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Abstract— In this paper, the paradigm of linear detection is For the intermediate regime of non-dense graphs but
reformulated as a Gaussian belief propagation (GaBP) scheey with many relatively short loops, extensions of BP to two-
without resorting to direct matrix inversion. The derived i terative dimensional 1SI channels have been considered by Marrow

framework allows for a distributive message-passing implmenta-
tion of this important class of sub-optimal tractable estimators, &nd Wolf [10], and recently Shentait al. [11]-{13] have

The properties of GaBP-based linear detection are addresde demonstrated the near-optimality of a generalized version
while its faster convergence, in comparison with conventital of BP for such channels. Recently, BP has been proved

iterative solution methods, is demonstrated experimentdy. to asymptotically achieve optimal MAP detection for sparse
I. INTRODUCTION linear sy;tems with Gaussi.an noise [14], [15], for examiple,

DMA with sparse spreading codes.

An important class of practical sub-optimal detectors is

ased on linear detection. This class includes, for ingtanc

Belief propagation (BP, a.k.a. sum-product algorithmg
message-passing is a powerful and efficient tool in solving

exactly or approximately, inference problems in probabidi the conventional single-user matched filter (MF), decorre-

graphical models. The underlying essence of estlmatloerel%Ior (ak.a. zero-forcing equalize), linear minimum mea

is to detect a hidden input to a channel from |ts_observ% uare error (MMSE) detector and many other detectors with
output. The channel can be represented as a certain grhphi Lo . :
. ! . : . widespread applicability [16], [17]. In general, lineateletion
model, while the detection of the channel input is equivalen . g L
L . . can be viewed as the solution to a (deterministic) set of
to performing inference in the corresponding graph. In thls

L i T inear equations describing the original (probabilisgésjima-
contribution, the analogy between message-passing rrrfe.retion problem. Note that the mathematical operation behind

and estimation is further strengthened, unveiling a ssigi linear detection extends to other tasks in communicagan,

link among disciplines. channel precoding at the transmitter [18]
The use of BP [1] for detection purposes has been proven tq ; precoding at t . S .
n spite of its significant role in estimation theory, linear

be very beneficial in several applications in communication ; S .
y PP etection has never been explicitly linked to BP, in corsitra

For randomly spread code-division multiple-access (CDM : : . .
. o . : t0 optimal MAP detection and several sub-optimal nonlinear
in the large-system limit, Kabashima has introduced adiaet . . .

gsetectlon techniques. In this paper, we reformulate the gen

BP-based multiuser detection (MUD) scheme, which exhlbleral linear detector as a Gaussian belief propagation (aBP

near-optimal error performance for binary-input additivieite lqorithm. This messaae-passina framework is not limited
Gaussian noise (BI-AWGN) channels [2]. This messag 9 ' age-passing r .
0_the large-system limit and is suitable for channels with

passing scheme has recently been extended to the case w %r? o o . L
the ambient noise level is unknown [3], [4]. As for sub-opim arbitrary prior input distribution. Revealing this misgitink
Lo allows for a distributed implementation of the linear dédec

detection, the nonlinear soft parallel interference chtion . . . . .
(PIC) detector was reformulated by Tanaka and Okada as cAF‘cumventlng the necessity of, potentially cumbersonrect

approximate BP solution [5] to the MUD problem. matrix inversion (via,e.g., Gaussian elimination).

In contrast to the dense, fully-connected, nature of t eThe gxactness and convergence prppert|es of _the GaBP-
ased linear detector are addressed using the seminal Wvork o

hical model of th -orth | CDMA ch I, S
graphical modet of the non-orthogona channet, a on eiss and Freeman [19] and related recent developments [20]

dimensional (1-D) intersymbol interference (ISI) chancah . . ; . A
be interpreted as a cycle-free tree graph [6]. Thus, detecti[.21]' Th.e d‘erlveq |t9:r§1t|ve .framework IS compa.red quantita
ely with ‘classical’ iterative methods for solving sgshs

. 2 i
in 1-D ISI channels (termed equalization) can be perform&? ) ) ) . .
: . . - ; linear equations, such as those investigated in the xbnte
in an imal maximum a- riori (MAP) manner via BF! . P .
an optimal maximum a-posteriori ( ) manner via f linear implementation of CDMA demodulation [22]-[24].

