
Exploiting Gossip for Self-Management in Scalable Event Notification Systems
Ken Birman, Anne-Marie Kermarrec, Krzystof Ostrowski,

Marin Bertier, Danny Dolev, Robbert Van Renesse

Cornell University, Ithaca; INRIA/IRISA and IRISA/INSA, Rennes; Hebrew University, Jerusalem

Abstract1

Challenges of scale have limited the development of event
notification systems with strong properties, despite the
urgent demand for consistency, reliability, security, and
other guarantees in applications developed for sensitive
tasks in large enterprises. These issues are the focus of
Quicksilver, a new multicast platform targeted to large-
scale deployments. An initial version of the system can
support large numbers of overlapping multicast groups,
high data rates and groups with large numbers of
members. However, Quicksilver still requires manual
help when discovering the system configuration and can’t
easily enforce certain types of application monitoring and
integrity constraints. In this paper, we propose to extend
Quicksilver by introducing gossip mechanisms, yielding a
self-managed event notification platform. The two
technologies are presented through a single interface and
appear to end users as live distributed objects, side-by-
side with other kinds of typed components.

1. Introduction

As we look to the next generation of distributed
computing platforms, it is hard not to feel concern at the
accelerating deployment of systems that will play
sensitive roles, and yet will be built using fragile
technologies . For example, an electronic health records
system must achieve high levels of availability and
consistency, be largely self-configuring, and maintain
privacy and security. A typical deployment scenario
involves decentralized systems linked over networks,
integrating subsystems running at hospitals, other care
providers, laboratories, insurance companies, pharmacies,
etc. Electronic monitoring devices and other sensors
running both in the hospital and at home will contribute
time-sensitive data, and some therapeutic and drug
delivery devices will be remotely controlled.

To reduce cost and leverage standardization, a system
of this sort would probably be constructed using COTS
platform technologies, such as web services. Doing so
also brings productivity benefits, in the form of
development tools and runtime support, and makes it easy
to integrate pre-supplied functions with new application-

1 Contact: ken@cs.cornell.edu; The Cornell research
group was supported by grants from AFRL/IFSE,
AFOSR, NSF and the Intel Corporation.

specific ones. However, today’s solutions lack the sorts
of strong properties needed for sensitive uses . Our
objective is to extend these platforms by adding robust
tools that bridge gaps while complying with standards.

The nerve center of a modern service-oriented
architecture is its event notification subsystem. Event
notification services can distribute sensor readings and
other kinds of updates to widely distributed system
components, and can be used to replicate information
where an application or a record is available at multiple
locations. By decoupling publishers from subscribers,
these services make it easy to upgrade an application over
time and to integrate components that run on dissimilar
platforms or were implemented using very different
technologies. On the other hand, traditional event
notification platforms lack the strong guarantees needed
for medical decision making and other critical roles.

If we can create a new kind of scalable, robust event
notification architecture that fits seamlessly into modern
development platforms such as Windows .net or J2EE,
and yet has strong properties that reduce to rigorously
specified protocols that the end user can count upon and
reason about, we can help application developers create
robust applications for sensitive uses.

In this paper, we focus on scalability, robustness and
self-management, deferring issues of security and privacy
for the future. For scalable event notification with strong
reliability guarantees, we’ve developed Quicksilver: a
high-performance multicast technology that can
implement a variety of reliability models, including
consensus-based ones [1][2]. Traditionally, systems
implementing reliable multicast have scaled poorly, but as
reported below, this problem can be overcome. Moreover,
although we don’t tackle the question here, we believe
that Quicksilver can be secured using digital certification
certificates, by authenticating access to information
resources, and encrypting all network traffic using per-
event-channel keys that can be refreshed whenever the set
of subscribers changes.

The existing version of Quicksilver is weaker with
respect to self-configuration and self-management; both
critical requirements for the sorts of applications we hope
to support . In our target environments, the pace of
reconfiguration could be very rapid: if a patient falls ill,
providers might (in effect) hand the family a box full of
equipment to be deployed throughout the home. Needs
change as the patient’s care plan evolves . Patients are
moved from unit to unit. Thus one must imagine a highly
dynamic, rather unpredictable environment in which the

sets of components, their configurations, and their
communication patterns change constantly. Against this
backdrop, we seek an event notification infrastructure that
can configure itself, that can adapt as conditions evolve,
and that can be leveraged to support self-configuring
applications.

Fault-tolerance poses closely related problems. Today,
Quicksilver offers fault-tolerance through models such as
virtual synchrony, where applications are structured into
groups and, if desired, will be notified when membership
changes. But not all integrity constraints map easily to
group membership tracking. For example, the decoupling
of publisher from subscriber is advantageous from a
development perspective, but sometimes correct function
requires that there be an active subscriber associated with
certain topics. One such case involves logging accesses
to patient records for offline audits. If this functionality is
implemented using event notification, it important that the
logging service be running when audit events are
published. Yet even if built upon a substrate such as
Quicksilver, today’s event notification APIs lack
mechanisms to express such constraints, and hence can’t
trigger exceptions when they are violated.

To address self-* needs, both within Quicksilver and in
applications built using it, we propose to use technology
emerging from work on gossip protocols . Gossip
encompasses a large class of protocols that exploit
randomness to achieve surprising robustness under a wide
range of operating conditions. They can be made self-
configuring, adapt rapidly after disruption, and support a
diversity of useful end-user functionality.

