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Abstract— In this paper, the paradigm of linear detection is
reformulated as a Gaussian belief propagation (GaBP) scheme,
without resorting to direct matrix inversion. The derived i terative
framework allows for a distributive message-passing implementa-
tion of this important class of sub-optimal tractable estimators.
The properties of GaBP-based linear detection are addressed,
while its faster convergence, in comparison with conventional
iterative solution methods, is demonstrated experimentally.

I. I NTRODUCTION

Belief propagation (BP, a.k.a. sum-product algorithm)
message-passing is a powerful and efficient tool in solving,
exactly or approximately, inference problems in probabilistic
graphical models. The underlying essence of estimation theory
is to detect a hidden input to a channel from its observed
output. The channel can be represented as a certain graphical
model, while the detection of the channel input is equivalent
to performing inference in the corresponding graph. In this
contribution, the analogy between message-passing inference
and estimation is further strengthened, unveiling a surprising
link among disciplines.

The use of BP [1] for detection purposes has been proven to
be very beneficial in several applications in communications.
For randomly spread code-division multiple-access (CDMA)
in the large-system limit, Kabashima has introduced a tractable
BP-based multiuser detection (MUD) scheme, which exhibits
near-optimal error performance for binary-input additivewhite
Gaussian noise (BI-AWGN) channels [2]. This message-
passing scheme has recently been extended to the case where
the ambient noise level is unknown [3], [4]. As for sub-optimal
detection, the nonlinear soft parallel interference cancelation
(PIC) detector was reformulated by Tanaka and Okada as an
approximate BP solution [5] to the MUD problem.

In contrast to the dense, fully-connected, nature of the
graphical model of the non-orthogonal CDMA channel, a one-
dimensional (1-D) intersymbol interference (ISI) channelcan
be interpreted as a cycle-free tree graph [6]. Thus, detection
in 1-D ISI channels (termed equalization) can be performed
in an optimal maximum a-posteriori (MAP) manner via BP,
also known in this context as the forward/backward, or BCJR,
algorithm [7]. Also, Kurkoskiet al. [8], [9] have proposed an
iterative BP-like detection algorithm for 1-D ISI channelsthat
uses a parallel message-passing schedule and achieves near-
optimal performance.
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For the intermediate regime of non-dense graphs but
with many relatively short loops, extensions of BP to two-
dimensional ISI channels have been considered by Marrow
and Wolf [10], and recently Shentalet al. [11]–[13] have
demonstrated the near-optimality of a generalized version
of BP for such channels. Recently, BP has been proved
to asymptotically achieve optimal MAP detection for sparse
linear systems with Gaussian noise [14], [15], for example,in
CDMA with sparse spreading codes.

An important class of practical sub-optimal detectors is
based on linear detection. This class includes, for instance,
the conventional single-user matched filter (MF), decorre-
lator (a.k.a. zero-forcing equalizer), linear minimum mean-
square error (MMSE) detector and many other detectors with
widespread applicability [16], [17]. In general, linear detection
can be viewed as the solution to a (deterministic) set of
linear equations describing the original (probabilistic)estima-
tion problem. Note that the mathematical operation behind
linear detection extends to other tasks in communication,e.g.,
channel precoding at the transmitter [18].

In spite of its significant role in estimation theory, linear
detection has never been explicitly linked to BP, in constrast
to optimal MAP detection and several sub-optimal nonlinear
detection techniques. In this paper, we reformulate the gen-
eral linear detector as a Gaussian belief propagation (GaBP)
algorithm. This message-passing framework is not limited
to the large-system limit and is suitable for channels with
arbitrary prior input distribution. Revealing this missing link
allows for a distributed implementation of the linear detector,
circumventing the necessity of, potentially cumbersome, direct
matrix inversion (via,e.g., Gaussian elimination).

The exactness and convergence properties of the GaBP-
based linear detector are addressed using the seminal work of
Weiss and Freeman [19] and related recent developments [20],
[21]. The derived iterative framework is compared quantita-
tively with ‘classical’ iterative methods for solving systems
of linear equations, such as those investigated in the context
of linear implementation of CDMA demodulation [22]–[24].
GaBP is shown to yield faster convergence than these standard
methods. The BP-based MUD, recently derived and analyzed
by Montanariet al. [25] for Gaussian input symbols, is an
instance of our framework. Finally, GaBP convergence is
further accelerated by adopting the methods of Aitken and
Steffensen [26]. Although the current contribution is oriented



to estimation-theoretic problems and applications from the
field of communications, we would like to emphasize its per-
tinence to the more universal problems of efficient distributed
matrix inversion, solution of systems of linear equations and
determinant calculation.

