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Abstract1 
 
Challenges of scale have limited the development of event 
notification systems with strong properties, despite the 
urgent demand for consistency, reliability, security, and 
other guarantees in applications developed for sensitive 
tasks in large enterprises.  These issues are the focus of 
Quicksilver, a new multicast platform targeted to large-
scale deployments.  An initial version of the system can 
support large numbers of overlapping multicast groups, 
high data rates and groups with large numbers of 
members.  However, Quicksilver still requires manual 
help when discovering the system configuration and can’t 
easily enforce certain types of application monitoring and 
integrity constraints.  In this paper, we propose to extend 
Quicksilver by introducing gossip mechanisms, yielding a 
self-managed event notification platform.  The two 
technologies are presented through a single interface and 
appear to end users as live distributed objects, side-by-
side with other kinds of typed components. 
 
1. Introduction 
 

As we look to the next generation of distributed 
computing platforms, it is hard not to feel concern at the 
accelerating deployment of systems that will play 
sensitive roles, and yet will be built using fragile  
technologies .  For example, an electronic health records 
system must achieve high levels of availability and 
consistency, be largely self-configuring, and maintain 
privacy and security.  A typical deployment scenario 
involves decentralized systems linked over networks, 
integrating subsystems running at hospitals, other care 
providers, laboratories, insurance companies, pharmacies, 
etc. Electronic monitoring devices and other sensors 
running both in the hospital and at home will contribute 
time-sensitive data, and some therapeutic and drug 
delivery devices will be remotely controlled. 

To reduce cost and leverage standardization, a system 
of this sort  would probably be constructed using COTS 
platform technologies, such as web services.   Doing so 
also brings productivity benefits, in the form of 
development tools and runtime support, and makes it easy 
to integrate pre-supplied functions with new application-
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specific ones.  However, today’s solutions lack the sorts 
of strong properties needed for sensitive uses .  Our 
objective is to extend these platforms by adding robust 
tools that bridge gaps while complying with standards. 

The nerve center of a modern service-oriented 
architecture is its event notification subsystem.  Event 
notification services can distribute sensor readings and 
other kinds of updates to widely distributed system 
components, and can be used to replicate information 
where an application or a record is available at multiple 
locations.  By decoupling publishers from subscribers, 
these services make it easy to upgrade an application over 
time and to integrate components that run on dissimilar 
platforms or were implemented using very different 
technologies.  On the other hand, traditional event 
notification platforms lack the strong guarantees needed 
for medical decision making and other critical roles.   

If we can create a new kind of scalable, robust event 
notification architecture that fits seamlessly into modern 
development platforms such as Windows .net or J2EE, 
and yet has strong properties that reduce to rigorously 
specified protocols that the end user can count upon and 
reason about, we can help application developers create 
robust applications for sensitive uses. 

In this paper, we focus on scalability, robustness and 
self-management, deferring issues of security and privacy 
for the future.  For scalable event notification with strong 
reliability guarantees, we’ve developed Quicksilver: a  
high-performance multicast technology that can 
implement a variety of reliability models, including 
consensus-based ones  [1][2].  Traditionally, systems 
implementing reliable multicast have scaled poorly, but as 
reported below, this problem can be overcome. Moreover, 
although we don’t tackle the question here, we believe 
that Quicksilver can be secured using digital certification 
certificates, by authenticating access to information 
resources, and encrypting all network traffic using per-
event-channel keys that can be refreshed whenever the set 
of subscribers changes.   

The existing version of Quicksilver is weaker with 
respect to self-configuration and self-management; both 
critical requirements for the sorts of applications we hope 
to support .  In our target environments, the pace of 
reconfiguration could be very rapid: if a patient falls ill, 
providers might (in effect) hand the family a box full of 
equipment to be deployed throughout the home.  Needs 
change as the patient’s care plan evolves .  Patients are 
moved from unit to unit.  Thus one must imagine a highly 
dynamic, rather unpredictable environment in which the 



sets of components, their configurations, and their 
communication patterns change constantly.  Against this 
backdrop, we seek an event notification infrastructure that 
can configure itself, that can adapt as conditions evolve, 
and that can be leveraged to support self-configuring 
applications.  

Fault-tolerance poses closely related problems.  Today, 
Quicksilver offers fault-tolerance through models such as 
virtual synchrony, where applications are structured into 
groups and, if desired, will be notified when membership 
changes.  But not all integrity constraints map easily to 
group membership tracking.  For example, the decoupling 
of publisher from subscriber is advantageous from a 
development perspective, but sometimes correct function 
requires that there be an active subscriber associated with 
certain topics.  One such case involves  logging accesses 
to patient records for offline audits.  If this functionality is 
implemented using event notification, it important that the 
logging service be running when audit events are 
published. Yet even if built upon a substrate such as 
Quicksilver, today’s  event notification APIs lack 
mechanisms to express such constraints, and hence can’t 
trigger exceptions when they are violated. 