The integration of gossip with multicast in a single
setting poses non-trivial systems -engineering challenges.
Here, we propose such a unification. Although our new
system is still under development, it will offer a seamless
infrastructure in which Quicksilver runs side-by-side with
gossip-based mechanisms to provide a self-managed
scalable event notification capability. The system will
expose these gossip mechanisms so that applications can
exploit them directly in the same paradigm used to expose
Quicksilver’s multicast functionality. Here we sketch out
the architecture and discuss some research challenges it
poses; several appear to be of broader relevance.

The paper is structured as follows. First, we spend a
moment discussing the strengths and limitations of gossip
technologies. The goal is not to be exhaustive, but rather
to identify styles of gossip that are both highly effective
and well matched to our self-management objectives.
Next, we review Cornell’s new platform, Quicksilver,
touching both on its scalability and its unusual embedding
into the Windows .net framework. The latter topic
emerges as a source of leverage in what we are now
proposing to do. Finally, we explore the options for
integrating the two, arriving at an architecture that (we
believe) is interesting in several respects. First, it sets
gossip side by side with scalable event notification. Next,

the system offers an elegant embedding into Windows so
that developers can benefit from that system’s powerful
component integration functionality and development
tools (a Linux version is also under design). And finally,
it suggests a path for future evolution of service-oriented
architectures and standards. The paper concludes by
discussing open research questions.

2. Gossip protocols

 A gossip protocol is one with the following properties:
1. The core of the protocol involves periodic, pairwise,

inter-process interactions.
2. The information exchanged during these interactions

is of (small) bounded size.
3. When node a interacts with node b, the state of a

evolves in a way that reflects the state of b (and vice
versa). For example, if a pings b merely to measure
RTT, this is not a gossip interaction.

4. Reliable communication is not assumed.
5. The frequency of the interactions is relatively low

when compared to typical message latencies.
6. There is some form of randomness in peer selection.

 There are three prevailing styles of gossip protocol.
1. Dissemination (rumor-mongering) protocols. These

use gossip to spread information; they basically work
by flooding nodes in the network, but in a manner that
produces bounded worst-case loads:
a. An event dissemination protocol runs in response to

events and can be understood as using gossip to
carry out multicasts, although the events don’t
actually trigger the gossip (since gossip runs
periodically).

b. A background data dissemination protocol gossips
continuously to track the evolution of state at
participating nodes.

2. Anti-entropy protocols repair replicated data by
comparing replicas and reconciling differences.

3. Aggregation protocols compute a network-wide
aggregate by sampling information at the nodes in the
network and combining the values to arrive at a
system-wide value – the number of nodes in the
system, the sum or average of some value, etc

 Our definitions are rather broad; indeed, many
protocols that predate the earliest use of the term “gossip”
fall within our definition. In particular, notice that a
gossip substrate can “mimic” a standard routed network.
That is, nodes could “gossip” about traditional point-to-
point messages, in effect tunneling normal traffic through
a gossip layer. Bandwidth permitting, this implies that a
gossip system can potentially support any classic protocol
or distributed service. Nonetheless, when we talk of
gossip, we rarely intend such a broadly inclusive

interpretation. More typically we have in mind protocols
that run in a regular, periodic, relatively lazy, symmetric
and decentralized manner; the high degree of symmetry
among nodes is particularly characteristic. To illustrate
this point, consider that one could run a 2-phase commit
protocol over a gossip substrate, piggybacking the
messages on gossip traffic. In our view, doing so would
be at odds with the spirit of the definition: there’s nothing
wrong with such a protocol, but it isn’t gossip!

2.1 The Limitations of Gossip

 The stylized manner in which we normally use gossip
introduces significant limitations. First, consider the
implications of the small, bounded message sizes and the
relatively slow periodic message exchanges. These
combine to limit the information carrying capacity of a
gossip algorithm. For example, if gossip is used to
disseminate information (often, in a form of flooding), the
system-wide capacity for new events will be limited
simply because the aggregate “bandwidth” available is
bounded. The problem is that gossip protocols keep the
nodes in a network busy while information spreads –
typically, a process that requires O(log(n)) time. It
follows that the “rate” at which events can be introduced
will be proportional to 1/log(n).
 The relatively slow spread of gossip can also be an
obstacle. While it is common to claim that users need
only tune the gossip rate to match their goals, requirement
5 complicates the picture. Gossip rates approaching the
network RTT are out of the question.
 Finally, gossip can be fragile in the face of malicious
behavior (components that malfunction, for example by
running the protocol incorrectly, disseminating incorrect
data, and so forth). Recent work on BAR Gossip [21] tries
to overcome some of the issues by using verifiable
pseudo-random peer selection to avoid selfish and
malicious behaviors. But this is just a first step.

2.2 Strengths of Gossip

 Although gossip has limitations, these protocols do
have substantial power. Among the most cited strengths
are these:

• Convergent consistency. Properly designed gossip
protocols, when not overwhelmed by a higher rate of
incoming “events” than the information-carrying
bandwidth of the underlying channels, should have a
logarithmic mixing time – any new event will, with high
probability, affect all nodes that need to learn about it
within time logarithmic in the system size.

• Emergent structure. Earlier, we contrasted a classic
deterministic protocol for building a spanning tree by
leader-initiated flooding with a decentralized way of

building such a tree using gossip. In the gossip style, the
tree “emerges” from randomized pairwise interactions
between peers. The term emergent structure is intended
to evoke the image of a data structure that emerges with
probability 1.0 in this manner. The structure may then
continue to evolve over time as further gossip occurs.

• Simplicity. Most (but not all) gossip protocols are
extremely simple and highly symmetric, with all
participants running the same code.

