
children. By definition, r is heavy. The light routing index
`v of v is the number of light nodes on the path from r
to v, including v if it is light. We label a heavy node as



v DFS number (post-order)
dv smallest descendent of v

(in the original scheme, this is fv,
the largest descendant of v)

cv smallest descendent of first tzlight
child of v, if it exists; otherwise v+1
(in the original scheme, this is hv,
the first tzheavy child of v)

Hv: array with b+ 1 elements
Hv[0] number of tzheavy children of v
Hv[1, . . . , Hv[0]] tzheavy children of v
Pv: array with b+ 1 elements
Pv[0] port number of the edge from v to

its parent.
Pv[1, . . . , Hv[0]] port numbers from v to its tzheavy

children
` light routing index of v

Table 4: Local fields of a node v: Locally, each node
v stores the above information

tzheavy and a light node as tzlight. Note that here we are
describing the scheme for the static case where the tree does
not change over time. However, it is easy to extend this to
the dynamic case (Section 4.2) by initially setting up the
data structure in exactly the same way as the static case
during preprocessing. Later on the classification into heavy
and light type remains as it was set initially and need not
be updated.

We first enumerate the nodes of T in DFS post-order man-
ner, with the heavy nodes traversed before the light nodes.
For each node v, we let v itself denote this number. This
numbering gives the IDs of nodes (in the original scheme,
the nodes are labelled in a pre-order manner and the light
nodes are visited first). For ease of description, by abuse of
notation, in the description and algorithm, we refer inter-
changeably to both the node itself and its ID as v.

Note that each node has an ID that is larger than the ID
of any of its descendants. Moreover, given a node and two
of its children u and v with u < v, the IDs in the subtree
rooted at u are strictly smaller than the IDs in the subtree
rooted at v. With such a labelling, routing can be easily
performed: if a node u receives a message for a node v, it
checks if v belongs to the interval of IDs of its descendants;
if so, it forwards the message to its appropriate children,
otherwise it forwards the message to its parent. Using the
notion of tzlight and tzheavy nodes, one can achieve a com-
pact scheme. The local fields for a node are given in Ta-
ble 4. Note that each node v locally stores O(b logn) bits.
The label L(v) of v is defined as follows: an array with the
port numbers reaching the light nodes in the path from r
to v. The definition of tzlight nodes implies that the size of
L(v) is O(log2 n), hence the size of the header (v, L(v)) of
a packet to v is O(log2 n). The scheme TZ is described in
Algorithm 4.1.

4.2 The CompactFTZ scheme
CompactFTZ (Algorithm 4.2) is fault tolerant adaptation

of TZ that runs in CompactFT. The initialisation phase
(Algorithm 4.2 line 4.2) performed during preprocessing sets
up the data structures for CompactFTZ in the following or-
der: A BFS spanning tree of the network is constructed
rooted at an arbitrary node, then a DFS labelling and TZ
setup is done as in Section 4.1, followed by CompactFT data

Algorithm 4.1 The TZ scheme. Code for node v for a
message sent to node w.

operation TZv(w,L(w)):
1: if v = w then
2: The message reached its destination
3: else if w /∈ [dv, v] then
4: Forward to the parent through port Pv[0]
5: else if w ∈ [cv, v] then
6: Forward to a tzlight node through port L(w)[`v]
7: else
8: Let i be the index s.t. Hv[i] is the smallest tzheavy

child of v greater than or equal to w
9: Forward to a heavy node through port Pv[i]

10: end if
end operation

Figure 4: The left side shows the tree before any
deletion with the path a message from 8 to 1 will
follow. The right side shows the tree obtained after
deleting 7. The nodes enclosed in the rectangle are
virtual helper nodes replacing 7. To route a message
from 8 to 1, virtual nodes perform binary search,
while real nodes follow TZ.

Algorithm 4.2 The CompactFTZ scheme. Code for node
v for a message sent to node w.

Preprocessing: Construct a BFS spanning tree of
the network from an arbitrary node. Do a DFS la-
belling and TZ setup followed by CompactFT data
structures setup using TZ DFS numbers as node
IDs.
1: v runs CompactFT at all times.
2: if v is a real node then
3: Invoke TZv(w,L(w))
4: else // v is a virtual helper node (= helper(v))
5: if v = w then
6: The message has reached its destination
7: else if w /∈ [dv, v] then
8: Forward to the parent of helper(v) in the current

virtual tree.
9: else if w < v then

10: Forward to the left child of helper(v) in the current
virtual tree.

11: else
12: Forward to the right child of helper(v) in the cur-

rent virtual tree.
13: end if
14: end if

structures setup using the previously generated DFS num-
bers as node IDs. The underlying layer is aware of the node
IDs, DFS number IDs and node labels to be used for send-
ing messages (as in TZ).