To address self-* needs, both within Quicksilver and in 
applications built using it, we propose to use technology 
emerging from work on gossip protocols .  Gossip 
encompasses a large class of protocols that exploit 
randomness to achieve surprising robustness under a wide 
range of operating conditions.  They can be made self-
configuring, adapt rapidly after disruption, and support a 
diversity of useful end-user functionality.    

The integration of gossip with multicast in a single 
setting poses non-trivial systems -engineering challenges. 
Here, we propose such a unification.  Although our new 
system is still under development, it will offer a seamless 
infrastructure in which Quicksilver runs side-by-side with 
gossip-based mechanisms to provide a self-managed 
scalable event notification capability.  The system will 
expose these gossip mechanisms so that applications can 
exploit them directly in the same paradigm used to expose 
Quicksilver’s multicast functionality. Here we sketch out 
the architecture and discuss some research challenges it 
poses; several appear to be of broader relevance. 

The paper is structured as follows.  First, we spend a 
moment discussing the strengths and limitations of gossip 
technologies.  The goal is not to be exhaustive, but rather 
to identify styles of gossip that are both highly effective 
and well matched to our self-management objectives.  
Next, we review Cornell’s new platform, Quicksilver, 
touching both on its scalability and its unusual embedding 
into the Windows .net framework.  The latter topic 
emerges as  a source of leverage in what we are now 
proposing to do.  Finally, we explore the options for 
integrating the two, arriving at an architecture that (we 
believe) is interesting in several respects.  First, it sets 
gossip side by side with scalable event notification.  Next, 

the system offers an elegant embedding into Windows so 
that developers can benefit from that system’s powerful 
component integration functionality and development 
tools (a Linux version is also under design).  And finally, 
it suggests a path for future evolution of service-oriented 
architectures and standards.  The paper concludes by 
discussing open research questions. 
 
2. Gossip protocols 
 
    A gossip protocol is one with the following properties: 
1. The core of the protocol involves periodic, pairwise, 

inter-process interactions. 
2. The information exchanged during these interactions 

is of (small) bounded size. 
3. When node a interacts with node b, the state of a 

evolves in a way that reflects the state of b (and vice 
versa).  For example, if a pings b merely to measure 
RTT, this is not a gossip interaction. 

4. Reliable communication is not assumed. 
5. The frequency of the interactions is relatively low 

when compared to typical message latencies.  
6. There is some form of randomness in peer selection.   
 
    There are three prevailing styles of gossip protocol.   
1. Dissemination (rumor-mongering) protocols.  These 

use gossip to spread information; they basically work 
by flooding nodes in the network, but in a manner that 
produces bounded worst-case loads:   
a. An event dissemination protocol runs in response to 

events and can be understood as using gossip to 
carry out multicasts, although the events don’t 
actually trigger the gossip (since gossip runs 
periodically).   

b. A background data dissemination  protocol gossips 
continuously to track the evolution of state at 
participating nodes.  

2. Anti-entropy protocols repair replicated data by 
comparing replicas and reconciling differences.   

3. Aggregation protocols compute a network-wide 
aggregate by sampling information at the nodes in the 
network and combining the values to arrive at a 
system-wide value – the number of nodes in the 
system, the sum or average of some value, etc 

 
    Our definitions are rather broad; indeed, many 
protocols that predate the earliest use of the term “gossip” 
fall within our definition.  In particular, notice that a 
gossip substrate can “mimic” a standard routed network.  
That is, nodes could “gossip” about traditional point-to-
point messages, in effect tunneling normal traffic through 
a gossip layer.  Bandwidth permitting, this implies that a 
gossip system can potentially support any classic protocol 
or distributed service. Nonetheless, when we talk of 
gossip, we rarely intend such a broadly inclusive 



interpretation.  More typically we have in mind protocols 
that run in a regular, periodic, relatively lazy, symmetric 
and decentralized manner; the high degree of symmetry 
among nodes is particularly characteristic.  To illustrate 
this point, consider that one could run a 2-phase commit 
protocol over a gossip substrate, piggybacking the 
messages on gossip traffic.  In our view, doing so would 
be at odds with the spirit of the definition: there’s nothing 
wrong with such a protocol, but it isn’t gossip!   
 
2.1 The Limitations of Gossip 
 
    The stylized manner in which we normally use gossip 
introduces significant limitations. First, consider the 
implications of the small, bounded message sizes and the 
relatively slow periodic message exchanges.  These 
combine to limit the information carrying capacity of a 
gossip algorithm.  For example, if gossip is used to 
disseminate information (often, in a form of flooding), the 
system-wide capacity for new events will be limited 
simply because the aggregate “bandwidth” available is 
bounded.  The problem is that gossip protocols keep the 
nodes in a network busy while information spreads – 
typically, a process that requires O(log(n)) time.  It 
follows that the “rate” at which events can be introduced 
will be proportional to 1/log(n). 
     The relatively slow spread of gossip can also be an 
obstacle.  While it is common to claim that users need 
only tune the gossip rate to match their goals, requirement 
5 complicates the picture.  Gossip rates approaching the 
network RTT are out of the question.   
    Finally, gossip can be fragile in the face of malicious 
behavior (components that malfunction, for example by 
running the protocol incorrectly, disseminating incorrect 
data, and so forth). Recent work on BAR Gossip [21] tries 
to overcome some of the issues by using verifiable 
pseudo-random peer selection to avoid selfish and 
malicious behaviors.   But this is just a first step. 
     