• Bounded load on participants. Many classic (non-
gossip) distributed protocols are criticized because they
can generate high surge loads that overload individual
components. Gossip is normally used in ways that
produce strictly bounded worst-case loads on each
component, eliminating the risk of disruptive load surges.
In some situations, where network capacity is also a
concern, peer-selection is further biased to control load
imposed on network links.

• Topology independence. If running on a sufficiently
connected networking substrate, and with sufficient
bandwidth, a gossip protocol will often operate correctly
on a great variety of underlying topologies.

• Ease of local information discovery. Many gossip
protocols are used for purposes of discovery, for example
to find a nearby resource (these are usually protocols in
which gossip occurs between neighbors, not between
arbitrarily distant peers). Unlike local flooding, which
scales poorly, gossip would typically find local
information less quickly but with bounded costs: perhaps,
a constant or a delay logarithmic in the system size.

• Robustness to transient network disruptions. As time
elapses, there are exponentially many routes by which
information can flow from its source to its destinations.
However, not all uses of gossip are robust in all ways.
For example, unless data is self-verifying, dissemination
protocols are often vulnerable to data corruption. Anti-
entropy protocols may similarly be at risk if a replica
becomes corrupted. And aggregation protocols are
vulnerable not just to the introduction of faulty
information, but also to computational errors that result in
a faulty computation of the aggregate.

2.3 Appropriate roles for gossip

 The foregoing discussion suggests a number of natural
roles for gossip in large-scale event notification systems.
 The earliest uses of gossip were to disseminate
information in large-scale systems [22]. Scalability and
robustness were cited as the primary benefits in these
uses : the load on each node grows in a logarithmic
manner as the system scales and information can be

reliability disseminated in the presence of a high
proportion of node failures [20]. Such properties rely on
the fact that each node samples network state randomly.
This pseudo-randomness can nonetheless be controlled or
“shaped”. For example, Lpbcast [19] and Cyclon [15] are
protocols in which each peer periodically selects another
peer with which it gossips; they differ in the details of
target selection, and in the way they merge information
gathered through the gossip exchange with their own.
 Generalizing these ideas, gossip may be used to create
unstructured overlay networks, achieving properties close
to those of random graphs [12]. Having used gossip to
create such a graph, gossip protocols can also run over
them, for example to create an overlay optimized with
respect to an application-specific metric. For example, T-
man builds overlays that use application-supplied quality
functions to bias neighbor selection [10]. In [14], the
gossip itself is biased; users with shared interests are
structured into peer groups for file sharing, substantially
improving response times in a search application.
 Similarly, GosSkip [17] and Sub-2-Sub [13] build
content-based publish-subscribe systems in which the
overlay topology matches the subscription pattern. In
GosSkip, subscriptions are organized into a skiplist
structure so that events will be routed to interested
subscribers in a logarithmic number of hops. In Sub-2-
Sub, several gossip-protocols are layered to efficiently
support range subscriptions. The lowest layer uses
random peer sampling to ensure connectivity and
robustness, a second layer creates clusters of “close”
subscriptions, and the third layer structures overlapping
subscriptions to ensure an exact and exhaustive
dissemination of events.
 This flexibility comes at a price. Gossip-based publish-
subscribe overlays are often slow: the technology is
wonderful for matching publishers with subscribers, but
says little about getting events delivered rapidly, robustly,
and with strong reliability properties. Indeed, we like to
think of these kinds of applications as having two disjoint
aspects: a gossip infrastructure that, in these cases, builds
an overlay; and then a distinct dissemination structure that
uses the overlay to reliably distribute events.
 This way of thinking leads back to our current goals.
We hope to systematically ask how gossip can be
valuable in event-notification systems such as Quicksilver
and in the applications that run over it. A number of
options seem to be worth exploring. For example, as just
seen, a gossip-constructed overlay network could be
useful for efficient dissemination. In this case,
Quicksilver itself would provide the “quality metrics”
used to optimize the overlay, and the associated cost
functions would reflect the mechanisms Quicksilver uses
for dissemination and for recovery of lost packets.
 More broadly, we hope to use gossip to materialize a
form of distributed “picture” of the application network,
which would become an input to an auto-configuration

application that would generate configuration files. These
would advise the end-user application (in addition to the
Quicksilver event notification infrastructure) of the
topology on which it should operate and the appropriate
parameter settings to use. Later, as conditions evolve, the
same approach could be used to reconfigure the running
system so as to repair damage caused by a failure, or to
integrate new components with the existing infrastructure.
 Another possible role for gossip would be to track
overall loads, loss rates and other status in the system. We
have experience with a gossip-based system used for this
purpose. Astrolabe is a distributed monitoring and data
mining system that uses gossip to construct a virtual
hierarchical database that can be queried much like a
normal database [5]. The database is extremely useful for
self-optimization and problem diagnosis. Because
Astrolabe is fully replicated it has no single point of
failure or load-related hot-spots, and the underlying
gossip protocol remains robust even under stress that can
shut down most other system functionality. In our new
system, we believe aggregation mechanisms can play
even more roles, including parameter setting and dynamic
adaptation [11]. Aggregation can even be used for
resource allocation, for example by using gossip to sort
peers according to an application-specific metric [16].
 Finally, we will use gossip to support background
diffusion of system information that won’t be needed
immediately, but could be of high value “later”. A tool
permitting discovery of available information sources
would be one possible use for such a mechanism. Other
possibilities include mechanisms for tracking contact
nodes or other services, finding information stored
elsewhere in the network, etc. By using gossip to
disseminate the underlying information, we can be certain
that data will get through even if the system configuration
changes (or is disrupted), and hence will be available
when and where needed.
 To exploit these kinds of gossip mechanisms, we need
to tackle some significant software engineering issues that
prior work has largely overlooked. To make gossip useful
as a tool, one needs appropriate embeddings of these
abstractions into the runtime environment. For these
purposes , we propose to extend a feature of Cornell’s
Quicksilver platform, discussed below.