Iso known in thi ntex he forwar kward, or B . )
a'so Kno this context as the forward/backward, or BCJ aBP is shown to yield faster convergence than these stndar

algorithm [7]. Also, Kurkoskiet al. [8], [9] have proposed an :
iterative BP-like detection algorithm for 1-D ISI chann#isit methods. Th? BP-based MUD, reqently derived and a_nalyzed
Montanariet al. [25] for Gaussian input symbols, is an

uses a parallel message-passing schedule and achieves If‘i\é{é’j}ance of our framework. Finally, GaBP convergence is
optimal performance. ) Y 9

further accelerated by adopting the methods of Aitken and
*Contributed equally to this work. Steffensen [26]. Although the current contribution is atedl



to estimation-theoretic problems and applications frora th « The decorrelator (zero forcing equalizer) is achieved by
field of communications, we would like to emphasize its per-  substitutingA £ R andb = y. It is optimal in the

tinence to the more universal problems of efficient distebu noiseless case.
matrix inversion, solution of systems of linear equationsa « The linear minimum mean-square error (MMSE) detector
determinant calculation. can also be described by usidg= R + 0?Ix. This de-

The paper is organized as follows. Section Il formulates tector is known to be optimal when the input distribution
the problem of linear detection. In Section Il we derive the Py is Gaussian.
distributive GaBP-based linear detection scheme, whie it |n general, linear detection is suboptimal because of its
superior convergence rate, w.rt. some conventionaltitera deterministic underlying mechanisme(, solving a given set
methods, is discussed in the experimental study of Section lof linear equations), in contrast to other estimation sakgm
We shall use the following notations. The operdgidr’ stands such as MAP or maximum likelihood, that emerge from an
for a vector or matrix transpose, the matiix is a N x N gptimization criterion In the following section we implernte
identity matrix, while the symbol§ }; and{-};; denote entries the linear detection operation, in its general form (1), in a

of a vector and matrix, respectively. efficient message-passing fashion.
Il. LINEAR DETECTION I1l. GABP AND LINEAR DETECTION
Consider a discrete-time channel with a real input vec- As stated in the previous section, our aim is to fixd
tor x = {z1,...,vx}7 governed by an arbitrary priora solution to the linear equaticAx = b, i.e., x* = A~ 'b,

distribution, P,, and a corresponding real output vectowithout actually inverting the non-singular matuk. Another
y={y1,...,yx}" = f{xT} € RE 1 Here, the functiorf{-} way of solving this set of linear equatiodsx — b = 0 is to
denotes the channel transformation. By definition, linear drepresent it using a quadratic forgix) = x” Ax/2 — bT'x.

tection compels the decision rule to be As the matrixA is symmetrié (e.g., A = ST'S), the derivative
R . . of the quadratic form With respect to the vectois given by
x =A{x"} = A{A7 b}, (1) q'(x) = Ax — b.

Thus, equatingy’ (x) = 0 gives the global minimunx* of
this convex function, which is nothing but the desired solut
to Ax = b.

Now, one can define the followinjgintly Gaussian distri-
bution

whereb = y is the K x 1 observation vector and the
K x K matrix A is a positive-definite symmetric matrix
approximating the channel transformation. The veoctbris
the solution (overR) to Ax = b. Estimation is completed
by adjusting the (inverse) matrix-vector product to theuinp
alphabet, dictated by, accomplished by using a proper,(x) £ z-'exp (—qx) = Z Vexp (—xTAx/2 + b7x),
clipping functionA{-} (e.g., for binary signalingA{-} is the (3)
sign function). where Z is a distribution normalization factor. Defining the
For example, linear channels, which appear extensively yactor, £ A~'b, one gets the form
many applications in communication and data storage system