2.2 Strengths of Gossip 
 
    Although gossip has limitations, these protocols do 
have substantial power.  Among the most cited strengths 
are these: 
 
• Convergent consistency.  Properly designed gossip 
protocols, when not overwhelmed by a higher rate of 
incoming “events” than the information-carrying 
bandwidth of the underlying channels, should have a 
logarithmic mixing time – any new event will, with high 
probability, affect all nodes that need to learn about it 
within time logarithmic in the system size.   
 
• Emergent structure.  Earlier, we contrasted a classic 
deterministic protocol for building a spanning tree by 
leader-initiated flooding with a decentralized way of 

building such a tree using gossip.  In the gossip style, the 
tree “emerges” from randomized pairwise interactions 
between peers.  The term emergent structure is intended 
to evoke the image of a data structure that emerges with 
probability 1.0 in this manner.   The structure may then 
continue to evolve over time as further gossip occurs. 
 
• Simplicity.  Most (but not all) gossip protocols are 
extremely simple and highly symmetric, with all 
participants running the same code. 
 
• Bounded load on participants.  Many classic (non-
gossip) distributed protocols are criticized because they 
can generate high surge loads that overload individual 
components.  Gossip is normally used in ways that 
produce strictly bounded worst-case loads on each 
component, eliminating the risk of disruptive load surges.  
In some situations, where network capacity is also a 
concern, peer-selection is further biased to control load 
imposed on network links. 
 
• Topology independence.  If running on a sufficiently 
connected networking substrate, and with sufficient 
bandwidth, a gossip protocol will often operate correctly 
on a great variety of underlying topologies.   
 
• Ease of local information discovery.  Many gossip 
protocols are used for purposes of discovery, for example 
to find a nearby resource (these are usually protocols in 
which gossip occurs between neighbors, not between 
arbitrarily distant peers).  Unlike local flooding, which 
scales poorly, gossip would typically find local 
information less quickly but with bounded costs: perhaps, 
a constant or a delay logarithmic in the system size. 
 
• Robustness to transient network disruptions.  As time 
elapses, there are exponentially many routes by which 
information can flow from its source to its destinations.  
However, not all uses of gossip are robust in all ways.  
For example, unless data is self-verifying, dissemination 
protocols are often vulnerable to data corruption.  Anti-
entropy protocols may similarly be at risk if a replica 
becomes corrupted.  And aggregation protocols are 
vulnerable not just to the introduction of faulty 
information, but also to computational errors that result in 
a faulty computation of the aggregate.    
 
2.3 Appropriate roles for gossip 
 
    The foregoing discussion suggests a number of natural 
roles for gossip in large-scale event notification systems.   
    The earliest uses of gossip were to disseminate 
information in large-scale systems  [22].  Scalability and 
robustness were cited as the primary benefits in these 
uses : the load on each node grows in a logarithmic  
manner as the system scales and information can be 



reliability disseminated in the presence of a high 
proportion of node failures [20]. Such properties rely on 
the fact that each node samples network state randomly.   
This pseudo-randomness can nonetheless be controlled or 
“shaped”.  For example, Lpbcast [19] and Cyclon [15] are 
protocols in which each peer periodically selects another 
peer with which it gossips; they differ in the details of 
target selection, and in the way they merge information 
gathered through the gossip exchange with their own. 
     Generalizing these ideas, gossip may be used to create 
unstructured overlay networks, achieving properties close 
to those of random graphs [12].  Having used gossip to 
create such a graph, gossip protocols can also run over 
them, for example to create an overlay optimized with 
respect to an application-specific  metric. For example, T-
man builds overlays that use application-supplied quality 
functions to bias neighbor selection [10].  In [14], the 
gossip itself is biased; users with shared interests are 
structured into peer groups for file sharing, substantially  
improving response times in a search application.  
    Similarly, GosSkip [17] and Sub-2-Sub [13] build 
content-based publish-subscribe systems  in which the 
overlay topology matches the subscription pattern.  In 
GosSkip, subscriptions are organized into a skiplist 
structure so that events will be routed to interested 
subscribers in a logarithmic number of hops. In Sub-2-
Sub, several gossip-protocols are layered to efficiently 
support range subscriptions.  The lowest layer uses 
random peer sampling to ensure connectivity and 
robustness, a second layer creates clusters of “close” 
subscriptions, and the third layer structures overlapping 
subscriptions to ensure an exact and exhaustive 
dissemination of events.   
    This flexibility comes at a price.  Gossip-based publish-
subscribe overlays are often slow: the technology is 
wonderful for matching publishers with subscribers, but 
says little about getting events delivered rapidly, robustly, 
and with strong reliability properties.   Indeed, we like to 
think of these kinds of applications as having two disjoint 
aspects: a gossip infrastructure that, in these cases, builds 
an overlay; and then a distinct dissemination structure that 
uses the overlay to reliably distribute events.   
    This way of thinking leads back to our current goals.  
We hope to systematically ask how gossip can be 
valuable in event-notification systems such as Quicksilver 
and in the applications that run over it.  A number of 
options seem to be worth exploring.  For example, as just 
seen, a gossip-constructed overlay network could be 
useful for efficient dissemination. In this case, 
Quicksilver itself would provide the “quality metrics” 
used to optimize the overlay, and the associated cost 
functions would reflect the mechanisms Quicksilver uses 
for dissemination and for recovery of lost packets. 
    More broadly, we hope to use gossip to materialize a 
form of distributed “picture” of the application network, 
which would become an input to an auto-configuration 