3. Quicksilver

Cornell’s Quicksilver project [3][4] offers a scalable

event notification infrastructure that can support strong
properties on a per-topic basis . An application can
subscribe to large numbers of communication channels,
with the properties of each channel matched to the data it
carries. Krzysztof Ostrowski is the lead architect and
developer for Quicksilver, in collaboration with Ken
Birman, Danny Dolev and Robbert van Renesse. We start

by reviewing prior work on Quicksilver, and then suggest
some of the extensions our new effort will explore.

A key objective for Quicksilver is scalability in
multiple dimensions: numbers of applications using the
platform, numbers of event channels to which each
application subscribes, data rates, tolerance of disruption,
etc. Our underlying premise is that inadequate scalability
has limited the uptake of group-multicast in general, and
has prevented its widespread use in support of event
notification. This sometimes manifests itself through
throughput that degrades gracefully as the system is
deployed into a larger setting, but more dramatic
consequences are also observed. For example, many
large-scale event notification platforms become unstable
in large deployments, oscillating from very low
throughput to overwhelmingly high data rates in which
traffic generated by the platform can actually shut down
the communications bus by swamping it with data,
retransmissions, nack and ack messages and other forms
of overhead – a so called broadcast storm effect. In
designing Quicksilver, our goal was to demonstrate
stability in this problematic domain.

This is not the right setting for a detailed discussion of
the Quicksilver architecture. Instead, we summarize
some key ideas very briefly:
• Separation of concerns. Quicksilver treats event

dissemination separately from recovery of lost
packets, flow control, and imp lementation of stronger
consistency (“properties”).

• Regions of overlap. A single node will often
subscribe to many event channels. If each channel is
treated as a separate multicast group, one encounters
obvious problems of scale. Accordingly, Quicksilver
maps from overlapping channels down to regions,
defined to be sets of nodes with similar subscriptions.
Dissemination is on a per-region basis; recovery is
done in an aggregated manner over regions, etc.

• Scalable recovery. Quicksilver uses a novel hierarchy
of token rings to achieve scalable detection of lost
packets and, when possible, to recover data between
peers in a region, offloading work from the sender.

• Per-channel reliability properties. The reliability
properties of each channel can be matched to its role.

• Managed runtime environment. Quicksilver runs in
managed settings, allowing it to leverage strong type
checking, memory management, etc.

Details of the architecture and protocols appear in [3][4].
Quicksilver has been running since June 2006. For the

moment, all our users are building datacenters – WAN
scenarios are a goal once the new gossip-based
mechanisms are available, but the current system doesn’t
run in WAN settings. In our datacenter experiments,
we’ve set up groups with up to 200 nodes (larger runs are
planned), than subjected them to extremely high
throughputs and injected various forms of stress.

Up to the present, we have seen only minimal
throughput degradation and no signs of instability or
throughput fluctuations even in the largest configurations.
In contrast, such problems are easy to provoke in most
existing technologies for multicast in the same settings,
even with much smaller groups of just 50 to 75 members
[2]. Quicksilver can saturate a 100Mbit ethernet
interconnect with just 20-40% CPU loads on the
inexpensive PC’s making up our test cluster; experiments
with our prior systems peaked at about a tenth these data
rates and generated much heavier loads. Perhaps most
important, processes are able to access large numbers of
groups. For this reason, when used to support event
notification, Quicksilver can maintain steady performance
even when each process joins as many as 8000 separate
event channels [3][4]. Obviously, this capsule summary
oversimplifies in some important ways (in particular, not
all configurations of processes and event streams are
supported), but they do give a sense of what the system
should be able to achieve.

Of primary relevance here is the manner in which
Quicksilver embeds event notification channels into
Windows. Traditionally, event notification platforms
have been treated as a free-standing technology that lives
separately from the operating system. Quicksilver can be
used this way too, through a conventional publish-
subscribe infrastructure that generalizes the web services
eventing standards (in [6] we discuss our reasons for
extending these standards rather than working entirely
within ws-notification or ws-eventing).

But Quicksilver also offers a second, deeper
embedding into Windows in which event notification
channels can be accessed either as a new kind of
distributed live object visible in the file system side-by-
side with other named objects. These objects are best
understood as distributed abstract data types. A program
accesses such an object much as it would access a file in
Windows: given appropriate permissions, it can open the
object, read the current state, and will receive events as
the state is subsequently updated. This, however, is an
illusion: the “object” is really an event channel, and the
state is a checkpoint produced by some existing
subscriber when a new program subscribes. State
persistence is available, but optional.

We’ve emphasized the similarity between the way that
a system such as Windows understands file “types” as an
association between the data in some object and the
programs that implement operations on that kind of
object, and the way that Quicksilver associates a type with
each event notification channel. For Quicksilver, the type
corresponds to an object class, but also is associated with
a definition of the properties the channel should
implement. The effect is to confer a distributed semantics
on the group of objects as a whole. The approach is
flexible enough to support weak properties such as best-
effort notification, stronger consensus-based properties

such as the virtual synchrony model, or even very strong
models such as transactional 1-copy serializability.
Quicksilver implements a domain-specific programming
language within which the properties associated with each
event channel can be specified. The system basically
compiles these property definitions into pseudo-code
which it can execute to achieve the desired behavior.

