
Increasing the Resilience of

Distributed and Replicated Database Systems �

Idit Keidary Danny Dolevz

Institute of Computer Science�

The Hebrew University of Jerusalem�

Jerusalem� Israel� �����

E�mail� fidish�dolevg�cs�huji�ac�il
Url� http���www�cs�huji�ac�il�f�idish��dolevg

Abstract

This paper presents a new atomic commitment protocol� enhanced three phase commit
�E�PC �� that always allows a quorum in the system to make progress� Previously suggested
quorum�based protocols �e�g�� the quorum�based three phase commit ��PC� �Ske	
�� allow a
quorum to make progress in case of one failure� If failures cascade� however� and the quorum
in the system is �lost �i�e�� at a given time no quorum component exists�� a quorum can later
become connected and still remain blocked� With our protocol� a connected quorum never
blocks� E�PC is based on the quorum�based �PC �Ske	
�� and it does not require more time
or communication than �PC� We describe how this protocol can be exploited in a replicated
database setting� making the database always available to a majority of the sites�

� Introduction

Reliability and availability of loosely coupled distributed database systems are becoming require�
ments for many installations� and fault tolerance is becoming an important aspect of distributed
systems design� When sites crash� or when communication failures occur� it is desirable to allow
as many sites as possible to make progress� A common way to increase the availability of data and
services is replication� If data are replicated in several sites� they can still be available despite site
and communication�link failures� Protocols for transaction management in distributed and repli�
cated database systems need to be carefully designed in order to guarantee database consistency�
In this paper we present a novel atomic commitment protocol �ACP� that always allows a majority
�or quorum� to make progress� We describe how this protocol can be exploited in a replicated
database setting� making the database always available to a majority of the sites�

In distributed and replicated database systems� when a transaction spans several sites� the
database servers at all sites have to reach a common decision regarding whether the transaction

�Preprint of a paper to appear in J� Comut� Systems Science �JCSS� special issue with selected papers from PODS
����� December ���	

yIdit Keidar
s research is supported by the Israeli Ministry of Science�
zThis work supported by the United States � Israel Binational Science Foundation� Grant ����	��

�

should be committed or not� A mixed decision results in an inconsistent database� while a unani�
mous decision guarantees the atomicity of the transaction �provided that the local server at each
site can guarantee local atomicity of transactions�� To this end an atomic commitment protocol�
such as two phase commit ��PC � �Gra	
� is invoked� The atomic commit problem and the two
phase commit protocol are described in Section �� Two phase commit is a blocking protocol if the
coordinator fails� all the sites may remain blocked inde�nitely� unable to resolve the transaction�

To reduce the extent of blocking� Skeen suggested the quorum�based three phase commit ��PC�
protocol� which maintains consistency in spite of network partitions �Ske
��� In case of failures� the
algorithm uses a quorum �ormajority��based recovery procedure that allows a quorum to resolve the
transaction� If failures cascade� however� and the quorum in the system is �lost� �i�e�� at a certain
time no quorum component exists�� a quorum of sites can become connected and still remain blocked�
Other previously suggested quorum�based protocols �e�g�� �CR
�� CK
��� also allow a quorum to
make progress in case of one failure� while if failures cascade� a quorum can later become connected
and still remain blocked� To our knowledge� the only previously suggested ACP that always allows
a quorum to make progress is the ACP that we construct in �Kei���� The protocol in �Kei��� is
not straightforward� it uses a replication service as a building block� while the protocol presented
in this paper is easy to follow and self�contained�

In this paper we present the enhanced three phase commit �E�PC � protocol� which is an en�
hancement of the quorum�based �PC �Ske
��� E�PC maintains consistency in the face of site
failures and network partitions sites may crash and recover� and the network may partition into
several components� and remerge� E�PC always allows a quorum to make progress At any point
in the execution of the protocol� if a group G of sites becomes connected� and this group contains
a quorum and no subsequent failures occur for su�ciently long� then all the members of G eventu�
ally reach a decision� Furthermore� every site that can communicate with a site that has already
reached a decision will also� eventually� reach a decision� An operational site that is not a member
of a connected quorum may be blocked� i�e�� may have to wait until a failure is repaired in order
to resolve the transaction� This is undesirable but cannot be avoided� Skeen proved that every
protocol that tolerates network partitions is bound to be blocking in certain scenarios �SS
���

E�PC achieves higher availability than �PC simply by carefully maintaining two additional
counters and with no additional communication� The principles demonstrated in this paper can be
used to increase the resilience of a variety of distributed services� e�g�� replicated database systems�
by ensuring that a quorum will always be able to make progress� Other protocols that use two
counters in order to allow a majority to make progress are given in �MHS
�� CT��� KD��� Lam
��
DLS

��

Numerous database replication schemes that are based on quorums have been suggested �Gif	��
Her
�� Her
	� EASC
�� EAT
��� These algorithms use quorum systems to determine when data
objects are accessible� In order to guarantee the atomicity of transactions� these algorithms use
an ACP and therefore are bound to block when the ACP they use blocks� Thus� with previously
suggested ACPs� these approaches do not always allow a connected majority to update the database�
Using E�PC these protocols can be made more resilient� In Section � we describe in detail how
E�PC may be incorporated into accessible copies protocols �EASC
�� EAT
��� in order to make the
database always available to a quorum�

�A component is sometimes called a partition� In our terminology� a partition splits the network into several
components�

�

E�PC uses a perfect fault detector Every site has accurate information regarding which sites
are connected to it� In Section 	 we discuss unreliable failure detectors �CT��� DFKM��� and the
ability of our protocol to work with such failure detectors� In this case� the protocol solves the weak
atomic commit problem �Gue����

The rest of this paper is organized as follows Section � presents the computation model�
Section � provides general background on the atomic commitment problem� The quorum�based
three phase commit protocol �Ske
�� is described in Section �� and enhanced three phase commit is
described in Section �� In Section � we describe how E�PC can be exploited in replicated database
systems� In Section 	 we describe the protocol�s behavior with an unreliable failure detector�
Section
 concludes the paper� In Appendix A we formally prove the correctness of E�PC�

� The Model

Our protocol is applicable in an asynchronous message�passing environment� The set of sites
running the protocol is �xed and is known to all the sites� The sites are connected by an underlying
communication network that provides communication between any pair of connected sites� We
consider the following types of failures failures may partition the network� and previously disjoint
network components may remerge� messages may be lost or delivered out of order� Sites may crash
and recover� recovered sites come up with their stable storage intact� We assume that messages are
neither corrupted nor spontaneously generated by the network�

Failures are detected using a fault detector Every site has accurate information regarding which
sites are connected to it� This assumption is weakened in Section 	�

� Background � Distributed Transaction Management

This section provides general background on the atomic commit problem and protocols�

��� Problem De�nition

A distributed transaction is composed of several subtransactions� each running on a di�erent site�
The database manager at each site can unilaterally decide to abort the local subtransaction� in
which case the entire transaction must be aborted� If all the participating sites agree to commit
their subtransaction �vote Yes on the transaction� and no failures occur� the transaction should
be committed� We assume that the local database server at each site can atomically execute the
subtransaction once it has agreed to commit it�

In order to ensure that all the subtransactions are consistently committed or aborted� the
sites run an atomic commitment protocol such as two phase commit� The requirements of atomic
commitment �as de�ned in Chapter 	 of �BHG
	�� are as follows