application that would generate configuration files.  These 
would advise the end-user application (in addition to the 
Quicksilver event notification infrastructure) of the 
topology on which it should operate and the appropriate 
parameter settings to use. Later, as conditions evolve, the 
same approach could be used to reconfigure the running 
system so as to repair damage caused by a failure, or to 
integrate new components with the existing infrastructure.    
    Another possible role for gossip would be to track 
overall loads, loss rates and other status in the system. We 
have experience with a gossip-based system used for this 
purpose.  Astrolabe is a distributed monitoring and data 
mining system that uses  gossip to construct a virtual 
hierarchical database that can be queried much like a 
normal database [5]. The database is extremely useful for 
self-optimization and problem diagnosis.  Because 
Astrolabe is fully replicated it has no single point of 
failure or load-related hot-spots, and the underlying 
gossip protocol remains robust even under stress that can 
shut down most other system functionality.  In our new 
system, we believe aggregation mechanisms can play 
even more roles, including parameter setting and dynamic 
adaptation [11]. Aggregation can even be used for 
resource allocation, for example by using gossip to sort 
peers according to an application-specific  metric [16]. 
     Finally, we will use gossip to support background 
diffusion of system information that won’t be needed 
immediately, but could be of high value “later”.  A tool 
permitting discovery of available information sources 
would be one possible use for such a mechanism. Other 
possibilities include mechanisms for tracking contact 
nodes or other services, finding information stored 
elsewhere in the network, etc. By using gossip to 
disseminate the underlying information, we can be certain 
that data will get through even if the system configuration 
changes (or is  disrupted), and hence will be available 
when and where needed.   
    To exploit these kinds of gossip mechanisms, we need 
to tackle some significant software engineering issues that 
prior work has largely overlooked.  To make gossip useful 
as a tool, one needs appropriate embeddings of these 
abstractions into the runtime environment.  For these 
purposes , we propose to extend a feature of Cornell’s 
Quicksilver platform, discussed below. 
 
3. Quicksilver 

 
Cornell’s Quicksilver project [3][4] offers a scalable 

event notification infrastructure that can support strong 
properties on a per-topic basis .  An application can 
subscribe to large numbers of communication channels, 
with the properties of each channel matched to the data it 
carries.   Krzysztof Ostrowski is the lead architect and 
developer for Quicksilver, in collaboration with Ken 
Birman, Danny Dolev and Robbert van Renesse.  We start 



by reviewing prior work on Quicksilver, and then suggest 
some of the extensions our new effort will explore. 

A key objective for Quicksilver is scalability in  
multiple dimensions: numbers of applications using the 
platform, numbers of event channels to which each 
application subscribes, data rates, tolerance of disruption, 
etc.   Our underlying premise is that inadequate scalability 
has limited the uptake of group-multicast in general, and 
has prevented its widespread use in support of event 
notification.  This  sometimes manifests itself through 
throughput that degrades  gracefully as the system is 
deployed into a larger setting, but more dramatic 
consequences  are also observed.  For example, many 
large-scale event notification platforms become unstable 
in large deployments, oscillating from very low 
throughput to overwhelmingly high data rates in which 
traffic generated by the platform can actually shut down 
the communications bus by swamping it with data, 
retransmissions, nack and ack messages and other forms 
of overhead – a so called broadcast storm effect.  In 
designing Quicksilver, our goal was to demonstrate 
stability in this problematic domain.  

This is not the right setting for a detailed discussion of 
the Quicksilver architecture.  Instead, we summarize 
some key ideas very briefly: 
• Separation of concerns.  Quicksilver treats event 

dissemination separately from recovery of lost 
packets, flow control, and imp lementation of stronger 
consistency (“properties”).   

• Regions of overlap.  A single node will often 
subscribe to many event channels.  If each channel is 
treated as a separate multicast group, one encounters 
obvious problems of scale.  Accordingly, Quicksilver 
maps from overlapping channels down to regions, 
defined to be sets of nodes with similar subscriptions.  
Dissemination is on a per-region basis; recovery is 
done in an aggregated manner over regions, etc. 

• Scalable recovery.  Quicksilver uses a novel hierarchy 
of token rings to achieve scalable detection of lost 
packets and, when possible, to recover data between 
peers in a region, offloading work from the sender. 

• Per-channel reliability properties.  The reliability 
properties of each channel can be matched to its role. 