are characterized by the linear relation p(x) Z  exp (u" Ap/2)
x  exp(—xTAx/2+ nTAx — uT Au/2
g = Fx} = Rx4n @) _rl>( 1/ I : p Ag/2)
. " . , Clrexp (= 5(x—p)  Alx— p)
wheren is a K x 1 additive noise vector an®R = S* S . 2
is a positive-definite symmetric matrix, often known as the = N A™), (4)

correlation matrix. ThéV x K matrix S describes the physical

channel medium while the vectgr corresponds to the output.l.0 summarize to this point, the target solutiah — A ~'b

of a bank of filters matched to the physical chansel s equal oy £ A-Tb Wh,iCh e S eetar of the
Due to the vast applicability of linear channels, in Se%{istributionp(x) 3), as ’defined above

tion IV we focus in our experimental study on such channels, t1,q ¢ormuylation above allows us to shift the linear detectio

where the new normalization factgr2 Z exp (—u? Au/2).

) . ; . of solving a deterministic vector-matrix linear equatiamg
noise, the general linear detection rule (1) can descrilovkn |\ <ive an inference problem in a graphical model de-
linear detectors. For example [16], [17]: scribing a certain Gaussian distribution function. Givae t
« The conventional matched filter (MF) detector is obtaineglerall channel matrixA and the observation vectds, one
by taking A £ I andb = y. This detector is optimal, knows how to write explicitlyp(x) (3) and the corresponding
in the MAP-sense, for the case of zero cross-correlationfaph G with edge potentials (compatibility functions);;

i.e., R = Ik, as happens for orthogonal CDMA or wherand self-potentials (‘evidence?);. These graph potentials are
there is no ISI effect.

2For a non-symmetric matriA an approximation of the solutior* is
1An extension to the complex domain is straightforward. inferred.



# Stage | Operation

Initialize ComputeP“- = A;; and Mii = bZ/A“

Set P, = 0 and ux; = 0, Vk # 1.

2. | lterate | PropagatePy; and ux;, Vk # i such thatdy; # 0.

ComputeP;; = P;; + ZkeN(z N Pi; andui\] = PZ\]( i s + ZkGN i)\ P pigei)-
ComputeP;; = —A;; P Ay and i = — Pt Ajja .-

Check | If P;; andy,; did not converge, return to #2. Else, continue to #4.

Infer P = Pii 4+ Y peniy Pri o i = PN (P + 2oken (i) Priltki)-

=

w

»

TABLE |
COMPUTINGA~1b viA GABP.

determined according to the following pairwise factoriaat the Gaussians defined By (u1, P; ) and\ (ug, Py t). Their
of the Gaussian distributiop(x) (3) product is also a Gaussia¥ (u, P~!) with
K —1
po= P (Pia + Pap), (8)
X) oclznl(bl(mt) {g}wu(mme)5 (5) P*l — (Pl +P2)71. (9)

As the terms in the product of the incoming messages
and the self-potential are all describing the same vari-
able, z;, we can use this property to demonstrate that

my;(z;) is proportional to a/\/(um, Z\J)
distribution. T

the marginal densities, which must also be Gau55|a|rs1 iven b (ovefk];(r)arlietshseunpc?tzt?hreuI§r|f0|rntr(])$ ;E\éire termi)
p(x:) ~ N = {A="b};, P71 = {A~"},)),  where given by ?

reSUlting in wij (l‘i, Zj) £ exp(fxiAij:cj) and
¢i(x;) = exp (bjz; — Ayaz?/2). The set of edges{i,;}
corresponds to the set of all non-zero entries Af
for which ¢ > j. Hence, we would like to calculateqb’(m‘ HkGN Z%e

and P; are the marginal mean and inverse variance (a.k.a. bi(wi) i (1)

precision), respectively. Recall that, according to owvjyus Py;= Py + Z P | (10)
argumentation, the inferred mean is identical to the desired EReN )\

solutionz}.

