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A message-passing solver for linear systems
Ori Shental, Danny Bickson, Paul H. Siegel, Jack K. Wolf and Danny Dolev

Abstract— We develop an efficient distributed message-passing
solution for systems of linear equations based upon Gaussian
belief propagation that does not involve direct matrix inversion.

Solving a system of linear equationsAx = b is one of
the most fundamental problems in algebra, with countless
applications in the mathematical sciences and engineering.
Given the observation vectorb ∈ Rn, n ∈ N∗, and the data
matrix A ∈ Rn×n, a unique solution,x = x∗ ∈ Rn, exists if
and only if the data matrixA is full rank. In this contribution
we concentrate on the popular case where the data matrices,
A, are also symmetric.

We can translate the problem of solving the linear system
from the algebraic domain to the domain of probabilistic
inference, as stated in the following theorem.

Proposition 1 (Solution and inference):The computation
of the solution vectorx∗ is identical to the inference of the
vector of marginal meansµ = {µ1, . . . , µn} over the graph
G with the associated joint Gaussian probability density
function p(x) ∼ N (µ , A−1b,A−1).
The move to the probabilistic domain calls for the utilization
of belief propagation (BP) as an efficient inference engine.

The BP algorithm functions by passing real-valued mes-
sages across edges in the graph and consists of two compu-
tational rules, namely the ‘sum-product rule’ and the ‘product
rule’. Gaussian BP is a special case of continuous BP, where
the underlying distribution is Gaussian.

The messagemij(xj), sent from nodei to nodej over their
shared edge on the graph, is given by

mij(xj) ∝
∫

xi

ψij(xi, xj)φi(xi)
∏

k∈N(i)\j

mki(xi)dxi. (1)

The marginals are computed according to the product rule

p(xi) = αφi(xi)
∏

k∈N(i)

mki(xi), (2)

where the scalarα is a normalization constant. The graph
potentialsψij(xi, xj) and φi(xi) are simply determined ac-
cording to a pairwise factorization of the Gaussian distribution.
The set of graph nodes N(i) denotes the set of all the nodes
neighboring theith node. The set N(i)\j excludes the nodej
from N(i).

Looking at the right hand side of the integral-product
rule (1), nodei needs to first calculate the product of all
incoming messages, except for the message coming from node
j. Recall that sincep(x) is jointly Gaussian, the factorized self
potentialsφi(xi) ∝ N (µii, P

−1
ii ) and similarly all messages

mki(xi) ∝ N (µki, P
−1
ki ) are of Gaussian form as well.
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As the terms in the product of the incoming messages and
the self potential in the integral-product rule (1) are all a
function of the same variable,xi (associated with the node
i), then, according to the lemma of product of Gaussian
densities,φi(xi)

∏
k∈N(i)\j mki(xi) is proportional to a certain

Gaussian distribution,N (µi\j , P
−1
i\j ). Thus, the update rule for

the inverse variance is given by (over-braces denote the origin
of each of the terms)

Pi\j =

φi(xi)︷︸︸︷
Pii +

∑
k∈N(i)\j

mki(xi)︷︸︸︷
Pki , (3)

wherePii , Aii is the inverse variance a-priori associated
with nodei, via the precision ofφi(xi), andPki are the inverse
variances of the messagesmki(xi). Similarly, we can calculate
the mean

µi\j = P−1
i\j

( φi(xi)︷ ︸︸ ︷
Piiµii +

∑
k∈N(i)\j

mki(xi)︷ ︸︸ ︷
Pkiµki

)
, (4)

whereµii , bi/Aii is the mean of the self potential andµki

are the means of the incoming messages.
Next, we calculate the remaining terms of the mes-

sage mij(xj), including the integration overxi. After
some algebraic manipulation, using the Gaussian integral∫∞
−∞ exp (−ax2 + bx)dx =

√
π/a exp (b2/4a), we find that

the messagesmij(xj) are proportional to a normal distribution
with precision and mean

Pij = −A2
ijP

−1
i\j , (5)

µij = −P−1
ij Aijµi\j . (6)

These two scalars represent the messages propagated in the
GaBP-based algorithm.

Finally, computing the product rule (2) is similar to the
calculation of the previous product and the resulting mean (4)
and precision (3), but including all incoming messages. The
marginals are inferred by normalizing the result of this prod-
uct. Thus, the marginals are found to be Gaussian probability
density functionsN (µi, P

−1
i ) with precision and mean

Pi =

φi(xi)︷︸︸︷
Pii +

∑
k∈N(i)

mki(xi)︷︸︸︷
Pki , (7)

µi = P−1
i\j

( φi(xi)︷ ︸︸ ︷
Piiµii +

∑
k∈N(i)

mki(xi)︷ ︸︸ ︷
Pkiµki

)
, (8)

respectively, where the latter gives the desired solution to the
linear system.