• Managed runtime environment.  Quicksilver runs in 
managed settings, allowing it to leverage strong type 
checking, memory management, etc. 

Details of the architecture and protocols appear in [3][4]. 
Quicksilver has been running since June 2006. For the 

moment, all our users are building datacenters – WAN 
scenarios are a goal once the new gossip-based 
mechanisms are available, but the current system doesn’t 
run in WAN settings.  In our datacenter experiments, 
we’ve set up groups with up to 200 nodes (larger runs are 
planned), than subjected them to extremely high 
throughputs and injected various forms of stress.   

Up to the present, we have seen only minimal 
throughput degradation and no signs of instability or 
throughput fluctuations even in the largest configurations.  
In contrast, such problems are easy to provoke in most 
existing technologies for multicast in the same settings, 
even with much smaller groups of just 50 to 75 members 
[2].  Quicksilver can saturate a 100Mbit ethernet 
interconnect with just 20-40% CPU loads on the 
inexpensive PC’s making up our test cluster; experiments 
with our prior systems peaked at about a tenth these data 
rates and generated much heavier loads.  Perhaps most 
important, processes are able to access large numbers of 
groups.  For this reason, when used to support event 
notification, Quicksilver can maintain steady performance 
even when each process joins as many as 8000 separate 
event channels  [3][4].   Obviously, this capsule summary 
oversimplifies in some important ways (in particular, not 
all configurations of processes and event streams are 
supported), but they do give a sense of what the system 
should be able to achieve.   

Of primary relevance here is the manner in which 
Quicksilver embeds event notification channels into 
Windows.  Traditionally, event notification platforms 
have been treated as a free-standing technology that lives 
separately from the operating system.  Quicksilver can be 
used this way too, through a conventional publish-
subscribe infrastructure that generalizes the web services 
eventing standards (in [6] we discuss our reasons for 
extending these standards rather than working entirely 
within ws-notification or ws-eventing).   

But Quicksilver also offers a second, deeper 
embedding into Windows in which event notification 
channels can be accessed either as a new kind of 
distributed live object visible in the file system side-by-
side with other named objects.  These objects are best 
understood as distributed abstract data types.  A program 
accesses such an object much as it would access a file in 
Windows: given appropriate permissions, it can open the 
object, read the current state, and will receive events as 
the state is subsequently updated.   This, however, is an 
illusion: the “object” is really an event channel, and the 
state is a checkpoint produced by some existing 
subscriber when a new program subscribes.  State 
persistence is available, but optional.  

We’ve emphasized the similarity between the way that 
a system such as Windows understands file “types” as an 
association between the data in some object and the 
programs  that implement operations on that kind of 
object, and the way that Quicksilver associates a type with 
each event notification channel.  For Quicksilver, the type 
corresponds to an object class, but also is associated with 
a definition of the properties the channel should 
implement.  The effect is to confer a distributed semantics 
on the group of objects as a whole.  The approach is 
flexible enough to support weak properties such as best-
effort notification, stronger consensus-based properties 



such as the virtual synchrony model, or even very strong 
models such as transactional 1-copy serializability.   
Quicksilver implements a domain-specific programming 
language within which the properties associated with each 
event channel can be specified.  The system basically 
compiles these property definitions into pseudo-code 
which it can execute to achieve the desired behavior.    

 
4. A unified platform 

For our purposes, the key point of leverage involves 
the embedding of Quicksilver’s live objects (event 
channels) into Windows.  Consider the integration of 
abstract data types such as Excel spreadsheets or Word 
documents into the Windows file system.  Windows uses 
the filename extension to understand the “type” of the 
object, allowing it to interpret operations on the object as 
method invocations on an appropriate application 
program.  Web services standards are used in conjunction 
with these componentization mechanisms: active 
components such as the Excel application register their 
interfaces using the Web Services framework built into 
.net, at which point the Windows platform can function as 
a component integration environment using Web services 
standards and protocols to perform tasks such as method 
invocation.  Of course, this component-to-component type 
system is somewhat primitive, but one could imagine 
taking the idea much further; indeed, there are projects 
underway at Microsoft to do just that.   It isn’t 
unreasonable to imagine that future versions of Windows 
will incorporate a full-fledged distributed type system at 
the component level.  

As suggested above, Quicksilver extends Windows to 
support abstract data types with “live” content, and allows 
a variety of event stream providers to support the live 
aspects of the abstraction.  A Quicksilver event 
notification channel has a name that can be visible in the 
file system name space, and a type, corresponding to the 
properties associated with the event channel.  When an 
application binds itself to an event channel, Windows 
passes the binding event to Quicksilver, and we can 
perform type compatibility checking, or can even perform 
some kinds of dynamic type coercion (for example by 
introducing an encryption/decryption layer in order to 
integrate a component that doesn’t support encryption 
with an event channel that requires stronger forms of 
security).    The same mechanisms also work from the 
Windows shell: if a user right-clicks on a Quicksilver 
event channel, the shell extensions framework passes us 
the request.  Quicksilver can then identify applications 
that can connect to this kind of channel, and can even 
generate dynamically created virtual folders, for example 
displaying thumbnail-size images from a video streaming 
application.  

Quicksilver is thus on a path towards the same kind of 
tight integration with Quicksilver event streams as is seen 
with other Windows communications options such as 

DCOM.  The approach enables developers to leverage 
existing Windows application development and 
debugging tools while benefiting from co-existence in a 
managed framework.  If Windows evolves in the manner 
currently anticipated, type checking will become possible 
even across component boundaries.  Because Quicksilver 
uses the CLR memory management layer, no copying 
occurs when a large object is multicast.  Of course, such a 
positioning of the technology also brings challenges of its 
own (for example, to maximize performance in a 
managed environment requires protocol designs quite 
different from those one uses in a Linux/C multicast 
implementation [3]) but the problems are solvable and we 
believe the result is well worth the effort.   We should 
comment that although Windows is our initial target, 
everything we are doing should port (using Mono) to 
Linux and would then be accessible from J2EE or even 
Corba applications. 

This, then, is the core contribution of the present 
paper: a vision of how one might unify these three worlds: 
objects in a platform such as Windows on the one hand, 
and both gossip and of scalable event notification on the 
other, all in a single framework.   A first step towards this 
vision requires that the Quicksilver multicast framework 
be separated from the mechanisms that embed 
Quicksilver objects into Windows; Ostrowski is already 
developing this capability as part of version 2.0 of the 
system.  As is the case in Quicksilver today, the basic 
abstraction will be that of a distributed object having a 
“state” and an associated event stream.  However, rather 
than assuming that the live content is transported by 
Quicksilver’s reliable mu lticast protocols , there will be at 
least two possible communication infrastructures – the 
other being gossip-based.  Down the road one might 
imagine additional options, such as an IP-TV streaming 
layer, or one focused on real-time communication. 

Thus, referring back to the examples of gossip-based 
mechanisms mentioned in Section 3, one could build a 
gossip-based topology and configuration discovery 
service that, in effect, produces an annotated picture of 
the state of the system.  An end-user could access that 
picture by clicking on an associated file name; doing so 
would launch some sort of browser capable of visualizing 
this kind of information and might let the user explore the 
network, for example to pin down a bottleneck that is 
impacting performance.  Application programs could use 
the picture to configure themselves.  And Quicksilver’s 
event notification infrastructure could use that picture to 
construct overlays for disseminating events that use IP 
multicast when possible, but tunnel data through overlay 
trees where IP multicast is not feasible (and these same 
overlay networks would also be available to application 
designers, through some form of abstract data type).  The 
remarkable robustness of the gossip protocols ensures that 
even when all else is  disrupted, applications can still 



monitor the system to set parameters, configure 
themselves, and adapt when conditions change.  

But we believe we can do more than to simply import 
gossip functionality into Quicksilver.  Gossip systems of 
the types we reviewed share substantial commonalities 
across their various presentations.  For example, many 
gossip mechanisms require random peer selection, either 
within the full system (a kind of anycast) or within a set 
of neighbors of a node (a local variant on anycast).  The 
thinking is that this and other low-level primitives can be 
standardized within the gossip subsystem, and then reused 
across gossip-based objects.  Doing so poses interesting 
research challenges: if a single object employs anycast, 
one can implement a “greedy” solution.  But suppose that 
on some single node there are tens or even hundreds of 
gossip-based objects, all using anycast. Could we 
aggregate, so that a single message can carry information 
on behalf of multiple objects?    

One can pose similar questions at a higher level.  
Many gossip algorithms are highly stylized: the nature of 
a gossip exchange is rather similar across most gossip-
based mechanisms, even if the details of what “state” is 
exchanged and how it is “merged” differ.  This 
immediately suggests that one might design an abstract 
gossip state-machine that could be instantiated in multiple 
objects, parameterized with appropriate state marshalling 
and merge functions.  

The resulting architecture is summarized in Figures 1 
and 2.  Figure 1 illustrates the overall system architecture, 
with the gossip infrastructure hosted side-by-side with the 
scalable multicast infrastructure and accessed either 
through a generalized publish-subscribe interface, or in 
the form of live distributed objects.  As noted earlier, 
internal details for Quicksilver can be found in  [3] and 
will not be repeated here.  Figure 2 gives some additional 
detail for the gossip infrastructure.  

  
5. Electronic health record example 
We conclude the discussion by revisiting our 

electronic health record example , assuming now that the 

gossip mechanisms and the Quicksilver-based event 
notification solution are available side-by-side.    

Let’s start with roles for the gossip mechanisms.  For 
the time being, we’ve decided to focus on uses in which 
the gossip components will be simple enough so that we 
can verify correctness, able to “sanity check” data 
collected from the environment, and unlikely to come 
under attack; these assumptions mitigate the security 
concerns mentioned earlier. For example, with gossip it 
isn’t difficult to build a system that can track locations of 
system components: servers, client platforms, sensors, 
other devices.  When a change occurs, the updated 
configuration should become visible with delay 
proportional to the log of the size of the system – in the 
scenarios we have in mind case, probably within 10 or 15 
rounds of gossip.  This capability could be the basis for a 
highly robust plug-and-play technology, whereby the 
health-care system would adapt in tens of seconds as 
conditions evolve.  Although such a system might collect 
incorrect information about a platform that has some form 
of scrambled configuration state, the “damage” would be 
limited to the annotation of that component on the map, 
and the gossip objects can be designed to sense and reject 
implausible inputs.   