The move to the probabilistic domain calls for the utilipati Where Pi; = Aj; is the inverse variance associated with node
of BP as an efficient inference engine. The sum-product ruleVia ¢i(z:), andF; are the inverse variances of the messages
of BP for continuous variables, required in our case, is giverixi(2i). Equivalently, we can calculate the mean

by [19] i (m mii (1)

mij mJ - a/ wu Ti, Tj (bl mt H M xz)dmu (6) HiNg = PZ ( abii + Z szﬂkz) (11)
kEN (i)\j REN @\

where m;;(z;) is the message sent from nodeo nodej Wherep; = bi/Ai. .

over their shared edge on the graph, scalara normalization ~ Now, we calculate the remaining terms of the mes-
constant and the sét (i)\j denotes all the nodes neighboring@de mi;(z;), including the integration overz;. After

x;, exceptzr;. The marginals are computed according to th&®me algebralc manipulations, we use the Gaussian integral

product rule [19] 75 exp (—ax? — bx)dz = \/m/aexp (b?/4a), to show that
mij(:c]-) is a normal distribution with mean and precision given
p(ei) = agi(w:) [ mul). (M) by
KEN (i) pij = =P Aijping (12)
GaBP is a special case of continuous BP where the underly- T 1A (13)
ing distribution is Gaussian. Next, we derive the GaBP updat i\Jj
rules by substituting Gaussian distributions in the candis These two scalars are the propagating messages in the GaBP
BP equations. scheme. Finally, the computation of the product rule (7) is

According to the right hand side of the sum-product rule (63jmilar to our previous calculations (10)-(11), but with ime
nodei needs to calculate the product of all incoming messagesming messages excluded. The GaBP-based implementation
except for the message coming from ngdéRecall that since of the linear detection operation is summarized in Table 1.
p(x) is jointly Gaussian, the self-potentials (x;) and the  The algorithm in Table 1 can be easily distributed. Each
messagesny;(z;) are Gaussians as well. The product ofiode: receives as an input théth row (or column) of the
Gaussians of theame variable is also a Gaussian. Considematrix A and the scalaw;. In each iteration, a message



Algorithm | Rs [ Ry |

containing two realsy;; and P;;, is sent to every neighboring |

node through their mutual edge, corresponding to a non-zero Jacobi 136 | 50
A;; entry. For a dense matriA, each of theK nodes sends
a unique message to every other node on the fully-connected GS 27 | 32
graph, which results in a total dk? messages per iteration GaBP 23 | 24
round.

The number of messages passed on the graph can be reduced SOR 18 | 20
significantly, down to onlyKX’ messages per rouidnstead of Serial Gasp | 16 | 13

sending a message composed of the pairand P;;, a node

can broadcast the aggregated sums TABLE II
~ o 5 ] CONVERGENCE RATE(IN ITERATIONS) OF GABP VS. STANDARD
Po= P+ Z Phi (14) METHODS (IN THE TWO SIMULATED CDMA SYSTEMS).
keN (1)
i = P7N(Papit Y, Prifiki)- (15)
kEN (3) | Algorithm | Rs | R4 |
Now, each node locally retrieves th&, ; (10) andu; ; (11) Jacobi+Aitkens 46 | 33

from the sums by means of a subtraction
Jacobi+Steffensén 51 | —

Pi\j = b= Pji’l (16) GaBP+Steffensen 13 | 13
W ' AR Serial GaBP+Steffensen| 9 7
The rest of the algorithm remains the same.
TABLE Il
IV. RESULTS AND DISCUSSION COMPARISON UNDER ACCELERATION METHODS

If it converges, GaBP is known to result in exact infer-
ence [19]. In contrast to conventional iterative methodslie

solution of systems of linear equations, for GaBP, deteimgin iterative methods. We examined two system setups of binary

the exact region of convergence and convergence rate ren@ﬂhaling synchronous CDMA with cross-correlation masic
open research problems. All that is known is a sufficient