The paper is organized as follows. Section II formulates
the problem of linear detection. In Section III we derive the
distributive GaBP-based linear detection scheme, while its
superior convergence rate, w.r.t. some conventional iterative
methods, is discussed in the experimental study of Section IV.
We shall use the following notations. The operator{·}T stands
for a vector or matrix transpose, the matrixIN is aN × N
identity matrix, while the symbols{·}i and{·}ij denote entries
of a vector and matrix, respectively.

II. L INEAR DETECTION

Consider a discrete-time channel with a real input vec-
tor x = {x1, . . . , xK}T governed by an arbitrary prior
distribution, Px, and a corresponding real output vector
y = {y1, . . . , yK}T = f{xT} ∈ R

K .1 Here, the functionf{·}
denotes the channel transformation. By definition, linear de-
tection compels the decision rule to be

x̂ = ∆{x∗} = ∆{A−1b}, (1)

where b = y is the K × 1 observation vector and the
K × K matrix A is a positive-definite symmetric matrix
approximating the channel transformation. The vectorx∗ is
the solution (overR) to Ax = b. Estimation is completed
by adjusting the (inverse) matrix-vector product to the input
alphabet, dictated byPx, accomplished by using a proper
clipping function∆{·} (e.g., for binary signaling∆{·} is the
sign function).

For example, linear channels, which appear extensively in
many applications in communication and data storage systems,
are characterized by the linear relation

y = f{x} = Rx + n, (2)

where n is a K × 1 additive noise vector andR = STS

is a positive-definite symmetric matrix, often known as the
correlation matrix. TheN×K matrixS describes the physical
channel medium while the vectory corresponds to the output
of a bank of filters matched to the physical channelS.

Due to the vast applicability of linear channels, in Sec-
tion IV we focus in our experimental study on such channels,
although our paradigm is not limited to this case. Assuming
linear channels with AWGN with varianceσ2 as the ambient
noise, the general linear detection rule (1) can describe known
linear detectors. For example [16], [17]:

• The conventional matched filter (MF) detector is obtained
by takingA , IK andb = y. This detector is optimal,
in the MAP-sense, for the case of zero cross-correlations,
i.e., R = IK , as happens for orthogonal CDMA or when
there is no ISI effect.

1An extension to the complex domain is straightforward.

• The decorrelator (zero forcing equalizer) is achieved by
substitutingA , R and b = y. It is optimal in the
noiseless case.

• The linear minimum mean-square error (MMSE) detector
can also be described by usingA = R + σ2IK . This de-
tector is known to be optimal when the input distribution
Px is Gaussian.

In general, linear detection is suboptimal because of its
deterministic underlying mechanism (i.e., solving a given set
of linear equations), in contrast to other estimation schemes,
such as MAP or maximum likelihood, that emerge from an
optimization criterion In the following section we implement
the linear detection operation, in its general form (1), in an
efficient message-passing fashion.

III. G ABP AND L INEAR DETECTION

As stated in the previous section, our aim is to findx∗,
a solution to the linear equationAx = b, i.e., x∗ = A−1b,
without actually inverting the non-singular matrixA. Another
way of solving this set of linear equationsAx − b = 0 is to
represent it using a quadratic formq(x) , xTAx/2 − bT x.
As the matrixA is symmetric2 (e.g., A = STS), the derivative
of the quadratic form With respect to the vectorx is given by
q′(x) = Ax − b.

Thus, equatingq′(x) = 0 gives the global minimumx∗ of
this convex function, which is nothing but the desired solution
to Ax = b.

Now, one can define the followingjointly Gaussian distri-
bution

p(x) , Z−1 exp
(
− q(x)

)
= Z−1 exp (−xTAx/2 + bT x),

(3)
whereZ is a distribution normalization factor. Defining the
vectorµ , A−1b, one gets the form

p(x) = Z−1 exp (µT Aµ/2)

× exp (−xT Ax/2 + µTAx − µT Aµ/2)

= ζ−1 exp
(
−

1

2
(x − µ)T A(x − µ)

)

= N (µ,A−1), (4)

where the new normalization factorζ , Z exp (−µT Aµ/2).
To summarize to this point, the target solutionx∗ = A−1b

is equal toµ , A−1b, which is the mean vector of the
distributionp(x) (3), as defined above.

The formulation above allows us to shift the linear detection
problem from an algebraic to a probabilistic domain. Instead
of solving a deterministic vector-matrix linear equation,we
now solve an inference problem in a graphical model de-
scribing a certain Gaussian distribution function. Given the
overall channel matrixA and the observation vectorb, one
knows how to write explicitlyp(x) (3) and the corresponding
graph G with edge potentials (compatibility functions)ψij

and self-potentials (‘evidence’)φi. These graph potentials are

2For a non-symmetric matrixA an approximation of the solutionx∗ is
inferred.



# Stage Operation
1. Initialize ComputePii = Aii andµii = bi/Aii.

SetPki = 0 andµki = 0, ∀k 6= i.
2. Iterate PropagatePki andµki, ∀k 6= i such thatAki 6= 0.

ComputePi\j = Pii +
∑

k∈N (i)\j Pki andµi\j = P−1
i\j

(Piiµii +
∑

k∈N (i)\j Pkiµki).

ComputePij = −AijP
−1
i\j
Aji andµij = −P−1

ij Aijµi\j .

3. Check If Pij andµij did not converge, return to #2. Else, continue to #4.
4. Infer Pi = Pii +

∑

k∈N (i) Pki , µi = P−1
i (Piiµii +

∑

k∈N (i) Pkiµki).
5. Decide x̂i = ∆{µi}

TABLE I

COMPUTINGA−1b VIA GABP.

determined according to the following pairwise factorization
of the Gaussian distributionp(x) (3)

p(x) ∝
K∏

i=1

φi(xi)
∏

{i,j}

ψij(xi, xj), (5)

resulting in ψij(xi, xj) , exp(−xiAijxj) and
φi(xi) = exp

(
bixi −Aiix

2
i /2

)
. The set of edges{i, j}

corresponds to the set of all non-zero entries ofA

for which i > j. Hence, we would like to calculate
the marginal densities, which must also be Gaussian,
p(xi) ∼ N (µi = {A−1b}i, P

−1
i = {A−1}ii), where µi

and Pi are the marginal mean and inverse variance (a.k.a.
precision), respectively. Recall that, according to our previous
argumentation, the inferred meanµi is identical to the desired
solutionx∗i .

The move to the probabilistic domain calls for the utilization
of BP as an efficient inference engine. The sum-product rule
of BP for continuous variables, required in our case, is given
by [19]

mij(xj) = α

∫

xi

ψij(xi, xj)φi(xi)
∏

k∈N (i)\j

mki(xi)dxi, (6)

wheremij(xj) is the message sent from nodei to nodej
over their shared edge on the graph, scalarα is a normalization
constant and the setN (i)\j denotes all the nodes neighboring
xi, exceptxj . The marginals are computed according to the
product rule [19]

p(xi) = αφi(xi)
∏

k∈N (i)

mki(xi). (7)

GaBP is a special case of continuous BP where the underly-
ing distribution is Gaussian. Next, we derive the GaBP update
rules by substituting Gaussian distributions in the continuous
BP equations.

According to the right hand side of the sum-product rule (6),
nodei needs to calculate the product of all incoming messages,
except for the message coming from nodej. Recall that since
p(x) is jointly Gaussian, the self-potentialsφi(xi) and the
messagesmki(xi) are Gaussians as well. The product of
Gaussians of thesame variable is also a Gaussian. Consider

the Gaussians defined byN (µ1, P
−1
1 ) andN (µ2, P

−1
2 ). Their

product is also a GaussianN (µ, P−1) with

µ = P−1(P1µ1 + P2µ2), (8)

P−1 = (P1 + P2)
−1. (9)

As the terms in the product of the incoming messages
and the self-potential are all describing the same vari-
able, xi, we can use this property to demonstrate that
φi(xi)

∏

k∈N (i)\j mki(xi) is proportional to aN (µi\j , P
−1
i\j

)
distribution. Therefore, the update rule for the inverse variance
is given by (over-braces denote the origin of these terms)

Pi\j =

φi(xi)
︷︸︸︷

Pii +
∑

xk∈N (i)\j

mki(xi)
︷︸︸︷

Pki , (10)

wherePii , Aii is the inverse variance associated with node
i, viaφi(xi), andPki are the inverse variances of the messages
mki(xi). Equivalently, we can calculate the mean