Gossip could also be used to monitor system invariants 
(such as: “there should always be at least one instance of 
the auditing service”).  Here, Quicksilver’s notion of 
membership offers very rapid event detection and 
reaction, but if enough damage occurs while the system is 
running to seriously disrupt event notification, the gossip 
layer could guide a timely discovery of the problem and 
dynamic repair or adjustment of the parameters.  The 
remarkable robustness of gossip mechanisms gives us 
reason for confidence that they will be able to continue to 
operate reliably even when other infrastructure 
components are severely degraded by a disruptive event. 

Gossip can also be used to help system components 
connect themselves in appropriate ways.  For example, a 
component might keep track of the locations of the 
various servers so that in the event of a fault that prevents 
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connection to one server, the clients using it can 
seamlessly roll over to others offering backup 
functionality.  When the first server recovers, the clients 
can shift back.  Gossip mechanisms can be used to 
monitor system health, assisting managers in diagnosing 
and repairing problems that arise because of software 
bugs or other disruptive events.  If a firewall or server 
comes under attack (or just becomes overloaded), gossip 
based tracking mechanisms can help client systems 
discover the problem, identify fall-back options, and 
gracefully adapt. 

Gossip also offers an antidote to certain kinds of 
fragility.  For example, suppose that we want to track the 
physical location of patients in our hospital complex.  In 
the most obvious standard implementation of an 
electronic health record system, one would probably place 
some sort of active component on the patient’s gown or 
bed; it would continuously track its own location 
(somehow) and report that data to the central database.  
With gossip, new and potentially more robust options 
arise.  Now, client systems can gossip with one-another 
about patient “sightings”.  With many observers and 
many paths by which information can spread, we obtain a 
patient location-tracking database at low cost, and with 
guarantees of extremely robust behavior even in the event 
of a disruptive condition, such as a malfunctioning 
application that generates extremely high network loads 
and loss rates.  (Recall from our discussion of Astrolabe 
that a gossip management infrastructure might help in this 
case too, by assisting the system administrator in 
localizing the problem). 

What about high-speed event notification and 
streaming?  Our system could exploit this functionality in 
a great many ways.  If we assume that health care records 
are, in effect, replicated throughout the system as a whole, 
when an update occurs, it will be important to consistently 
update all copies.  Here we see a form of event 
notification that requires relatively strong reliability and 
delivery semantics – corresponding to a consensus-based 
model such as virtual synchrony or state machine 
replication, both available within Quicksilver as group 
“types”.  Event notification can support a publish-
subscribe relationship between the database servers in the 
hospital and client systems operated in private practices 
and other satellite locations.  Bedside or nursing station 
display systems may need to be refreshed.  Similarly, if 
the update is relevant to a patient’s prescriptions, the 
event might be pushed out to participating pharmacies.  
One can also imagine high-throughput event channels.  
For example, television cameras and other sensors 
monitoring infants in a neo-natal unit could stream images 
to the nursing station; pediatricians would be able to 
subscribe as necessary to keep an eye on their patients: a 
robust, scalable IP-TV architecture 

The Quicksilver properties mechanisms  would be 
beneficial here, by permitting the system to match the 

properties of each type of event channel, or live object, to 
the requirements associated with that category of object.  
In fact we doubt that there would be a huge number of 
cases, but there are clearly subsystems that would value 
real-time data delivery over other guarantees, subsystems 
that need the sorts of consistency afforded by virtual 
synchrony or state machine replication, and subsystems 
that need transactional “ACID” properties.  These can all 
be supported, side-by-side, on a per-event-channel basis.   

These example illustrates a point worth reiterating: by 
using the publish-subscribe paradigm, the publishing side 
of the enterprise can be designed independently from the 
data consuming side; both can be incrementally extended 
over time as new applications are added, and will 
automatically accommodate varying runtime 
configurations.  In effect, we are able to separate the 
information representation standards used within the 
system (including the hierarchy of topics) from the data 
sources and the data consumers.  The communications 
infrastructure provides the needed guarantees, and when a 
new component is introduced, existing event-generating 
applications don’t need to be modified.  Because 
Quicksilver has a strong notion of types associated with 
event channels and live objects, we can do far more type 
checking than is traditionally feasible in publish-subscribe 
settings.  For example, we can potentially ensure that the 
properties of a channel match the expectations of the 
application that binds itself to that channel. Moreover, to 
the extent that we need instant detection and reaction to a 
failure, because Quicksilver extends the publish-subscribe 
eventing model to also offer (optional) information about 
subscription changes when processes join and leave a 
channel, all sorts of rapid fault-tolerance mechanisms can 
be implemented. 