Recall that, in our model, if there is no edge between u
and v, and port numbers x and y of u and v, respectively, are
not in use, then u or v can request an edge (u, v) attached to
these ports. In what follows, we assume that in CompactFT,
when a child x of p is deleted and a child w of x creates an
edge (p, w), such an edge will use the port of p used by (p, v)
and any available port of w.

Every node runs CompactFT at all time. For routing, a
real node just follows TZ (Algorithm 4.2, Line 3), while a
virtual node first checks if the packet reached its destination
(Line 5), and if not, it performs a binary search over the
current virtual tree (Lines 7 to 12). As mentioned earlier,
though we use the notion of light and heavy nodes in the ini-
tial setup and use it to compute routing tables and labels, we
do not maintain this notion as the algorithm progresses but
just use the initially assigned labels throughout. Further,
following CompactFT, if a node x is deleted, it is replaced
by RT(x). If a packet traverses RT(x), the virtual nodes
ignore the heavy/light classification and just use the IDs to
perform binary search. Figure 4 illustrates CompactFTZ in
action. In the figure, node 8 sends a packet for node 1. If
there is no deletion in the tree, the packet will simply follow
the path via the root 9, node 7, node 3 to node 1. Recall that
at each node, the node checks if the packet destination falls
in the intervals given by its heavy node, otherwise, it uses
the light routing index to pick the correct port to forward
the message from the label of the destination node given in
the message. However, if node 7 is deleted by the adversary,
using CompactFT, the children of 7 construct RT(7) (recall
this is also done in a compact manner). Since node 9 has
helper node helper(6) at the port where it had node 7 ear-
lier, the packet gets forwarded to node helper(6). Since 1 is
less than 6, the packet traverses the left side of RT(7) and
eventually reaches node 3. Node 3 applies the TZ routing
rules as before and the packet reaches node 1.

We use the following notation: Let Tt be the CompactFTZ
tree after t deletions. For a vertex v, let Tt(v) denote the
subtree of Tt rooted at v. The set with the children of v in Tt

is denoted as childrent(v), while parentt(v) is the parent of
v in Tt. The set of IDs in Tt(v) is denoted as ID(Tt(v)). If v
has two children, leftt(v) (rightt(v)) denotes the left (right)
child of v, and Lt(v) (Rt(v)) denote the left (right) subtree
of v. Given two nodes u and v, we write u < ID(Tt(v))
if ID(u) is smaller than any ID in ID(Tt(v)), and similarly,
we write ID(Tt(u)) < ID(Tt(v)) if every ID in ID(Tt(u)) is
smaller than any ID in ID(Tt(v)). The definitions naturally
extends to >,≤ and ≥.

Theorem 4.2 states the routing properties of CompactFTZ.
Lemma 4.1 is the key to proving Theorem 4.2 (proofs de-
ferred to the full version). Lemma 4.1 basically states that,
after any sequence of deletions and subsequent self-healing,
real nodes maintain the TZ properties and the helper nodes
(i.e. the RTs) the BST properties, allowing routing to al-
ways function.

Lemma 4.1. At every time t, the CompactFTZ tree Tt

satisfies the following two statements:

1. For every real node v ∈ Tt, for every c ∈ childrent(v),
v > ID(Tt(c)), and for every c, d ∈ childrent(v) with
c < d, ID(Tt(c)) < ID(Tt(d)).

2. For every virtual node helper(v) ∈ Tt, v ≥ ID(Lt(v))
and v < ID(Rt(v)).

Theorem 4.2. For each Tt, for each two real nodes u,w ∈
Tt, CompactFTZ successfully delivers a message from u to
w through a path in Tt of size at most δ(u,w)+y(log ∆−1),
where δ(u,w) is the distance between u and w in T0 and
y ≤ t is the number of non-leaf nodes deleted to get Tt.

Lemma 4.3 states the memory usage of CompactFTZ lead-
ing to the final correctness theorem (Theorem 4.4).

Lemma 4.3. CompactFTZ uses only O(log2n) memory
per node to route a packet.

Proof. First, CompactFT uses only O(logn) local mem-
ory (Theorem 3.1). The local fields of a node for routing have
at most a constant number (O(b)) fields which are node ref-
erences (logn) size, thus, using O(logn) memory. The label
of a node (which is the ‘address’ on a packet) is, however,
of O(log2 n) size (since there can be O(logn) light nodes on
a source-target path) and therefore, a node needs O(log2 n)
bits to process such a packet.

Ignoring congestion issues, Lemma 4.3 implies that a node
can store and route unto x packets using x. log2 n local mem-
ory.