µi\j = P−1
i\j

(
φi(xi)
︷ ︸︸ ︷

Piiµii +
∑

k∈N (i)\j

mki(xi)
︷ ︸︸ ︷

Pkiµki

)

, (11)

whereµii , bi/Aii.
Now, we calculate the remaining terms of the mes-

sage mij(xj), including the integration overxi. After
some algebraic manipulations, we use the Gaussian integral
∫ ∞

−∞
exp (−ax2 − bx)dx =

√

π/a exp (b2/4a), to show that
mij(xj) is a normal distribution with mean and precision given
by

µij = −P−1
ij Aijµi\j , (12)

Pij = −AijP
−1
i\j
Aji. (13)

These two scalars are the propagating messages in the GaBP
scheme. Finally, the computation of the product rule (7) is
similar to our previous calculations (10)-(11), but with noin-
coming messages excluded. The GaBP-based implementation
of the linear detection operation is summarized in Table 1.

The algorithm in Table 1 can be easily distributed. Each
node i receives as an input thei’th row (or column) of the
matrix A and the scalarbi. In each iteration, a message



containing two reals,µij andPij , is sent to every neighboring
node through their mutual edge, corresponding to a non-zero
Aij entry. For a dense matrixA, each of theK nodes sends
a unique message to every other node on the fully-connected
graph, which results in a total ofK2 messages per iteration
round.

The number of messages passed on the graph can be reduced
significantly, down to onlyK messages per round.3 Instead of
sending a message composed of the pairµij andPij , a node
can broadcast the aggregated sums

P̃i = Pii +
∑

k∈N (i)

Pki, (14)

µ̃i = P−1
i (Piiµii +

∑

k∈N (i)

Pkiµki). (15)

Now, each node locally retrieves thePi\j (10) andµi\j (11)
from the sums by means of a subtraction

Pi\j = P̃i − Pji, (16)

µi\j = µ̃i − P−1
i\j
Pjiµji. (17)

The rest of the algorithm remains the same.

IV. RESULTS AND DISCUSSION

If it converges, GaBP is known to result in exact infer-
ence [19]. In contrast to conventional iterative methods for the
solution of systems of linear equations, for GaBP, determining
the exact region of convergence and convergence rate remain
open research problems. All that is known is a sufficient
(but not necessary) condition [20], [21] stating that GaBP
converges when the spectral radius4 satisfiesρ(|IK − A|) < 1.
A stricter sufficient condition [19], actually proved earlier,
determines that the matrixA must be diagonally dominant
(i.e., |Aii| >

∑

j 6=i |Aij |, ∀i) in order for GaBP to converge.
As these conditions are not necessary, one can find examples

of channels for which the condition does not hold, yet GaBP
still converges perfectly to the linear detection solution. For
instance, in the case of Gaussian input signaling,i.e., Px

is a normal distribution, for which linear detection becomes
optimal, it can be easily shown that the proposed GaBP
scheme boils down to the BP-based MUD scheme, recently
introduced by Montanariet al. [25]. Their BP scheme, tailored
for Gaussian signaling, has been proven to converge to the
MMSE (and optimal) solution for any arbitrarily loaded (i.e.,
ρ(|IK − R|) ⋚ 1) randomly-spread CDMA system.5 Thus,
Gaussian-input AWGN-CDMA is an example where the pro-
posed GaBP scheme converges to the MAP decision for any
N ×K random spreading matrixS.

In the following experimental study, we show that, when
it converges, GaBP is substantially faster than alternative

3By using a similar construction to Bicksonet al. [27].
4ρ(B) , max1≤i≤s(|λi|), where λ1, . . . λs are the eigenvalues of a

matrix B.
5For non-Gaussian signaling,e.g.binary, this BP-based detector is conjec-

tured to converge only in the large-system limit,i.e., asK,N → ∞ [25].

Algorithm R3 R4

Jacobi 136 50

GS 27 32

GaBP 23 24

SOR 18 20

Serial GaBP 16 13

TABLE II

CONVERGENCE RATE(IN ITERATIONS) OF GABP VS. STANDARD

METHODS (IN THE TWO SIMULATED CDMA SYSTEMS).