We’ve avoided discussion of privacy and security 
issues, despite their central importance in electronic 
health care systems.  This is in part because Quicksilver 
currently lacks a comprehensive security architecture, 
although we do have some ideas for how we might build 
one.  Our thinking is to focus on capabilities enabled by 
the secure replication of security keys using the 
algorithms of Reiter [8][9] or Rodeh [7]; these offer ways 
to refresh keys when the set of nodes in the replication 
group (the event channel) changes because of a failure or 
a join.  However, prior research has never explored 
scalability implications of these kinds of secure key 
replication schemes, and we believe the topic will require 
a substantial research effort to fully resolve.  Use of 
security keys in gossip settings represents an additional 
intriguing option for study. 

 
7. Research topics 
 
Our vision raises a number of questions: 



1. Given a proposed large-scale application, what is the 
most effective development methodology for mapping 
it down to application-specific functionality, as 
opposed to platform-supplied functionality?  How 
should the developer make decisions concerning the 
aspects that are best matched to gossip 
communication, those best matched to event 
notification, and those that require hand-coded logic?  
Given that both gossip and event notification systems 
can support “guaranteed” properties , how should the 
developer decide which properties are needed by a 
given application, and how best to achieve them?   Is 
there are large-scale methodology for specification of 
overall properties of a complex system that might 
lend itself to a formal verification process analogous 
to the ones used to reason about and ultimately prove 
correctness for non-distributed systems?  Can the 
properties mechanisms used in Quicksilver today be 
extended to include gossip protocols? 

2. If a single computer system supports multiple “live” 
data objects, high performance often requires that 
protocols be designed to amortize costs.  Much of the 
innovation in Quicksilver is at this level: the system 
looks for ways to disseminate data, recover from 
packet loss and control data rates that are aggregated 
across potentially huge numbers of objects.   When 
we introduce new classes of objects supported by 
gossip, the gossip infrastructure will need to address 
similar questions. 

3. We alluded to the need to secure the platform, and to 
the risk that gossip mechanisms might be 
incapacitated by certain kinds of malicious behaviors.  
Our architecture poses significant opportunities for 
research on security, ranging from questions of 
precisely how one might secure a gossip protocol to 
broader issues of scalability that arise if an application 
subscribes to a large number of secured objects.  How 
should one secure a high-speed event channel?  What 
issues arise as one scales a security abstraction in a 
setting where each separate event channel or live 
object might have its own security requirements?  

4. The creation of appropriate abstractions for the gossip 
infrastructure is an important challenge.  At the lowest 
level, one imagines mechanisms for random peer 
selection, state exchange and merge, aggregation, etc.  
Ideally, these should be highly standardized.  Yet 
some gossip protocols bias peer selection, implement 
“tricky” state exchange/merge mechanisms, or 
perform aggregation in unusual ways.  Needed is a 
platform that can function well as a black box, and yet 
that can also expose functionality as needed.   

5. We need to better understand the correct set of gossip 
mechanisms needed for purposes of self-management 
and self-configuration in Quicksilver.  The modern 
internet is complex, and while it is easy to evoke a 
vision of an autonomic infrastructure that can support 

plug-and-play behavior in almost arbitrary settings, 
implementing that vision is quite a different matter. 

6.  Applications running on the event notification 
infrastructure will also need self-management and 
self-configuration functionality.  Quicksilver’s needs 
are somewhat peculiar to its role; will the same 
autonomic mechanisms that work for Quicksilver be 
adequate for other purposes, or are other kinds of 
gossip tools needed? 

7. Obtaining high performance in large-scale settings 
that involve managed frameworks (C# in .net, in our 
case) is surprisingly hard [3].  It is likely that we will 
need to overcome similar challenges as we implement 
a gossip-based infrastructure and then tune it to 
cooperate cleanly with Quicksilver. 

8. We commented that one key to scalability in 
Quicksilver is the mapping of event channels down to 
regions of approximate overlap – sets of nodes with 
similar subscription sets.  A basic assumption 
underlying the system is that this can actually be done 
and that large systems will exhibit high degrees of 
overlap, or at least that they can be designed to have 
this property.  But how can overlap regions be 
discovered in the first place?  We are thinking that 
gossip mechanisms could be very useful in 
discovering applications and their “potential” 
subscription sets, enabling an offline analysis  
(perhaps with a human designer in the loop) to 
identify regions of overlap and configure Quicksilver.  
In contrast, the alternative of trying to discover 
regions at runtime by analysis of subscription patterns 
as programs come and go raises a number of thorny 
problems and may not be the best approach.     

 
9. Conclusions  

 
Scalable event notification systems capable of offering 

strong properties may be the key to enabling a new 
generation of trustworthy distributed applications, but 
only if they can be integrated naturally into the most 
powerful development environments and made 
autonomic: self-monitoring, self-configuring, and self-
managing.  For these latter purposes, we propose to build 
a new kind of distributed abstraction that embeds into 
Windows much like a typed object, but can be supported 
either by Quicksilver’s scalable event architecture or by 
gossip-based protocols.  A system realizing this vision is 
now under joint development at IRISA/INRIA in Rennes 
and at Cornell University. 
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