(but not necessary) condition [20], [21] stating that GaBP 1 7T -1 3
converges when the spectral radisatisfiesp(|Ix — A|) < 1. R;==| -1 7 =5 (18)
A stricter sufficient condition [19], actually proved earli 7 3 -5 7T

determines that the matriA must be diagonally dominant
(i.e., [Ail > 37,4 |Ai|, Vi) in order for GaBP to converge. and

As these conditions are not necessary, one can find examples T -1 3 3
of channels for which the condition does not hold, yet GaBP R, = f-1r 7 3 -1 (19)
still converges perfectly to the linear detection solutiéior 7 3 3 7 -1
instance, in the case of Gaussian input signaling, Px 3 -1 -1 7

is a normal distribution, for which linear detection becem

optimal, it can be easily shown that the proposed Gagﬂr K =3 and K = 4 users, respectively. These correlation

rofiles are created by using Gold spreading sequences of

T Moo o o s 2ener: oW '~ 7. These paricular Setings were taken from
y ) ) ' e simulation setup of Yenest al. [24]. Note thatR3 and

for Gaussian signaling, has been proven to converge to ﬁe ; . : -
MMSE (and optimal) solution for any arbitrarily loadex 4 are not diagonally dominant, but their spectral radii are

< 9, ess than unity, namely(|I; — Ra|) = 0.9008 < 1 and
p(Ix —RJ) = 1) randomly-spread CDMA systefn.Thus,

Gaussian it ANGN-COMA i an exampe where e prdl [ T} L U7 = 1 tespectu. Herester, e
posed GaBP scheme converges to the MAP decision for g P ' 9 » IMP

an 1 ) X
N x K random spreading matris. a%ecorrelator]ﬁ y) detector in a noiseless channel.

in th follwing cxperimentl sy, v show hat,wheg T | SIS e probesed B o
it converges, GaBP is substantially faster than altercaan}/iaI guesses), previously employed for CDMA MUD. Mul-

3By using a similar construction to Bickscet al. [27]. tiuser detectors [22], [23] based on the algorithms of Jacob

h(B) & maxi<;<s(|A:]), where A1,... s are the eigenvalues of a
matrix B. SFor K = 4, the Jacobi algorithm employing Steffensen acceleration
5For non-Gaussian signaling,g.binary, this BP-based detector is conjec-converged only in part of the simulation rounds, so the nunfeequired
tured to converge only in the large-system limig., as K, N — oo [25]. iterations is marked by-'".
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Fig. 1. (a) Convergence rate: Euclidean distance as a émdf iteration rounds for GaBP and other algorithms. (b) @ogence visualization for GaBP
vs. other algorithms. (c) Convergence visualization of BaB. GaBP using Aitken’s acceleration method.

Gauss-Seidel (GS) and (optimally weighted) successive- ovthen the sequencfy,,} defined by
relaxation (SOR) were investigated. The table lists the con-
vergence rates for the two Gold code-based CDMA settings. Yn = Tp, —
Convergence is identified and declared when the differences
in all the iterated values are less thad©. Clearly, GaBP converges toi faster than {z,} in the sense that
yields faster convergence speed on both examined system&tim— oo |(# — ¥n)/(# — z,)| = 0. Aitken’s method can be
comparison with the renowned Jacobi and GS algorithms. Tviewed as a generalization of over-relaxation, since ores us
best convergence rate, with respect to the conventiomatite Vvalues from three, rather than two, consecutive iteration
methods, including SOR, is achieved for serial Ga®, the rounds. This method can be easily implemented in GaBP as
proposed scheme with serial, rather than parallel (flogdingvery node computes values based only on its own history.
message-passing update rule. Steffensen’s iterations encapsulate Aitken’s methodtiSta
Further speed-up of GaBP can be achieved by adoptit§fh n, two iterations are run to get,., andw, . Next,
known acceleration techniques, like Aitken’s method aref-St Altken’s method is used to compuig, this value is replaced
fensen’s iterations [26], yet to be employed with BP scheme#ith the originalz,,, and GaBP is executed again to get a
Consider a sequende:,, } (e.g., obtained by using GaBP iter- N€W value ofz,1. This process is repeated iteratively until
ations) linearly converging to the limit, andz,, # & for n > convergence. Table Ill demonstrates the speed-up of GaBP
0. According to Aitken's method, if there exists a real numbétSing these acceleration methods, in comparison with the
a such thatja| < 1 and lim,_.ec(zn — #)/(zn_1 — &) = a, Modified Jacobi algorithr.