Algorithm R3 R4

Jacobi+Aitkens 46 33

Jacobi+Steffensen6 51 −

GaBP+Steffensen 13 13

Serial GaBP+Steffensen 9 7

TABLE III

COMPARISON UNDER ACCELERATION METHODS.

iterative methods. We examined two system setups of binary
signaling synchronous CDMA with cross-correlation matrices

R3 =
1

7





7 −1 3
−1 7 −5
3 −5 7



 (18)

and

R4 =
1

7







7 −1 3 3
−1 7 3 −1
3 3 7 −1
3 −1 −1 7







(19)

for K = 3 andK = 4 users, respectively. These correlation
profiles are created by using Gold spreading sequences of
length N = 7. These particular settings were taken from
the simulation setup of Yeneret al. [24]. Note thatR3 and
R4 are not diagonally dominant, but their spectral radii are
less than unity, namelyρ(|I3 − R3|) = 0.9008 < 1 and
ρ(|I4 − R4|) = 0.8747 < 1, respectively. Hereafter, the
iterative methods being compared, including GaBP, implement
a decorrelator (R−1y) detector in a noiseless channel.

Table II compares the proposed GaBP algorithm with
standard iterative solution methods [28] (using random ini-
tial guesses), previously employed for CDMA MUD. Mul-
tiuser detectors [22], [23] based on the algorithms of Jacobi,

6For K = 4, the Jacobi algorithm employing Steffensen acceleration
converged only in part of the simulation rounds, so the number of required
iterations is marked by ‘−’.
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Fig. 1. (a) Convergence rate: Euclidean distance as a function of iteration rounds for GaBP and other algorithms. (b) Convergence visualization for GaBP
vs. other algorithms. (c) Convergence visualization of GaBP vs. GaBP using Aitken’s acceleration method.

Gauss-Seidel (GS) and (optimally weighted) successive over-
relaxation (SOR)7 were investigated. The table lists the con-
vergence rates for the two Gold code-based CDMA settings.
Convergence is identified and declared when the differences
in all the iterated values are less than10−6. Clearly, GaBP
yields faster convergence speed on both examined systems in
comparison with the renowned Jacobi and GS algorithms. The
best convergence rate, with respect to the conventional iterative
methods, including SOR, is achieved for serial GaBP,i.e., the
proposed scheme with serial, rather than parallel (flooding),
message-passing update rule.

Further speed-up of GaBP can be achieved by adopting
known acceleration techniques, like Aitken’s method and Stef-
fensen’s iterations [26], yet to be employed with BP schemes.
Consider a sequence{xn} (e.g., obtained by using GaBP iter-
ations) linearly converging to the limit̂x, andxn 6= x̂ for n ≥
0. According to Aitken’s method, if there exists a real number
a such that|a| < 1 and limn→∞(xn − x̂)/(xn−1 − x̂) = a,

7This moving average improvement of Jacobi and GS algorithmsis equiv-
alent to what is known in the BP literature as ‘damping’ [29].

then the sequence{yn} defined by

yn = xn −
(xn+1 − xn)2

xn+2 − 2xn+1 + xn

converges to x̂ faster than {xn} in the sense that
limn→∞ |(x̂ − yn)/(x̂− xn)| = 0. Aitken’s method can be
viewed as a generalization of over-relaxation, since one uses
values from three, rather than two, consecutive iteration
rounds. This method can be easily implemented in GaBP as
every node computes values based only on its own history.

Steffensen’s iterations encapsulate Aitken’s method. Starting
with xn, two iterations are run to getxn+1 andxn+2. Next,
Aitken’s method is used to computeyn, this value is replaced
with the originalxn, and GaBP is executed again to get a
new value ofxn+1. This process is repeated iteratively until
convergence. Table III demonstrates the speed-up of GaBP
using these acceleration methods, in comparison with the
modified Jacobi algorithm.8

8Application of Aitken and Steffensen’s methods for speeding-up the
convergence of standard (non-BP) iterative solution algorithms in the context
of MUD was introduced by Leibiget al. [30].



Fig. 1-(a) displays the Euclidean distance between the
tentative (intermediate) results and the fixed-point solution
as a function of the iteration rounds, for the algorithms
we examined. As expected, all linear algorithms exhibit a
logarithmic convergence behaviour. Note that GaBP converges
faster on average, although there are some fluctuations in the
GaBP curves, in contrast to the monotonicity of the other
curves.