Theorem 4.4. CompactFTZ is a self-healing compact rout-
ing scheme.

Proof. The theorem follows directly from Lemma 4.3,
Theorems 4.2 and 3.1.

4.3 Reporting Non-delivery (deleted receivers
and sources)

Contrary to what happens in static schemes such as Thorup-
Zwick [45], we now have the issue that a node might want to
send a packet to a node that has been deleted in Gt, hence
we need a mechanism to report that a packet could not be
delivered. To achieve that, the header of a packet now is de-
fined as follows: when a node s wants to send a packet to t,
it sends it with the header ((t, L(t) ·(s, L(s)). When running
CompactFTZ, each node considers only the first pair.

When a node v receives a message M with a header con-
taining two pairs, it proceeds as follows to detect an error
i.e. a non-deliverable. The following conditions suggest to v
that the receiver t has been deleted and the packet is non-
deliverable:

1. If v is a leaf (real node) and v 6= t: This is a dead
end since the packet cannot traverse further. This im-
plies that t must have been in the subtree of v but the
subtree of v is now empty.

2. If v is a non-leaf node but there is no node at the port
it should forward to: Similar to above, it indicates that
v’s subtree involving t is empty.

3. If u sent the packet to v but according to the routing
rules, v should send the packet back to u: This happens
when v is a helper node which is part of RT(t) or RT(x)
where x was not on the path s − t in T0. Node v will
receive the message either on the way up (towards the
root) or way down (from the root). In either case, if
v is part of RT(t), due to the dfs numbering, it would
have to return M to u. Another possibility is that due
to a number of deletions RT(t) has disappeared but
then x would either be an ascendent (if M is on the



way up) or x would be a descendent of t (if M is on
the way down). Either way, the DFS numbering would
indicate to v that it has to return the message to u.

If a target deletion has been detected due to the above
rules, v removes the first pair of the header and sends back
M to the node it got M from (with the header now only
having (s, L(s)). When a node v receives a message M with
a header containing only one pair, it proceeds as before and
applies the same rules discussed previously. This time, a
non-delivery condition however implies that the source has
been removed too, and, therefore M can be discarded from
the system. This ensures that ‘zombie’ or undeliverable mes-
sages do not clog the system.

4.3.1 About stretch
The stretch of a routing scheme A, denoted λ(A,G), is

the minimum λ such that r(s, t) ≤ λ dist(s, t) for every pair
of nodes s, t, where dist(s, t) is the distance between s and
t in the graph G and r(s, t) is the length of the path in G
the scheme uses for routing a message from s to t.

The stretch λ(CompactFTZ, T0) is 1: for any pair of nodes,
TZ routes a message through the unique path in the tree be-
tween them. Similarly, the stretch λ(CompactFTZ, Tt) is 1:
each node that is deleted is replaced with a binary tree struc-
ture R, and the nodes in it perform a binary search, hence
a message passing through R follows the shortest path from
the root to a leaf, or vice versa.

The stretch of CompactFTZ is different when we consider
Gt. First note that the stretch λ(CompactFTZ, G0) might
be of order Θ(n) since a spanning tree of a graph may blow
up the distances by that much. Since λ(CompactFTZ, T0) =
1, it follows that δT (u,w) ≤ λ(CompactFTZ, G0) · δG(u,w),
where δT (u,w) is the distance between u and w in T0 and
δG(u,w) is the distance between u and w inG0. Theorem 4.2
states that, for routing a message from u to w, CompactFTZ
uses a path in Tt of size at most δT (u,w)+y(log ∆−1), where
y ≤ t is the number of non-leaf nodes deleted to get Tt.
The y(log ∆−1) additive factor in the expression is because
each deleted non-leaf node is replaced with a binary tree,
whose height is O(log ∆). In the worst case, that happens
for all y binary trees for a given message, which implies that
λ(CompactFTZ, Gt) ≤ y(log ∆ − 1) · λ(CompactFTZ, G0)
(since CompactFTZ only uses the tree for routing).

5. EXTENSIONS AND CONCLUSION
This paper presented, to our knowledge, the first compact

self-healing algorithm and also the first self-healing compact
routing scheme. We have not considered the memory costs
involved in the preprocessing but we believe that it should
be possible to set up the data structures in a distributed
compact manner: this needs to be investigated. The current
paper focuses only on node deletions,. Can we devise a self-
healing compact routing scheme working in a fully dynamic
scenario with both (node and edge) insertions and deletions?
The challenges reside in dealing with the expanding out-
degree efficiently.

The current paper allows to add additional links to nearby
nodes in an overlay manner. What should the model be of
losing links without losing nodes? How will it affect the
algorithms appearing in this paper?
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