4. A unified platform

For our purposes, the key point of leverage involves
the embedding of Quicksilver’s live objects (event
channels) into Windows. Consider the integration of
abstract data types such as Excel spreadsheets or Word
documents into the Windows file system. Windows uses
the filename extension to understand the “type” of the
object, allowing it to interpret operations on the object as
method invocations on an appropriate application
program. Web services standards are used in conjunction
with these componentization mechanisms: active
components such as the Excel application register their
interfaces using the Web Services framework built into
.net, at which point the Windows platform can function as
a component integration environment using Web services
standards and protocols to perform tasks such as method
invocation. Of course, this component-to-component type
system is somewhat primitive, but one could imagine
taking the idea much further; indeed, there are projects
underway at Microsoft to do just that. It isn’t
unreasonable to imagine that future versions of Windows
will incorporate a full-fledged distributed type system at
the component level.

As suggested above, Quicksilver extends Windows to
support abstract data types with “live” content, and allows
a variety of event stream providers to support the live
aspects of the abstraction. A Quicksilver event
notification channel has a name that can be visible in the
file system name space, and a type, corresponding to the
properties associated with the event channel. When an
application binds itself to an event channel, Windows
passes the binding event to Quicksilver, and we can
perform type compatibility checking, or can even perform
some kinds of dynamic type coercion (for example by
introducing an encryption/decryption layer in order to
integrate a component that doesn’t support encryption
with an event channel that requires stronger forms of
security). The same mechanisms also work from the
Windows shell: if a user right-clicks on a Quicksilver
event channel, the shell extensions framework passes us
the request. Quicksilver can then identify applications
that can connect to this kind of channel, and can even
generate dynamically created virtual folders, for example
displaying thumbnail-size images from a video streaming
application.

Quicksilver is thus on a path towards the same kind of
tight integration with Quicksilver event streams as is seen
with other Windows communications options such as

DCOM. The approach enables developers to leverage
existing Windows application development and
debugging tools while benefiting from co-existence in a
managed framework. If Windows evolves in the manner
currently anticipated, type checking will become possible
even across component boundaries. Because Quicksilver
uses the CLR memory management layer, no copying
occurs when a large object is multicast. Of course, such a
positioning of the technology also brings challenges of its
own (for example, to maximize performance in a
managed environment requires protocol designs quite
different from those one uses in a Linux/C multicast
implementation [3]) but the problems are solvable and we
believe the result is well worth the effort. We should
comment that although Windows is our initial target,
everything we are doing should port (using Mono) to
Linux and would then be accessible from J2EE or even
Corba applications.

This, then, is the core contribution of the present
paper: a vision of how one might unify these three worlds:
objects in a platform such as Windows on the one hand,
and both gossip and of scalable event notification on the
other, all in a single framework. A first step towards this
vision requires that the Quicksilver multicast framework
be separated from the mechanisms that embed
Quicksilver objects into Windows; Ostrowski is already
developing this capability as part of version 2.0 of the
system. As is the case in Quicksilver today, the basic
abstraction will be that of a distributed object having a
“state” and an associated event stream. However, rather
than assuming that the live content is transported by
Quicksilver’s reliable mu lticast protocols , there will be at
least two possible communication infrastructures – the
other being gossip-based. Down the road one might
imagine additional options, such as an IP-TV streaming
layer, or one focused on real-time communication.

Thus, referring back to the examples of gossip-based
mechanisms mentioned in Section 3, one could build a
gossip-based topology and configuration discovery
service that, in effect, produces an annotated picture of
the state of the system. An end-user could access that
picture by clicking on an associated file name; doing so
would launch some sort of browser capable of visualizing
this kind of information and might let the user explore the
network, for example to pin down a bottleneck that is
impacting performance. Application programs could use
the picture to configure themselves. And Quicksilver’s
event notification infrastructure could use that picture to
construct overlays for disseminating events that use IP
multicast when possible, but tunnel data through overlay
trees where IP multicast is not feasible (and these same
overlay networks would also be available to application
designers, through some form of abstract data type). The
remarkable robustness of the gossip protocols ensures that
even when all else is disrupted, applications can still

monitor the system to set parameters, configure
themselves, and adapt when conditions change.

But we believe we can do more than to simply import
gossip functionality into Quicksilver. Gossip systems of
the types we reviewed share substantial commonalities
across their various presentations. For example, many
gossip mechanisms require random peer selection, either
within the full system (a kind of anycast) or within a set
of neighbors of a node (a local variant on anycast). The
thinking is that this and other low-level primitives can be
standardized within the gossip subsystem, and then reused
across gossip-based objects. Doing so poses interesting
research challenges: if a single object employs anycast,
one can implement a “greedy” solution. But suppose that
on some single node there are tens or even hundreds of
gossip-based objects, all using anycast. Could we
aggregate, so that a single message can carry information
on behalf of multiple objects?

One can pose similar questions at a higher level.
Many gossip algorithms are highly stylized: the nature of
a gossip exchange is rather similar across most gossip-
based mechanisms, even if the details of what “state” is
exchanged and how it is “merged” differ. This
immediately suggests that one might design an abstract
gossip state-machine that could be instantiated in multiple
objects, parameterized with appropriate state marshalling
and merge functions.

The resulting architecture is summarized in Figures 1
and 2. Figure 1 illustrates the overall system architecture,
with the gossip infrastructure hosted side-by-side with the
scalable multicast infrastructure and accessed either
through a generalized publish-subscribe interface, or in
the form of live distributed objects. As noted earlier,
internal details for Quicksilver can be found in [3] and
will not be repeated here. Figure 2 gives some additional
detail for the gossip infrastructure.