2
(mn-i-l - mn)
Tn42 — 2xn+1 + zn

8Application of Aitken and Steffensen’s methods for spegedip the
“This moving average improvement of Jacobi and GS algoritisnegjuiv-  convergence of standard (non-BP) iterative solution algms in the context
alent to what is known in the BP literature as ‘damping’ [29]. of MUD was introduced by Leibiget al. [30].



Fig. 1-(a) displays the Euclidean distance between thg] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimakcaeing of
tentative (intermediate) results and the fixed-point sotut linear codes for minimizing symbol error rateEEE Trans. Inform.

. . . . Theory, vol. 20, no. 3, pp. 284-287, Mar. 1974.
as a function of the iteration rounds, for the algorithmsg; g v "kurkoski, P. H. Siegel, and J. K. Wolf, “Joint messagassing

we examined. As expected, all linear algorithms exhibit a  decoding of LDPC codes and partial-response channki&E Trans.
logarithmic convergence behaviour. Note that GaBP comgerg _ Inform. Theory, vol. 48, pp. 1410-1422, June 2002.

. . ] ——, “Correction to 'Joint message-passing decoding BfAC codes
faster on average, although there are some fluctuationsin i and partial-response channeldEEE Trans, Inform. Theory, vol. 49, p.

GaBP curves, in contrast to the monotonicity of the other 2076, Aug. 2003.
curves. [10] M. Marrow and J. K. Wolf, “lterative detection d-dimensional ISI

; ; ; i ; _ channels,” inProc. |EEE Inform. Theory Workshop (ITW), Paris, France,
An interesting question concerns the origin of this conver Mar. 2003, pp. 131-134.

gence speed-up associated with GaBP. Better U”defStanfﬂifig O. Shental, N. Shental, A. J. Weiss, and Y. Weiss, “Galimzd belief
may be gained by visualizing the iterations of the different propagation receiver for near-optimal detection of twmeisional

methods for the matridR, case. The convergence contours (Clm”egsar‘]’vg':n?nﬁ(’)“ogggprgg AEgEt“‘nggzatiO” Theory Workshop
are plotted in the space ofzi,x2,z3} in Fig. 1-(0). AS [12] 0. Shental, N. Shental, and S. Shamai (Shitz), “On thbieaable

expected, the Jacobi algorithm converges in zigzags t@wvard information rates of two-dimensional channels with menidry Proc.
the fixed point (this behavior is well-explained in Bertsgka _ !EEE Int Symp. Inform. Theory (IST), Adelaide, Australia, Sept. 2005.

S . . . 13] O. Shental, N. Shental, S. Shamai (Shitz), |. KanterJAWeiss, and
and Tsitsiklis [31])' The fastest algorlthm is serial GaBRs Y. Weiss, “Finite-state input two-dimensional Gaussiamroiels with

interesting to note that GaBP convergence is in a spiralesshap  memory: Estimation and information via graphical modeld statistical
hinting that despite the overall convergence improvement, mechanics,|EEE Trans. Inform. Theory, submitted for publication.

: : : [ A. Montanari and D. Tse, “Analysis of belief propagatitor non-linear
performance improvement is not guaranteed in Successu problems: The example of CDMA (or: How to prove Tanaka’s faka).”

iteration rounds. The spiral nature of GaBP convergence is in Proc. IEEE Inform. Theory Workshop (ITW), Punta del Este, Uruguay,
better viewed in Fig. 1-(c). In this case the system was Mar. 2006.
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obtained. [16] g Verdf,gl\ggltiuser Detection. Cambridge, UK: Cambridge University
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