An interesting question concerns the origin of this conver-
gence speed-up associated with GaBP. Better understanding
may be gained by visualizing the iterations of the different
methods for the matrixR1 case. The convergence contours
are plotted in the space of{x1, x2, x3} in Fig. 1-(b). As
expected, the Jacobi algorithm converges in zigzags towards
the fixed point (this behavior is well-explained in Bertsekas
and Tsitsiklis [31]). The fastest algorithm is serial GaBP.It is
interesting to note that GaBP convergence is in a spiral shape,
hinting that despite the overall convergence improvement,
performance improvement is not guaranteed in successive
iteration rounds. The spiral nature of GaBP convergence is
better viewed in Fig. 1-(c). In this case the system was
simulated with a certainR matrix for which Jacobi algorithm
and other standard methods did not even converge. Using
Aitken’s method a further speed-up in GaBP convergence is
obtained.

Despite the fact that we are using examples of small
systems, we believe that these examples capture the typical
behavior of the various algorithms. Note, in passing, that
GaBP was experimentally shown to converge in a logarithmic
number of iterations in the cases of very large matrices both
dense (with up to hundreds of thousands of dimensions [32])
and sparse (with up to millions of dimensions [33]).
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[18] B. R. Vojčić and W. M. Jang, “Transmitter precoding insynchronous
multiuser communications,”IEEE Trans. Commun., vol. 46, no. 10, pp.
1346–1355, Oct. 1998.

[19] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in
Gaussian graphical models of arbitrary topology,”Neural Computation,
vol. 13, no. 10, pp. 2173–2200, 2001.

[20] J. K. Johnson, D. M. Malioutov, and A. S. Willsky, “Walk-sum inter-
pretation and analysis of Gaussian belief propagation,” inAdvances in
Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and
J. Platt, Eds. Cambridge, MA: MIT Press, 2006, pp. 579–586.

[21] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-sums and
belief propagation in Gaussian graphical models,”Journal of Machine
Learning Research, vol. 7, Oct. 2006.

[22] A. Grant and C. Schlegel, “Iterative implementations for linear multiuser
detectors,”IEEE Trans. Commun., vol. 49, no. 10, pp. 1824–1834, Oct.
2001.

[23] P. H. Tan and L. K. Rasmussen, “Linear interference cancellation in
CDMA based on iterative techniques for linear equation systems,”IEEE
Trans. Commun., vol. 48, no. 12, pp. 2099–2108, Dec. 2000.

[24] A. Yener, R. D. Yates, , and S. Ulukus, “CDMA multiuser detection:
A nonlinear programming approach,”IEEE Trans. Commun., vol. 50,
no. 6, pp. 1016–1024, June 2002.

[25] A. Montanari, B. Prabhakar, and D. Tse, “Belief propagation based
multi-user detection,” inProc. 43th Allerton Conf. on Communications,
Control and Computing, Monticello, IL, USA, Sept. 2005.

[26] P. Henrici, Elements of Numerical Analysis. John Wiley and Sons,
1964.

[27] D. Bickson, D. Dolev, and Y. Weiss, “Modified belief propagation
for energy saving in wireless and sensor networks,” in
Leibniz Center TR-2005-85, School of Computer Science and
Engineering, The Hebrew University, 2005. [Online]. Available:
http://leibniz.cs.huji.ac.il/tr/842.pdf

[28] O. Axelsson,Iterative Solution Methods. Cambridge, UK: Cambridge
University Press, 1994.

[29] K. M. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation
for approximate inference: An empirical study,” inProc. of UAI, 1999.

[30] C. Leibig, A. Dekorsy, and J. Fliege, “Power control using Steffensen
iterations for CDMA systems with beamforming or multiuser detection,”



in Proc. IEEE International Conference on Communications (ICC),
Seoul, Korea, 2005.

[31] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Calculation.
Numerical Methods. Prentice Hall, 1989.

[32] D. Bickson, D. Dolev, and E. Yom-Tov, “Solving large scale SVMs
using Gaussian belief propagation,” inLeibniz Center TR-2007-117,
School of Computer Science and Engineering, The Hebrew University,
2007. [Online]. Available: http://leibniz.cs.huji.ac.il/tr/1050.pdf

[33] D. Bickson, D. Malkhi, and L. Zhou, “Peer-to-Peer rating,” in 7th IEEE
P2P computing, Galway, Ireland, 2007.

[34] A. Montanari, B. Prabhakar, and D. Tse, “Belief propa-
gation based multi–user detection,” 2005. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0510044