5. Electronic health record example
We conclude the discussion by revisiting our

electronic health record example , assuming now that the

gossip mechanisms and the Quicksilver-based event
notification solution are available side-by-side.

Let’s start with roles for the gossip mechanisms. For
the time being, we’ve decided to focus on uses in which
the gossip components will be simple enough so that we
can verify correctness, able to “sanity check” data
collected from the environment, and unlikely to come
under attack; these assumptions mitigate the security
concerns mentioned earlier. For example, with gossip it
isn’t difficult to build a system that can track locations of
system components: servers, client platforms, sensors,
other devices. When a change occurs, the updated
configuration should become visible with delay
proportional to the log of the size of the system – in the
scenarios we have in mind case, probably within 10 or 15
rounds of gossip. This capability could be the basis for a
highly robust plug-and-play technology, whereby the
health-care system would adapt in tens of seconds as
conditions evolve. Although such a system might collect
incorrect information about a platform that has some form
of scrambled configuration state, the “damage” would be
limited to the annotation of that component on the map,
and the gossip objects can be designed to sense and reject
implausible inputs.

Gossip could also be used to monitor system invariants
(such as: “there should always be at least one instance of
the auditing service”). Here, Quicksilver’s notion of
membership offers very rapid event detection and
reaction, but if enough damage occurs while the system is
running to seriously disrupt event notification, the gossip
layer could guide a timely discovery of the problem and
dynamic repair or adjustment of the parameters. The
remarkable robustness of gossip mechanisms gives us
reason for confidence that they will be able to continue to
operate reliably even when other infrastructure
components are severely degraded by a disruptive event.

Gossip can also be used to help system components
connect themselves in appropriate ways. For example, a
component might keep track of the locations of the
various servers so that in the event of a fault that prevents

Gossip Object - Abstract Data Type

State

peerList
peerInfo

State
•PeerList (): represents the list of peers associated to the gossip object .
•PeerData(): represents the local information (such as Id, IP@, “age” , …) as well as other
potential application- related data

Operations

selectPeer(param)
selectData(param)
mergeData()

Operations
• selectPeer (param): select a peer from Peerlist according to some paramaters
• selectData (param): select data from PeerList and PeerData
• mergeData (param,Data): merge Data, according to param, with PeerList and/or PeerInfo

Random Peer Sampling

Biased
Peer

Sampling

General gossip infrastructure

Aggregator

Electronic health record application

Dissemination

Quicksilver
Event-notification System

GetBiasPeer(b)

Ge
tR

an
do

mP
ee

r(
)

Scalable multicast
D

is
se

m
in

at
io

n

R
ec

ov
er

y

P
ro

pe
rt

ie
s

Fr
am

ew
or

k

Fl
ow

 c
on

tr
ol

. .
 .

“Live” distributed objects

createGroup(group), joinGroup(group)
leaveGroup(group), publishTogroup(group)

Figure 2: Generalized Implementation of a Gossip
Object Figure 1: Overall System Architecture

connection to one server, the clients using it can
seamlessly roll over to others offering backup
functionality. When the first server recovers, the clients
can shift back. Gossip mechanisms can be used to
monitor system health, assisting managers in diagnosing
and repairing problems that arise because of software
bugs or other disruptive events. If a firewall or server
comes under attack (or just becomes overloaded), gossip
based tracking mechanisms can help client systems
discover the problem, identify fall-back options, and
gracefully adapt.

Gossip also offers an antidote to certain kinds of
fragility. For example, suppose that we want to track the
physical location of patients in our hospital complex. In
the most obvious standard implementation of an
electronic health record system, one would probably place
some sort of active component on the patient’s gown or
bed; it would continuously track its own location
(somehow) and report that data to the central database.
With gossip, new and potentially more robust options
arise. Now, client systems can gossip with one-another
about patient “sightings”. With many observers and
many paths by which information can spread, we obtain a
patient location-tracking database at low cost, and with
guarantees of extremely robust behavior even in the event
of a disruptive condition, such as a malfunctioning
application that generates extremely high network loads
and loss rates. (Recall from our discussion of Astrolabe
that a gossip management infrastructure might help in this
case too, by assisting the system administrator in
localizing the problem).

What about high-speed event notification and
streaming? Our system could exploit this functionality in
a great many ways. If we assume that health care records
are, in effect, replicated throughout the system as a whole,
when an update occurs, it will be important to consistently
update all copies. Here we see a form of event
notification that requires relatively strong reliability and
delivery semantics – corresponding to a consensus-based
model such as virtual synchrony or state machine
replication, both available within Quicksilver as group
“types”. Event notification can support a publish-
subscribe relationship between the database servers in the
hospital and client systems operated in private practices
and other satellite locations. Bedside or nursing station
display systems may need to be refreshed. Similarly, if
the update is relevant to a patient’s prescriptions, the
event might be pushed out to participating pharmacies.
One can also imagine high-throughput event channels.
For example, television cameras and other sensors
monitoring infants in a neo-natal unit could stream images
to the nursing station; pediatricians would be able to
subscribe as necessary to keep an eye on their patients: a
robust, scalable IP-TV architecture

The Quicksilver properties mechanisms would be
beneficial here, by permitting the system to match the

properties of each type of event channel, or live object, to
the requirements associated with that category of object.
In fact we doubt that there would be a huge number of
cases, but there are clearly subsystems that would value
real-time data delivery over other guarantees, subsystems
that need the sorts of consistency afforded by virtual
synchrony or state machine replication, and subsystems
that need transactional “ACID” properties. These can all
be supported, side-by-side, on a per-event-channel basis.

These example illustrates a point worth reiterating: by
using the publish-subscribe paradigm, the publishing side
of the enterprise can be designed independently from the
data consuming side; both can be incrementally extended
over time as new applications are added, and will
automatically accommodate varying runtime
configurations. In effect, we are able to separate the
information representation standards used within the
system (including the hierarchy of topics) from the data
sources and the data consumers. The communications
infrastructure provides the needed guarantees, and when a
new component is introduced, existing event-generating
applications don’t need to be modified. Because
Quicksilver has a strong notion of types associated with
event channels and live objects, we can do far more type
checking than is traditionally feasible in publish-subscribe
settings. For example, we can potentially ensure that the
properties of a channel match the expectations of the
application that binds itself to that channel. Moreover, to
the extent that we need instant detection and reaction to a
failure, because Quicksilver extends the publish-subscribe
eventing model to also offer (optional) information about
subscription changes when processes join and leave a
channel, all sorts of rapid fault-tolerance mechanisms can
be implemented.

We’ve avoided discussion of privacy and security
issues, despite their central importance in electronic
health care systems. This is in part because Quicksilver
currently lacks a comprehensive security architecture,
although we do have some ideas for how we might build
one. Our thinking is to focus on capabilities enabled by
the secure replication of security keys using the
algorithms of Reiter [8][9] or Rodeh [7]; these offer ways
to refresh keys when the set of nodes in the replication
group (the event channel) changes because of a failure or
a join. However, prior research has never explored
scalability implications of these kinds of secure key
replication schemes, and we believe the topic will require
a substantial research effort to fully resolve. Use of
security keys in gossip settings represents an additional
intriguing option for study.

7. Research topics

Our vision raises a number of questions:

1. Given a proposed large-scale application, what is the
most effective development methodology for mapping
it down to application-specific functionality, as
opposed to platform-supplied functionality? How
should the developer make decisions concerning the
aspects that are best matched to gossip
communication, those best matched to event
notification, and those that require hand-coded logic?
Given that both gossip and event notification systems
can support “guaranteed” properties , how should the
developer decide which properties are needed by a
given application, and how best to achieve them? Is
there are large-scale methodology for specification of
overall properties of a complex system that might
lend itself to a formal verification process analogous
to the ones used to reason about and ultimately prove
correctness for non-distributed systems? Can the
properties mechanisms used in Quicksilver today be
extended to include gossip protocols?

2. If a single computer system supports multiple “live”
data objects, high performance often requires that
protocols be designed to amortize costs. Much of the
innovation in Quicksilver is at this level: the system
looks for ways to disseminate data, recover from
packet loss and control data rates that are aggregated
across potentially huge numbers of objects. When
we introduce new classes of objects supported by
gossip, the gossip infrastructure will need to address
similar questions.

3. We alluded to the need to secure the platform, and to
the risk that gossip mechanisms might be
incapacitated by certain kinds of malicious behaviors.
Our architecture poses significant opportunities for
research on security, ranging from questions of
precisely how one might secure a gossip protocol to
broader issues of scalability that arise if an application
subscribes to a large number of secured objects. How
should one secure a high-speed event channel? What
issues arise as one scales a security abstraction in a
setting where each separate event channel or live
object might have its own security requirements?

4. The creation of appropriate abstractions for the gossip
infrastructure is an important challenge. At the lowest
level, one imagines mechanisms for random peer
selection, state exchange and merge, aggregation, etc.
Ideally, these should be highly standardized. Yet
some gossip protocols bias peer selection, implement
“tricky” state exchange/merge mechanisms, or
perform aggregation in unusual ways. Needed is a
platform that can function well as a black box, and yet
that can also expose functionality as needed.

5. We need to better understand the correct set of gossip
mechanisms needed for purposes of self-management
and self-configuration in Quicksilver. The modern
internet is complex, and while it is easy to evoke a
vision of an autonomic infrastructure that can support

plug-and-play behavior in almost arbitrary settings,
implementing that vision is quite a different matter.

6. Applications running on the event notification
infrastructure will also need self-management and
self-configuration functionality. Quicksilver’s needs
are somewhat peculiar to its role; will the same
autonomic mechanisms that work for Quicksilver be
adequate for other purposes, or are other kinds of
gossip tools needed?

7. Obtaining high performance in large-scale settings
that involve managed frameworks (C# in .net, in our
case) is surprisingly hard [3]. It is likely that we will
need to overcome similar challenges as we implement
a gossip-based infrastructure and then tune it to
cooperate cleanly with Quicksilver.

8. We commented that one key to scalability in
Quicksilver is the mapping of event channels down to
regions of approximate overlap – sets of nodes with
similar subscription sets. A basic assumption
underlying the system is that this can actually be done
and that large systems will exhibit high degrees of
overlap, or at least that they can be designed to have
this property. But how can overlap regions be
discovered in the first place? We are thinking that
gossip mechanisms could be very useful in
discovering applications and their “potential”
subscription sets, enabling an offline analysis
(perhaps with a human designer in the loop) to
identify regions of overlap and configure Quicksilver.
In contrast, the alternative of trying to discover
regions at runtime by analysis of subscription patterns
as programs come and go raises a number of thorny
problems and may not be the best approach.

9. Conclusions

Scalable event notification systems capable of offering

strong properties may be the key to enabling a new
generation of trustworthy distributed applications, but
only if they can be integrated naturally into the most
powerful development environments and made
autonomic: self-monitoring, self-configuring, and self-
managing. For these latter purposes, we propose to build
a new kind of distributed abstraction that embeds into
Windows much like a typed object, but can be supported
either by Quicksilver’s scalable event architecture or by
gossip-based protocols. A system realizing this vision is
now under joint development at IRISA/INRIA in Rennes
and at Cornell University.

7. References

[1] Reliable Distributed Systems Technologies, Web
Services, and Applications. Birman, Kenneth P.

2005, XXXVI, 668 p. 145 illus., Hardcover ISBN:
0-387-21509-3

[2] A Review of Experiences with Reliable Multicast.
K. P. Birman Software Practice and Experience
Vol. 29, No. 9, pp, 741-774, July 1999

[3] Implementing Scalable Publish-Subscribe in a
Managed Environment. Krzysztof Ostrowski, Ken
Birman. In Submission (November, 2006).

[4] QuickSilver Scalable Multicast. Krzysztof
Ostrowski, Ken Birman, and Amar Phanishayee.
Cornell University Technical Report TR2006-2063
(April, 2006).

[5] Astrolabe: A Robust and Scalable Technology for
Distributed System Monitoring, Management, and
Data Mining. Robbert van Renesse, Kenneth
Birman and Werner Vogels. ACM Transactions
on Computer Systems, May 2003, Vol.21, No. 2,
pp 164-206

[6] Extensible Architecture for High-Performance,
Scalable, Reliable Publish-Subscribe Eventing and
Notification. Krzysztof Ostrowski, Ken Birman,
and Danny Dolev. Submitted to International
Journal of Web Services Research.

[7] The Architecture and Performance of the Security
Protocols in the Ensemble Group Communication
System. Ohad Rodeh, Ken Birman, Danny Dolev.
Journal of ACM Transactions on Information
Systems and Security (TISSEC). Vol. 4, No 3, pp
289-319, Aug 2001

[8] A Security Architecture for Fault-Tolerant
Systems. Michael K. Reiter, Kenneth P. Birman,
Robbert van Renesse. ACM Trans. Comput. Syst.
12(4): 340-371 (1994)

[9] How to Securely Replicate Services. Michael K.
Reiter, Kenneth P. Birman. ACM Trans. Program.
Lang. Syst. 16(3): 986-1009 (1994)

[10] T-Man: Gossip-based overlay topology
management. Mark Jelasity and Ozalp Babaoglu.
In ESOA 2005, Revised Selected Papers, vol 3910
of LNCS, 1-15.

[11] Gossip-based aggregation in large dynamic
networks. Mark Jelasity, Alberto Montresor and
Ozalp Babaoglu. ACM Transactions on Computer
Systems, 23(3): 219-252, August 2005.

[12] The peer sampling service: Experimental
evaluation of unstructured gossip-based
implementations. Mark Jelasity, Rashid Guerraoui,
Anne-Marie Kermarrec, Marteen van Steen.
Middleware 2004, volume 3231 of LNCS, 79-98,
Springer-Verlag, 2004.

[13] Sub-2-Sub: Self-organizing content-based publish
and subscribe for dynamic and large scale
collaborative networks. Spryros Voulgaris, Etienne

Riviere, Anne-Marie Kermarrec and Maarten van
Steen. Proceedings of the 5th International
Workshop on Peer-to-Peer Systems (IPTPS),
Santa-Barbara, CA, February 2006.

[14] Epidemic-style Management of Semantic
Overlays for Content-based Searching. Spyros
Voulgaris and Maarten van Steen, Proceedings of
the International Conference on Parallel and
Distributed Computing (Euro-Par), Lisbon,
Portugal, August 2005.

[15] CYCLON: Inexpensive Membership Management
for Unstructured P2P Overlays. Spyros Vo ulgaris,
Daniela Gavidia, Maarten van Steen. Journal of
Network and Systems Management, vol.
13(2):197-217.

[16] Ordered Slicing of Very Large-Scale Overlay
Networks. Mark Jelasity and Anne-Marie
Kermarrec. In The Sixth IEEE Conference on Peer
to Peer Computing (P2P), Cambridge, UK, 2006.

[17] GosSkip, an Efficient, Fault-Tolerant and Self
Organizing Overlay Using Gossip-based
Construction and Skip-Lists Principles. Rachid
Guerraoui, Sidath Handurukande, Kevin
Huguenin, Anne-Marie Kermarrec, Fabrice Le
Fessant and Etienne Riviere. In The Sixth IEEE
Conference on Peer to Peer Computing (P2P),
Cambridge, UK, September, 2006.

[18] From Epidemics to Distributed Computing. Patrick
Eugster, Rachid Guerraoui, Anne-Marie
Kermarrec, and Laurent Massoulié. IEEE
Computer, 37(5):60-67, May 2004.

[19] Lightweight Probabilistic Broadcast. Patrick
Eugster, Sidath Handurukande, Rachid Guerraoui,
Anne-Marie Kermarrec, and Petr Kouznetsov.
ACM Transaction on Computer Systems , 21(4),
November 2003.

[20] Probabilistic Reliable Dissemination in Large-
Scale Systems . Anne-Marie Kermarrec, Laurent
Massoulié, and Ayalvadi J. Ganesh. IEEE
Transactions on Parallel and Distributed Systems ,
14(3), March 2003.

[21] BAR Gossip . Harry Li, Allen Clement, Edmund
Wong, Jeff Napper, Indrajit Roy, Lorenzo Alvisi,
Mike Dahlin, Proceedings of the 2006 USENIX
Operating Systems Design and Implementation
(OSDI), Nov 2006 .

[22] Epidemic algorithms for replicated database
maintenance. Alan Demers, Dan Greene, Carl
Houser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, Doug Terry.
ACM SIGOPS Operating Systems Review
Volume 22 , Issue 1 (Jan., 1988), 8 - 32