AC� Uniform Agreement� All the sites that reach a decision reach the same one�

AC� A site cannot reverse its decision after it has reached one�

AC� Validity� The commit decision can be reached only if all sites voted Yes�

�

AC� Non�triviality� If there are no failures and all sites voted Yes� then the decision
will be to commit�

AC� Termination� At any point in the execution of the protocol� if all existing failures
are repaired and no new failures occur for su�ciently long� then all sites will eventually
reach a decision�

��� Two Phase Commit

The simplest and most renowned ACP is two phase commit �Gra	
�� Several variations of �PC
have been suggested �e�g�� presume abort and presume commit �MLO
���� the simplest version is
centralized � one of the sites is designated as the coordinator� The coordinator sends a transaction
�or request to prepare to commit� to all the participants� Each site answers by a Yes ��ready to
commit�� or by a No ��abort�� message� If any site votes No� all the sites abort� The coordinator
collects all the responses and informs all the sites of the decision� In absence of failures� this protocol
preserves atomicity� Between the two phases� each site blocks� i�e�� keeps the local database locked�
waiting for the �nal word from the coordinator� If a site fails before its vote reaches the coordinator�
it is usually assumed that it had voted No� If the coordinator fails in the �rst phase� all the sites
remain blocked inde�nitely� unable to resolve the last transaction� The centralized version of �PC
is depicted in Figure ��

Coordinator Participant

Transaction is received�
Send sub�transactions�

Sub�transaction is received�
Send reply � Yes or No�

If all sites respond Yes�
Send commit�

If some site voted No�
Send abort�

commit or abort is received�
Process accordingly�

c

aw

q

Abort

Commit

vote "YES" vote "NO"

Figure � The Centralized Two Phase Commit Protocol

Commit protocols may also be described using state diagrams �SS
��� The state diagram for
�PC is shown in Figure �� The circles denote states� �nal states are double�circled� The arcs
represent state transitions� and the action taken �e�g�� message sent� by the site is indicated next
to each arc� In this protocol� each site �either coordinator or participant� can be in one of four
possible states

q � initial state � A site is in the initial state until it decides whether to unilaterally abort or to
agree to commit the transaction�

w � wait state � In this state the coordinator waits for votes from all of the participants� and each
participant waits for the �nal word from the coordinator� This is the �uncertainty period�
for each site� when it does not know whether the transaction will be committed or not�

�

c � commit state � The site knows that a decision to commit was made�

a � abort state � The site knows that a decision to abort was made�

The states of a commit protocol may be classi�ed along two orthogonal lines� In the �rst
dimension� the states are divided into two disjoint subsets The committable states and the non�
committable states� A site is in a committable state only if it knows that all the sites have agreed
to proceed with the transaction� The rest of the states are non�committable� The only committable
state in �PC is the commit state� The second dimension distinguishes between �nal and non��nal
states� The �nal states are the ones in which a decision has been made and no more state transitions
are possible� The �nal states in �PC are commit and abort�

��� Quorums

In order to reduce the extent of blocking in replication and atomic commit protocols� majority votes
or quorums are often used� A quorum system is a generalization of the majority concept� E�PC�
like Skeen�s quorum�based three phase commit protocol �Ske
��� uses a quorum system to decide
when a group of connected sites may resolve the transaction� To enable maximum �exibility the
quorum system may be elected in a variety of ways �e�g�� weighted voting �Gif	���� The quorum
system is static� it does not change in the course of the protocol�

The predicate Q�S� is true for a given subset S of the sites i� S is a quorum� The requirement
from this predicate is that for any two sets of sites S and S� such that S � S� � �� at most one of
Q�S� and Q�S�� holds� i�e�� every pair of quorums intersect� For example� in the simple majority
quorum system Q�S� is true i� jSj � n��� where n is the total number of sites running the
protocol� Numerous quorum systems that ful�ll these criteria were suggested� An analysis of the
availability of di�erent quorum systems may be found in �PW����

For further �exibility� it is possible to set di�erent quorums for commit and abort �this idea
was presented in �Ske
���� In this case� a commit quorum of connected sites is required in order
to commit a transaction� and an abort quorum is required to abort� For example� to increase the
probability of commit in the system� one can assign smaller quorums for commit and larger ones
for abort�

In this case� the quorum system consists of two predicates QC�G� is true for a given group of
sites G i� G is a commit quorum� and QA�G� is true i� G is an abort quorum� The requirement
from these predicates is that for any two groups of sites G and G� such that G � G� � �� at most
one of QC�G� and QA�G

�� holds� i�e�� every commit quorum intersects every abort quorum�

��� The Extent of Blocking in Commit Protocols

The �PC protocol is an example of a blocking protocol operational sites sometimes wait on the
recovery of failed sites� Locks must be held in the database while the transaction is blocked�
Even though blocking preserves consistency� it is highly undesirable because the locks acquired by
the blocked transaction cannot be relinquished� rendering the data inaccessible by other requests�
Consequently� the availability of data stored in reliable sites can be limited by the availability of
the weakest component in the distributed system�

Skeen et al� �SS
�� proved that there exists no non�blocking protocol resilient to network par�
titioning� When a partition occurs� the best protocols allow no more than one group of sites to

�

continue while the remaining groups block� Skeen suggested the quorum�based three phase com�
mit protocol� which maintains consistency in spite of network partitions �Ske
��� This protocol is
blocking in case of partitions� it is possible for an operational site to be blocked until a failure is
mended� In case of failures� the algorithm uses a quorum �or majority��based recovery procedure
that allows a quorum to resolve the transaction� If failures cascade� however� a quorum of sites can
become connected and still remain blocked� Skeen�s quorum�based commit protocol is described in
Section ��

Since completely non�blocking recovery is impossible to achieve� further research in this area
concentrated on minimizing the number of blocked sites when partitions occur� Chin et al� �CR
��
de�ne optimal termination protocols �recovery procedures� in terms of the average number of sites
that are blocked when a partition occurs� The average is over all the possible partitions� and all the
possible states in the protocol in which the partitions occurs� The analysis deals only with states
in the basic commit protocol and ignores the possibility for cascading failures �failures that occur
during the recovery procedure�� It is proved that any ACP with optimal recovery procedures takes
at least three phases and that the quorum�based recovery procedures are optimal�

In �Kei��� we construct an ACP that always allows a connected majority to proceed� regardless
of past failures� To our knowledge� no other ACP with this feature was suggested� The ACP
suggested in �Kei��� uses a reliable replication service as a building block and is mainly suitable for
replicated database systems� In this paper� we present a novel commitment protocol� enhanced three
phase commit� which always allows a connected majority to resolve the transaction �if it remains
connected for su�ciently long�� E�PC does not require complex building blocks� such as the one
in �Kei���� and is more adequate for partially replicated or non�replicated distributed database
systems� it is based on the quorum�based three phase commit �Ske
���

� Quorum�Based Three Phase Commit

In this section we describe Skeen�s quorum�based commit protocol �Ske
��� E�PC is a re�nement
of �PC� and therefore we elaborate on �PC before presenting E�PC� The basic three phase commit
is described in Section ���� and the recovery procedure is described in Section ���� In Section ���
we show that with �PC a connected majority of the sites can be blocked� We present a simpli�ed
version of �PC that uses the same quorums for commit and abort�

��� Basic Three Phase Commit

The �PC protocol is similar to two phase commit� but in order to achieve resilience� another non�
�nal �bu�er state� is added in �PC� between the wait and the commit states

pc � pre�commit state � this is an intermediate state before the commit state and is needed to
allow for recovery� In this state the site is still in its �uncertainty period��

The quorum�based �PC is described in Figure �� and a corresponding state diagram is depicted
in Figure ��a�� The commit and pre�commit states of �PC are committable states� a site may be
in one of these states only if it knows that all the sites have agreed to proceed with the transaction�
The rest of the states are non�committable� In each step of the protocol� when the sites change
their state� they must write the new state to stable storage before replying to the message that
caused the state change�

�

Coordinator Participant

Transaction is received
Send sub�transactions to participants�

Sub�transaction is received
Send reply � Yes or No�

If all sites respond Yes Send pre�commit�
If any site voted No Send abort�

pre�commit received
Send ACK to coordinator�

Upon receiving a quorum of ACKs
Send commit�

Otherwise
Block �wait for more votes or until recovery�

commit or abort is received
Process the transaction accordingly�

Figure � The Quorum�Based Three Phase Commit Protocol

��� Recovery Procedure for Three Phase Commit

When a group of sites detect a failure �a site crash or a network partition� or a failure repair �site
recovery or merge of previously disconnected network components�� they run the recovery procedure
in order to try to resolve the transaction �i�e�� commit or abort it�� The recovery procedure consists
of two phases �rst elect a new coordinator� and next attempt to form a quorum that can resolve
the transaction�

A new coordinator may be elected in di�erent ways �e�g�� �GM
���� In the course of the election�
the coordinator hears from all the other participating sites� If there are failures �or recoveries� in
the course of the election� the election can be restarted��

The new coordinator tries to reach a decision whether the transaction should be committed or
not and tries to form a quorum for its decision� The protocol must take the possibility of failures
and failure repairs into account and� furthermore� must take into account the possibility of two
�or more� di�erent coordinators existing concurrently in disjoint network components� In order to
ensure that the decision will be consistent� a coordinator must explicitly establish a quorum for a
commit or an abort decision� To this end� in the recovery procedure� another state is added

pa � pre�abort state� Dual state to pre�commit�

The recovery procedure is described in Figure �� The state diagram for the recovery procedure is
shown in Figure ��b�� The dashed lines represent transitions in which this site�s state was not used
in the decision made by the coordinator� Consider for example the following scenario site p� reaches
the pre�abort state during an unsuccessful attempt to abort� The network then partitions� and
p� remains blocked in the pre�abort state� Later� a quorum �that does not include p�� is formed�
and another site� p�� decides to commit the transaction �this does not violate consistency� since

�Election is a weaker problem than atomic commitment� only the coordinator needs to know that it was elected�
while the other sites may crash or detach without ever �nding out which site was elected�

	

q

a

c

pc

w

vote "NO"

Abort

Commit

Commit

vote "YES"

Pre

�a� The Basic Three Phase Commit

w

pc

c a

pa

Abort

Commit

Commit

Abort
Pre Pre

�b� The Recovery Procedure

Figure � Three Phase Commit and the Recovery Procedure
q� initial state� w� wait� pc� pre�commit� c� commit� pa� pre�abort� a� abort�

the attempt to abort has failed�� If now p� and p� become connected� the coordinator must decide
to commit the transaction� because p� is committed already� Therefore� p� makes a transition
from pre�abort to commit�

After collecting the states from all the sites� the coordinator tries to decide how to resolve the
transaction� If any site has previously committed or aborted� then the transaction is immediately
committed or aborted accordingly� Otherwise� the coordinator attempts to establish a quorum� A
commit is possible if at least one site is in the pre�commit state and the group of sites in the wait
state together with the sites in the pre�commit state form a quorum� An abort is possible if the
group of sites in the wait state together with the sites in the pre�abort state form a quorum�
The decision rule is summarized in Figure ��

��� Three Phase Commit Blocks a Quorum

In this section we show that in the algorithm described above� it is possible for a quorum to become
connected and still remain blocked� In our example� there are three sites executing the transaction
p�� p�� and p�� The quorum system we use is a simple majority every two sites form a quorum�
Consider following the scenario depicted in Figure �

p� is the coordinator� All the sites vote Yes on the transaction� p� receives and processes the
votes� but p� and p� detach from p� before receiving the pre�commit message sent by p��

p� is elected as the new coordinator� It sees that both p� and p� are in the wait state and
therefore sends a pre�abort message� according to the decision rule� p� receives the pre�abort
message� acknowledges it� and then detaches from p��

Now� p� is in the pre�abort state� while p� is in the pre�commit state� If now p� and p�
become connected� then according to the decision rule� they remain blocked� even though they

�� Elect a new coordinator� r�

�� The coordinator� r� collects the states from all the connected sites�

�� The coordinator tries to reach a decision� as described in Figure �� The decision is computed
using the states collected so far� The coordinator multicasts a message re�ecting the decision�

�� Upon receiving a pre�commit or pre�abort each participant sends an ACK to r�

�� Upon receiving a quorum of ACKs for pre�commit or pre�abort� r multicasts the corre�
sponding decision commit or abort�

�� Upon receiving a commit or an abort message Process the transaction accordingly�

Figure � The Quorum�Based Recovery Procedure for Three Phase Commit

Collected States Decision

� aborted abort
� committed commit
� pre�committed � Q�sites in wait and pre�commit states� pre�commit
Q�sites in wait and pre�abort states� pre�abort
Otherwise block

Figure � The Decision Rule for The Quorum�Based Recovery Procedure

form a quorum�

Analysis

In this example� it is actually safe for p� and p� to decide pre�abort� because none of the sites
could have committed� but it is not safe for them to decide pre�commit� because p� cannot know
whether p� has aborted or not�

We observe that p� decided pre�abort �after� p� decided pre�commit� and therefore we can
conclude that the pre�commit decision made by p� is �stale�� and no site has actually reached a
commit decision following it� because otherwise� it would have been impossible for p� to reach a
pre�abort decision�

The �PC protocol does not allow a decision in this case� because the sites have no way of
knowing which decision was made �later�� Had the sites known that the a pre�abort decision
was made �later�� they could have decided pre�abort again and would have eventually aborted
the transaction� In E�PC� we provide the mechanism for doing exactly this�

� The E�PC Protocol

We suggest a three phase atomic commitment protocol� enhanced three phase commit� with a novel
quorum�based recovery procedure that always allows a quorum of sites to resolve the transaction�
even in the face of cascading failures� The protocol is based on the quorum�based three phase

�

tim
e

p1 decides pre-commit
P1 P2

P3

pc w

w

p2 decides pre-abortP1 P2

P3

pc pa

pa

p1 and p3 are blocked
P1 P2

P3

pc ?

pa

X

X

X

X

X
Comm. Link

Comm. Link Failure

Figure � Three Phase Commit Blocks a Quorum

commit protocol �Ske
��� E�PC does not require more communication or time than �PC� the
improved resilience is achieved simply by maintaining two additional counters� which impose a
linear order on quorums formed in the system�

Initially� the basic E�PC is invoked� If failures occur� the sites invoke the recovery procedure
and elect a new coordinator� The new coordinator carries on the protocol to reach a decision� If
failures cascade� the recovery procedure may be reinvoked an arbitrary number of times� Thus� one
execution of the protocol �for one transaction� consists of one invocation of the basic E�PC and of
zero or more invocations of the recovery procedure�

In Section ��� we describe how E�PC enhances �PC� The recovery procedure for E�PC is
described in Section ���� In Section ��� we show that E�PC does not block a quorum in the
example of Section ���� In Section ��� we outline the correctness proof for E�PC� We �rst present
a simpli�ed version of E�PC that uses the same quorums for commit and abort� In Section ��� we
describe a more general version of E�PC� which uses di�erent quorums for commit and abort�

��

��� E�PC� Enhancing Three Phase Commit

The basic E�PC is similar to the basic �PC� the only di�erence being that E�PC maintains two
additional counters� We now describe these counters� In each invocation of the recovery procedure�
the sites try to elect a new coordinator� The coordinators elected in the course of an execution of
the protocol are sequentially numbered A new �election number� is assigned in each invocation of
the recovery procedure� Note that there is no need to elect a new coordinator in each invocation
of the basic �PC or E�PC� the re�election is needed only in case failures occur� The coordinator
of the basic E�PC is assigned �election number� one� even though no elections actually take place�
The following two counters are maintained by the basic E�PC and by the recovery procedure

Last Elected � The number of the last election that this site took part in� This variable is updated
when a new coordinator is elected� This value is initialized to one when the basic E�PC is
invoked�

Last Attempt � The election number in the last attempt this site made to commit or abort� The
coordinator changes this variable�s value to the value of Last Elected whenever it makes a
decision� Every other participant sets its Last Attempt to Last Elected when it moves to the
pre�commit or to the pre�abort state� following a pre�commit or a pre�abort message
from the coordinator� This value is initialized to zero when the basic E�PC is invoked�

These variables are logged on stable storage� The second counter� Last Attempt� provides a
linear order on pre�commit and pre�abort decisions� e�g�� if some site is in the pre�commit
state with its Last Attempt � 	� and another site is in the pre�abort state with its Last Attempt
�
� then the pre�commit decision is �earlier� and therefore �stale�� and the pre�abort decision
is safe� The �rst counter� Last Elected� is needed to guarantee the uniqueness of the Last Attempt� �

i�e�� that two di�erent attempts will not be made with the same value of Last Attempt �cf� Lemma �
in Appendix A��

Notation

We use the following notation

� P is the group of sites that are live and connected� and which take part in the election of the
new coordinator�

� Max Elected is maxp�P�Last Elected of p��

� Max Attempt is maxp�P�Last Attempt of p��

� Is Max Attempt Committable is a predicate that is true i� all the members that are in
non��nal states and whose Last Attempt is equal to Max Attempt are in a committable
state �i�e�� in the pre�commit state�� Formally� Is Max Attempt Committable is true i�
�p�P�Last Attempt of p � Max Attempt �p is in a non��nal state � p is in a committable
state�

�The value of Last Elected is not guaranteed to be unique� two elections may be made with the same value of
Last Elected� in case the �rst election with this number did not terminate successfully at all the members� Also note
that the same coordinator can not be chosen with the same election number twice�

��

��� Quorum	Based Recovery Procedure

�� Elect a new coordinator r� The election is non�blocking� it is restarted in case of failure�
In the course of the election� r hears from all the other sites their values of Last Elected
and Last Attempt and determines Max Elected and Max Attempt� r sets Last Elected to
Max Elected�� and noti�es the sites in P of its election� and of the value of Max Elected�

�� Upon hearing Max Elected from r� set Last Elected to Max Elected�� and send local state to
the coordinator r�

�� The coordinator� r collects states from the other sites in P � and tries to reach a decision as
described in Figure
� The decision is computed using the states collected so far� we denote
by S the subset of sites from which r received the state so far� Upon reaching a decision other
than block� r sets Last Attempt to Last Elected� and multicasts the decision to all the sites
in P �

�� Upon receiving a pre�commit or pre�abort each participant sets its Last Attempt to
Last Elected and sends an ACK to r�

�� Upon receiving a quorum of ACKs for pre�commit �pre�abort�� r multicasts the decision
commit �abort��

�� Upon receiving a commit �abort� message from r process the transaction accordingly�

Figure 	 The Recovery Procedure for E�PC

As in �PC� the recovery procedure is invoked when failures are detected and when failures are
repaired� Sites cannot �join� the recovery procedure in the middle� instead� the recovery procedure
must be reinvoked to let them take part�

All the messages sent by the protocol carry the election number �Last Elected� and process id of
the coordinator� Thus� it is possible to know in which invocation of the protocol each message was
sent� A site that hears from a new coordinator ceases to take part in the previous invocation that it
took part in and no longer responds to its previous coordinator� Messages from previous invocations
are ignored� Thus� a site cannot concurrently take part in two invocations of the recovery procedure�
Furthermore� if a site responds to messages from the coordinator in some invocation� it necessarily
took part in the election of that coordinator�

The recovery procedure for E�PC is similar to the quorum�based recovery procedure described
in Section ���� As in �PC� in each step of the recovery procedure� when the sites change their state�
they must write the new state to stable storage before replying to the message that caused the
state change� The recovery procedure is described in Figure 	� The possible state transitions in
E�PC and its recovery procedure are the same as those of �PC� depicted in Figure �� the improved
performance in E�PC results from the decision rule� which allows state transitions in more cases�

In Step � of the recovery procedure� r collects the states from the other sites in P and tries
to reach a decision� The sites are blocked until r receives enough states to allow a decision� It is
possible to reach a decision before collecting the states from all the sites in P � e�g�� when a �nal state
is received� a decision can be made� It is also possible to reach a decision once states are collected

��

from a quorum� if one of the quorum members has Last Attempt�Max Attempt� We denote by S
the subset of P from which r received the state so far� r constantly tries to compute the decision
using the states in S� whenever new states arrive and until a decision is reached� The decision
rule is described below� If the decision is not block� r changes Last Attempt to Last Elected� and
multicasts the decision to all the sites in P �

Decision Rule

Collected States Decision

� aborted abort
� committed commit
Is Max Attempt Committable �Q�S� pre�commit
�Is Max Attempt Committable �Q�S� pre�abort
Otherwise block

Figure
 The Decision Rule for E�PC

The coordinator collects the states from the live members of P and applies the following decision
rule to the subset S of sites from which it received the state�

� If there exists a site �in S� that is in the aborted state � abort�

� If there exists a site in the committed state � commit�

� If Is Max Attempt Committable is true� and S is a quorum � pre�commit�

� If Is Max Attempt Committable is false and S is a quorum � pre�abort�

� Otherwise � block�

The decision rule is summarized in Figure
� It is easy to see that with the new decision rule�
if a group of sites is a quorum� it will never be blocked�

��� E�PC does not Block a Quorum

In E�PC� if a group of sites forms a quorum� it will never be blocked� This is obvious from the de�
cision rule if some site has previously committed �aborted�� then the decision is commit �abort��
Otherwise� a decision can always be made according to the value of Is Max Attempt Committable�

We now demonstrate that E�PC does not block with the scenario of Section ��� �in which Skeen�s
quorum�based �PC does block�� In this example� there are three sites executing the transaction �
p�� p�� and p� � and the quorum system is a simple majority every two sites form a quorum� We
considered the following scenario� depicted in Figure �

� Initially� p� is the coordinator� All the sites vote Yes on the transaction� p� receives and
processes the votes� but p� and p� detach from p� before receiving the pre�commit message
sent by p�� Now Last Attemptp� is � while Last Attemptp� � Last Attemptp� � �� and the
value of Last Elected is one for all the sites�

��

tim
e

P1 P2

P3

pc w

w

P1 P2

P3

pc pa

pa

P1 P2

P3

pa ?

pa

X

X

X

p1 decides pre-commit
with Last Attempt = 1

p2 decides pre-abort
with Last Attempt = 2

p1 decides pre-abort
with Last Attempt = 3

X

X
Comm. Link

Comm. Link Failure

Figure � E�PC does not Block a Quorum

� p� is elected as the new coordinator� and the new Last Elected is two� It sees that both p�
and p� are in the wait state and therefore sends a pre�abort message� according to the
decision rule� and moves to the pre�abort state while changing its Last Attempt to two�
p� receives the pre�abort message� sets its Last Attempt to two� sends an acknowledgment�
and detaches from p��

� Now� p� is in the pre�abort state with its value of Last Attempt � �� while p� is in the
pre�commit state with its Last Attempt � �� If now p� and p� become connected� then�
according to the decision rule� they decide to pre�abort the transaction� and they do not
remain blocked�

��� Correctness of E�PC

In Appendix A we formally prove that E�PC ful�lls the requirements of atomic commitment de�
scribed in Section ���� In this section we outline the proof�

��

First we prove that two contradicting attempts �i�e�� pre�commit and pre�abort� cannot be
made with the same value of Last Attempt �Lemma ��� This is true due to the fact that every two
quorums intersect and that a quorum of sites must increase Last Elected before a pre�commit or
a pre�abort decision� Moreover� Last Attempt is set to the value of Last Elected� which is higher
than the previous value of Last Elected of all the participants of the recovery procedure� Next� we
prove that the value of Last Attempt at each site increases every time the site changes state from
a committable state to a non��nal non�committable state� and vice versa �Lemma ���

Using the two lemmas above we prove �Lemmas � and
� If the coordinator reaches a commit
�abort� decision upon receiving a quorum of ACKs for pre�commit �pre�abort� when setting
its Last Attempt to i� then for every j 	 i no coordinator will decide pre�abort �pre�commit�
when setting its Last Attempt to j� We prove these lemmas by induction on j 	 i� we show� by
induction on j� that if some coordinator r sets its Last Attempt to j in Step � of the recovery
procedure� then Is Max Attempt Committable is true �false� in this invocation of the recovery
procedure� and therefore� the decision is pre�commit �pre�abort��

We conclude that if some site running the protocol commits the transaction� then no other site
aborts the transaction�

��� Using Di
erent Quorums for Commit and Abort

In this section we describe how to generalize E�PC to work with di�erent quorums for commit and
abort� Commit and abort quorums are described in Section ���� The following changes need to be
made in the protocol

Collected States Decision

� aborted abort
� committed commit
Is Max Attempt Committable �QC�S� pre�commit
�Is Max Attempt Committable �QA�S� pre�abort
Otherwise block

Figure �� The Decision Rule for E�PC with Commit and Abort Quorums

�� In the second phase of the basic E�PC� the coordinator waits for a commit quorum of ACKs
before sending pre�commit�

�� In Step � of the recovery procedure� the coordinator needs to wait for a commit quorum of
ACKs in order to pre�commit� and for ACKs from an abort quorum in order to pre�abort�

�� Likewise� the decision rule is slightly changed to require a commit quorum in order to pre�
commit �in case Is Max Attempt Committable is true� and an abort quorum in order to
pre�abort �if Is Max Attempt Committable is false�� The resulting decision rule is shown
in Figure ���

It is easy to see from the new decision rule that if a group of processes is both a commit quorum
and an abort quorum� it does not remain blocked�

��

The correctness proof of the general version of E�PC is similar to the correctness proof of E�PC
presented in this paper� we use the property that every commit quorum intersects every abort
quorum in order to prove that two contradicting attempts �i�e�� pre�commit and pre�abort�
cannot be made with the same value of Last Attempt� The formal proof may be found in �KD����

� Replicated Database Systems

In replicated database systems� the sites continuously execute transactions� When the network
partitions� it is often desirable to allow a quorum of the sites to access the database� but it is usually
undesirable to allow sites in two disjoint network components to concurrently update the same data�
Numerous replication schemes that are based on quorums have been suggested �Gif	�� Her
�� Her
	�
EASC
�� EAT
��� In order to guarantee the atomicity of transactions� these algorithms use an
ACP and therefore are bound to block when the ACP they use blocks� We propose to use E�PC
in conjunction with these protocols in order to make the database always available to a quorum�

The same quorum system should be used to determine when the data are accessible to a group
of sites as for the atomic commitment protocol� In a fully replicated database� a group of sites
needs to be a quorum of the total number of sites in order to access the database� Hence� in order
to resolve a transaction using the E�PC recovery procedure� a group of sites needs to be a quorum
of the total number of sites and not just of the sites that invoked E�PC for the speci�c transaction�

If the data are partially replicated� then for each item accessed by this transaction� a quorum
of the sites it resides on is required� In order to resolve a transaction using the E�PC recovery
procedure� a group of sites needs to contain a quorum for each item accessed by this transaction�

There is a subtle point to consider with this solution sites that did not take part in the
basic E�PC for this transaction may take part in the recovery procedure� The local databases
at such sites are not up�to�date� since they do not necessarily re�ect the updates performed by
the current transaction� Therefore� these sites need to recover the database state from other
sites during the merge and before taking part in the recovery procedure� In the accessible copies
protocols �EASC
�� EAT
��� this is done every time the view changes� In this case� we suggest
using the view change as the �fault detector� for E�PC� thus� the recovery procedure is always
invoked following a view change� after all the participating sites have reached an up�to�date state�
Below� we describe in detail how E�PC may be incorporated into accessible copies protocols�

��� Using E�PC with Accessible Copies Protocols

Accessible copies protocols �EASC
�� EAT
�� maintain a view of the system to determine when data
are accessible A data item can be read�written within a view �component� only if a majority of
its read�write votes are assigned to copies that reside on sites that are members of this view� This
majority of votes is the �accessibility threshold for the item�� not to be confused with read and write
quorums used within the current view� In order to guarantee the atomicity of each transaction� these
protocols use an ACP� We propose to use E�PC as this ACP using these accessibility thresholds as
its quorum system� This way the sites that succeed in resolving the previous transaction are also
allowed to access the database in new transactions�

A group of sites is considered a quorum �in E�PC� if and only if it contains a majority of
the votes of each item accessed by this transaction� A connected quorum of the sites may invoke

��

a transaction and access the data� When the sites running the transaction wish to commit it�
they run E�PC for the transaction� The basic E�PC may be invoked by a subset of the sites� the
members of the current view� The views maintained by the accessible copies protocol are used as
fault detectors for E�PC� when the view changes� the recovery procedure is invoked�

In the course of the view change protocol� each site executes an update transaction in order to
recover the most up�to�date values of each data item� If the update transaction is aborted� the view
change is aborted� a successful view change implies that the �newly joined� sites have successfully
performed the updates and thus have given up their right to unilaterally abort the transaction�
When the recovery procedure is invoked with sites that did not take part in the basic E�PC for the
current transaction� these sites are considered to be in the wait state with their Last Elected� �
and Last Attempt� �� as if they had voted Yes on the transaction� and detached�

� The basic E�PC may be invoked by a subset of the sites� the members of the current
view�

� E�PC uses view changes as its fault detector� i�e�� every time the view changes� the
recovery procedure is invoked�

� When the recovery procedure is invoked with �newly joined� sites that did not take
part in the basic E�PC� the �newly joined� sites are considered to be in the wait state
with their Last Elected� � and Last Attempt� ��

Figure �� E�PC Adjusted to the Accessible Copies Protocol

Figure �� summarizes the adjustments made in E�PC to make it suitable for the accessible
copies protocol� With this protocol� the database is always available to a quorum of connected
sites� We know of no previous database replica control protocol with this feature�

	 Failure Detectors and Weak Atomic Commit

The E�PC protocol presented in this paper uses a perfect failure detector Every site has accu�
rate information regarding which sites are connected to it� This assumption is not practical in
asynchronous systems� it is not always possible to tell failed sites from very slow ones� In practice�
systems use unreliable mechanisms� e�g�� timeout� in order to detect faults� Such mechanisms may
make mistakes and suspect that a correct �connected� site is faulty �disconnected��

Can we relax the perfect failure detection assumption Guerraoui �Gue��� proves that the
Atomic Commit Problem� as de�ned in Section ���� cannot be solved without a perfect failure
detector� the non�triviality requirement �AC�� is too strong� He de�nes the weak atomic commit
problem by changing the non�triviality requirement of atomic commit as follows

Non�Triviality� If all sites voted Yes� and no site is ever suspected� then the decision will be to
commit�

The other requirements of atomic commit are unchanged� The weak atomic commit problem
can be solved with non�perfect failure detectors�

�	

Can the weak atomic commit problem be solved in a fully asynchronous environment that is
not augmented with any failure detector Unfortunately� the answer to this question is no� In a
fully asynchronous environment� reaching consensus� is impossible �FLP
��� in the sense that every
protocol that reaches agreement is bound to have an in�nite run� In particular� using any failure
detector that can be implemented in such an environment� e�g�� a time�out mechanism� E�PC does
not ful�ll the termination �AC�� requirement� However� when the protocol does terminate� the rest
of the requirements of weak atomic commit are preserved�

��� Failure Detector Classes

We have seen that in order to solve weak atomic commit� the model must be augmented with
some failure detector� Chandra and Toueg �CT��� classify failure detectors with di�erent levels of
reliability� These failure detector classes are de�ned in a crash�failure asynchronous environment�
In �DFKM��� these de�nitions are extended to the model where network partitions may occur�

An eventual perfect failure detector �formally de�ned in �CT��� and �DFKM���� may suspect
correct sites� but there is a time after which correct sites are no longer suspected� Using such a
failure detector� E�PC solves the weak atomic commit problem� E�PC terminates once a quorum
of sites becomes connected and no failures or suspicions occur for su�ciently long� In a practical
system� this assumption is likely to be ful�lled�

Similarly� �CT��� and �DFKM��� de�ne weaker classes of failure detectors� Chandra et al� �CHT���
prove that the weakest possible failure detector to solve consensus is the eventual weak failure de�
tector� Intuitively� an eventual weak failure detector may make mistakes and suspect correct sites�
but there is a time after which there is some correct site that is not suspected by any other site that
is connected to it� Guerraoui and Schiper �GS��� present a solution to the weak atomic commit
problem in an environment without network partitions� using an eventual weak failure detector�
Their protocol may be adapted to work in an environment with network partitions� using the tech�
nique presented in �DFKM���� This technique yields a protocol that is less e�cient �requiring more
communication� than E�PC�

 Conclusions

In this paper we demonstrated how the three phase commit �Ske
�� protocol can be made more
resilient simply by maintaining two additional counters and by changing the decision rule� The new
protocol� E�PC� always allows a quorum of connected sites to resolve a transaction At any point
in the execution of the protocol� if a group G of sites becomes connected and this group contains
a quorum of the sites� and no subsequent failures occur for su�ciently long� then all the members
of G eventually reach a decision� Furthermore� every site that can communicate with a site that
already reached a decision will also� eventually� reach a decision� We have shown that �PC does
not possess this feature if the quorum in the system is �lost� �i�e�� at a certain time no quorum
component exists�� a quorum can later become connected and still remain blocked�

E�PC does not require more communication or time than �PC� the improved resilience is
achieved simply by maintaining two additional counters� The information needed to maintain

�Guerraoui �Gue��� proves that the Weak Atomic Commit problem is reducible to consensus�

�

the counters is piggybacked on messages that are sent in �PC as well as in E�PC the values of
Last Elected and Last Attempt are attached to messages used to elect a new coordinator�

We discussed how E�PC can be extended to work in an environment with unreliable failure
detectors� In this case� the protocol solves the weak atomic commitment problem�

E�PC may be used in conjunction with quorum�based replication protocols� such as �Gif	��
Her
�� Her
	� EASC
�� EAT
��� in order to make the database always available to a quorum� We
demonstrated how E�PC may be incorporated in accessible copies protocols �EASC
�� EAT
���
with the new protocol� the database is always available to a quorum of connected sites� The
technique demonstrated here may be used to make other algorithms more resilient� e�g�� an algo�
rithm for maintaining a primary component in the network� to support processing of sequences
of distributed transactions� as well as for ordering of messages �KD��� and replication �Kei����
In �YLKD�	� DKYL��� we exploit this technique in a dynamic voting scheme for maintaining the
primary component in the network�

Acknowledgment

We thank the referees that reviewed this paper for their helpful comments�

A Correctness Proof of E�PC

In this section we prove the correctness of E�PC� we show that E�PC and its recovery procedure
ful�ll the requirements of atomic commitment �as de�ned in Chapter 	 of �BHG
	�� described in
Section ���� The proof follows

AC� Uniform Agreement� In Theorem � below we will prove that all the sites that
reach a decision reach the same one�

AC� In our protocol� a site cannot reverse its decision after it has reached one� When a
site in a �nal state �commit or abort� participates in some invocation of the recovery
procedure� the decision in this invocation of the recovery procedure will correspond with
its state�

AC� Validity� The commit decision can be reached only if all sites voted Yes In the
basic E�PC� a committable decision can be made only if all the sites vote Yes� If the
recovery procedure is invoked with no site in a committable state� then according to
the decision rule� a committable decision cannot be reached�

AC� Non�triviality� If there are no suspicions during the execution of basic E�PC� then
the basic E�PC succeeds in reaching a decision� If all sites voted Yes� then the decision
is commit� Since we assume a perfect failure detector� if there are no failures� there are
no suspicions�

Without a perfect failure detector� the weak non�triviality requirement �de�ned in �Gue���
and Section 	� is ful�lled�

��

AC� Termination� At any point in the execution of the protocol� if all existing failures
are repaired and no new failures occur for su�ciently long� then all sites will eventually
reach a decision� Our protocol guarantees a much stronger property

At any point in the execution of the protocol� if a group G of sites becomes connected
and this group contains a quorum of the sites� and no subsequent failures occur for
su�ciently long� then all the members of G eventually reach a decision� Furthermore�
every site that can communicate with a site that already reached a decision will also�
eventually� reach a decision�

This property is immediate from the decision rule and from our assumption that the
failure detector is perfect� This property is also ful�lled with an eventual perfect failure
detector� since with such a failure detector� there is a time after which correct sites are
no longer suspected�

We now prove that the decision made is unanimous� i�e�� that if one site decides to commit�
then no site can decide to abort and vice versa�

Lemma � If a coordinator r sets its local value of Last Attempt to i and sends a pre�commit
�pre�abort� message to the participants in Step � of the recovery procedure	 then a quorum of
sites have set their value of Last Elected to i during the same invocation of the recovery procedure�

Proof� It is immediate from the protocol and from the fact that sites cannot �join� the recovery
procedure in the middle� but rather the protocol must be reinvoked to let them take part� �

Lemma � At each site	 the value of Last Elected never decreases�

Proof� The value of Last Elected is modi�ed only in Step � of the recovery procedure� when it
is changed to Max Elected��� A site may execute Step � only if it took part in the election of the
coordinator in that invocation of the recovery procedure and its value of Last Elected was used to
compute Max Elected� and therefore Max Elected	Last Elected� and Last Elected increases� �

Lemma � If two sites	 p and q	 both set their Last Attempt to the number i without changing to
a �nal state	 then either both of them set their Last Attempt to i as a response to a pre�commit
decision or both of them set their Last Attempt to i as a response to a pre�abort decision�

Proof� A coordinator changes the value of Last Attempt when it reaches a decision �in Step �
of the recovery procedure or in the basic E�PC�� and it remains in a non��nal state if the decision
is pre�commit or pre�abort� Other sites change the value of Last Attempt only in response to
a pre�commit or a pre�abort decision� in Step � of the recovery procedure� or in response to
pre�commit in the basic E�PC�

Assume the contrary� then w�l�o�g�� p set its Last Attempt to i in response to a pre�commit
decision in the course of some invocation� I�� of the recovery procedure �or of the basic E�PC�� and
q� in response to a pre�abort decision� in an invocation I�� From Lemma �� a quorum of sites set
their Last Elected to i in invocation I� and another quorum of sites set their Last Elected to i in

��

invocation I�� Since the coordinator in invocation I� decided to pre�commit and the coordinator
in I� decided to pre�abort� I� and I� were di
erent invocations of recovery procedure or of the
basic E�PC�

Since every two quorums intersect� there exists a site� s� that set its Last Elected to i in both
invocations� W�l�o�g�� s set its Last Elected to i in I� before setting it to i in I�� From the protocol�
a site cannot concurrently take part in two invocations of the recovery procedure� furthermore� if a
site responds to messages from the coordinator in some invocation� it necessarily took part in the
election of that coordinator� Therefore� s took part in the election of the coordinator in I�� after
it set its Last Elected to i� and from Lemma �� in the course of the election� the coordinator heard
from s that its value of Last Elected	 i and determined that Max Elected	 i� The new value of
Last Elected for this invocation was Max Elected��� which is greater than i� which contradicts our
assumption� �

Lemma � At each site	 at any given time	 Last Elected	Last Attempt�

Proof� From Lemma �� the value of Last Elected never decreases� so it is su�cient to show
that Last Attempt is never increased to exceed it� We prove this by induction on the steps of the
protocol in which Last Attempt changes� Base� When E�PC is initiated� Last Elected is set to one�
and Last Attempt� to zero� Step� Whenever Last Attempt is changed in the course of the protocol�
it takes the value of Last Elected� �

Lemma 	 The value of Last Attempt at each site increases every time the site changes state
from a committable state to a non��nal	 non�committable state and vice versa� The value of
Last Attempt never decreases�

Proof� The only non��nal committable state is pre�commit� and the only way to switch to a pre�
commit state is in response to a pre�commit decision� when setting Last Attempt to Last Elected�
Likewise� the only way to switch from a committable state to a non��nal non�committable state is
in Step � or in Step � of the recovery procedure� in response to a pre�abort decision� when setting
Last Attempt to Last Elected�

It is su�cient to prove that Last Attempt increases when it is set to Last Elected in Step �
or � of the recovery procedure� i�e�� that Last Attempt�Last Elected before Step �� And indeed� in
Step �� Last Elected is set to Max Elected��� which is greater than the value of Last Elected was
when the recovery procedure was initialized� From Lemma �� Last Elected	Last Attempt at all
times� therefore� before Step �� Last Elected is greater than Last Attempt� �

Lemma
 If the coordinator reaches a commit decision upon receiving a quorum of ACKs for
pre�commit when setting its Last Attempt to i	 then for every j 	 i no coordinator will decide
pre�abort when setting its Last Attempt to j�

Proof� The proof is by induction on j� Base �j � i�� This is immediate from Lemma �� Step� We
now assume that no coordinator decides pre�abort with Last Attempt� k for every j � k 	 i�
and prove for j� From the assumption� no site can be in a non��nal non�committable state with
its j �Last Attempt	 i� Now� assume some coordinator r sets its Last Attempt to j in Step � of

��

the recovery procedure� we have to show that r did not decide pre�abort during this invocation
of the recovery procedure� Assume the contrary� then r collected states� from a quorum of sites
with Last Attempt� j� and therefore� in this invocation Max Attempt� j� Since every two quorums
intersect� at least one member of G� p took part in this invocation of the recovery procedure and
sent its state to r� Since j � i� from Lemma �� p set its Last Attempt to i �and switched to a
committable state� before this invocation� But� no site can be in a non��nal non�committable state
with its j �Last Attempt	 i� and therefore Is Max Attempt Committable is true in this invocation�
which contradicts the assumption that r decides pre�abort� �

Lemma � If the coordinator reaches a commit decision when setting its Last Attempt to i	 then
for every j 	 i no coordinator will decide pre�abort when setting its Last Attempt to j�

Proof� There are two cases to consider

� If the coordinator reaches a commit decision upon receiving a quorum of ACKs for pre�
commit when setting its Last Attempt to i� then from Lemma � for every j 	 i no coordinator
will decide pre�abort when setting its Last Attempt to j�

� If the coordinator reaches a commit decision during the recovery procedure upon receiving
a commit state� then some coordinator has reached a commit decision before� when its
Last Attempt was � i� We go back� by induction� to the �rst coordinator that reached a
commit decision� This coordinator must have reached a commit decision according to the
previous case� Thus� we can conclude that for every j 	 i no coordinator will decide pre�
abort when setting its Last Attempt to j� �

Lemma � If the coordinator reaches an abort decision upon receiving a quorum of ACKs for
pre�abort when setting its Last Attempt to i	 then for every j 	 i no coordinator will decide
pre�commit when setting its Last Attempt to j�

Proof� This lemma is dual to Lemma � and can be proven the same way� �

Lemma If the coordinator reaches an abort decision when setting its Last Attempt to i	 then
for every j 	 i no coordinator will decide pre�commit when setting its Last Attempt to j�

Proof� There are three cases to consider

� If the coordinator reaches an abort decision during the basic E�PC� this decision is reached
because some site voted No on the transaction� In this case� the coordinator does not pre�
commit� and no site reaches a committable state in the course of the protocol� Note If
the recovery procedure is invoked with no site in a committable state� then according to the
decision rule� a committable decision cannot be reached�

� If the coordinator reaches an abort decision during the recovery procedure upon receiving a
quorum of ACKs for pre�abort when setting its Last Attempt to i� then from Lemma
 for
every j 	 i no coordinator will decide pre�commit when setting its Last Attempt to j�

��

� If the coordinator reaches an abort decision during the recovery procedure upon receiving
an abort state� then some coordinator has reached an abort decision before� when its
Last Attempt was � i� We go back� by induction� to the �rst coordinator that reached an
abort decision� according to one of the previous two cases� and conclude that for every j 	 i

no coordinator will decide pre�commit when setting its Last Attempt to j� �

Theorem � If some site running the protocol commits the transaction	 then no other site aborts
the transaction and vice versa�

Proof� A site may commit �abort� only upon hearing a commit �abort� decision from its
coordinator� Assume that a commit or abort decision was reached for some transaction T � Note
It is possible for more than one coordinator to reach a decision for the same transaction� Let i
be the lowest value of Last Attempt that a coordinator had when reaching a commit or abort
decision� There are two cases to consider

�� Some coordinator reached an abort decision when setting its Last Attempt to i

Assume for the sake of contradiction that some coordinator also reached a commit decision�
and let j be the lowest value of Last Attempt of a coordinator reaching a commit decision�
From the assumption� j 	 i� Furthermore� since j is the lowest value of Last Attempt of
a coordinator reaching a commit decision� no site could have started this invocation of
the recovery procedure in the committed state� and the commit decision must have been
preceded by a pre�commit� But from Lemma � no coordinator can decide pre�commit
when setting its Last Attempt to j� and we reach a contradiction�

�� Some coordinator reached a commit decision when setting its Last Attempt to i

The proof is similar to the proof of Case � above� but there is one more case to consider
An abort decision reached in the course of the basic E�PC �not in the recovery procedure�
is not preceded by a pre�abort decision� In this case� Last Attempt is set to �� and the
commit decision could not have been reached with a lower value of Last Attempt� therefore
i � �� This case reduces to Case � proved above� �

References

�BHG
	� P� A� Bernstein� V� Hadzilacos� and N� Goodman� Concurrency Control and Recovery
in Database Systems� Addison�Wesley� Reading� MA� ��
	�

�CHT��� T� D� Chandra� V� Hadzilacos� and S� Toueg� The Weakest Failure Detector for Solving
Consensus� In ACM Symposium on Principles of Distributed Computing �PODC�� pages
��	���
� �����

�CK
�� D� Cheung and T� Kameda� Site Optimal Termination Protocols for a Distributed
Database under Network Partitioning� In �th ACM Symposium on Principles of Dis�
tributed Computing �PODC�� pages �������� August ��
��

��

�CR
�� F� Chin and K� V� S� Ramarao� Optimal Termination Protocols for Network Parti�
tioning� In ACM SIGACT�SIGMOD Symposium on Principles of Database Systems
�PODS�� pages ������ March ��
��

�CT��� T� D� Chandra and S� Toueg� Unreliable Failure Detectors for Reliable Distributed
Systems� J� Assoc� Comput� Mach� �JACM�� �����������	� March �����

�DFKM��� D� Dolev� R� Friedman� I� Keidar� and D� Malki� Failure Detectors in Omission Failure
Environments� TR ������ Institute of Computer Science� The Hebrew University of
Jerusalem� Jerusalem� Israel� September ����� Also Technical Report ������
� Depart�
ment of Computer Science� Cornell University�

�DKYL��� D� Dolev� I� Keidar� and E� Yeger Lotem� Dynamic Voting for Consistent Primary Com�
ponents� TR ���	� Institute of Computer Science� The Hebrew University of Jerusalem�
Jerusalem� Israel� June �����

�DLS

� Cynthia Dwork� Nancy Lynch� and Larry Stockmeyer� Consensus in the Presence of
Partial Synchrony� J� Assoc� Comput� Mach� �JACM�� ������

����� April ��

�

�EASC
�� A� El Abbadi� D� Skeen� and F� Christian� An E�cient Fault�Tolerant Algorithm for
Replicated Data Management� In ACM SIGACT�SIGMOD Symposium on Principles
of Database Systems �PODS�� pages �������� March ��
��

�EAT
�� A� El Abbadi and S� Toueg� Maintaining Availability in Partitioned Replicated
Databases� ACM Trans� Database Systems� ������������� June ��
��

�FLP
�� M� Fischer� N� Lynch� and M� Paterson� Impossibility of Distributed Consensus with
One Faulty Process� J� Assoc� Comput� Mach� �JACM�� ���	���
�� April ��
��

�Gif	�� D�K Gi�ord� Weighted Voting for Replicated Data� In ACM SIGOPS Symposium on
Operating Systems Principles� December ��	��

�GM
�� H� Garcia�Molina� Elections in a Distributed Computing System� IEEE Trans� Com�
put�� C���� NO���
���� Jan� ��
��

�Gra	
� J�N� Gray� Notes on Database Operating Systems� In Operating Systems� An Advanced
Course	 Lecture Notes in Computer Science� volume ��� pages �����
�� Springer�Verlag�
Berlin� ��	
�

�GS��� R� Guerraoui and A� Schiper� The Decentralized Non�Blocking Atomic Commitment
Protocol� In IEEE International Symposium on Parallel and Distributed Processing
�SPDP�� October �����

�Gue��� R� Guerraoui� Revisiting the Relationship between non�blocking Atomic Commitment
and Consensus� In International Workshop on Distributed Algorithms �WDAG�� pages

	����� September �����

�Her
�� M� Herlihy� A Quorum�Consensus Replication Method for Abstract Data Types� ACM
Trans� Comput� Systems� ���������� February ��
��

��

�Her
	� M� Herlihy� Concurrency versus Availability Atomicity Mechanisms for Replicated
Data� ACM Trans� Comput� Systems� ���������	�� August ��
	�

�KD��� I� Keidar and D� Dolev� Increasing the Resilience of Atomic Commit� at No Additional
Cost� Technical Report CS����
� Institute of Computer Science� The Hebrew University
of Jerusalem� Jerusalem� Israel� �����

�KD��� I� Keidar and D� Dolev� E�cient Message Ordering in Dynamic Networks� In �th
ACM Symposium on Principles of Distributed Computing �PODC�� pages �
�	�� May
�����

�Kei��� I� Keidar� A Highly Available Paradigm for Consistent Object Replication� Master�s
thesis� Institute of Computer Science� The Hebrew University of Jerusalem� Jerusalem�
Israel� ����� Also available as Technical Report CS����� and via anonymous ftp at
cs�huji�ac�il �������������� in users�transis�thesis�keidar�msc�ps�gz�

�Lam
�� L� Lamport� The part�time parliament� TR ��� Systems Research Center� DEC� Palo
Alto� September ��
��

�MHS
�� Tim Mann� Andy Hisgen� and Garret Swart� An Algorithm for Data Replication�
Technical Report ��� DEC Systems Research Center� June ��
��

�MLO
�� C� Mohan� B� Lindsay� and R� Obermark� Transaction Management in the R! Dis�
tributed Database Management System� ACM Trans� Database Systems� ������ Febru�
ary ��
��

�PW��� D� Peleg and A� Wool� Availability of Quorum Systems� Inform� Comput�� ����������
���� �����

�Ske
�� D� Skeen� A Quorum�Based Commit Protocol� In �th Berkeley Workshop on Distributed
Data Management and Computer Networks� pages ���
�� Feb� ��
��

�SS
�� D� Skeen and M� Stonebraker� A Formal Model of Crash Recovery in a Distributed
System� IEEE Trans� Software Eng�� SE�� NO��� May ��
��

�YLKD�	� E� Yeger Lotem� I� Keidar� and D� Dolev� Dynamic Voting for Consistent Primary Com�
ponents� In �th ACM Symposium on Principles of Distributed Computing �PODC��
August ���	�

��

