Collabory: A Collaborative Throughput Stabilizer & Accelerator for P2P
Protocols

Shay Horovitz and Danny Dolev
Hebrew University of Jerusalem
{horovitz,dolev} @cs.huji.ac.il

Abstract

Common peer-to-peer (P2P) file sharing clients usually
download at an unstable rate and hardly exploit the avail-
able bandwidth offered by low rate sources. The charac-
teristic fluctuational throughput of the source peers might
be caused by user behavior factors such as running other
bandwidth consuming tasks, throttling of download speed
by P2P software or even termination of the source.

In this paper we propose Collabory - a solution for stabi-
lizing and accelerating the download speed rate in existing
P2P networks. We introduce a new role: ”Feeders” - peers
that collaboratively aggregate the downloads from multiple
sources into a single, stable stream served to the download-
ing peer. We show that the solution utilizes source nodes
with an extremely low and unstable throughput without re-
ducing the download rate of the downloading peer.

Measurements in a test suite expressed a major increase
in download rate and stability. Upgraded & stabilized
throughput is demonstrated on eMule.

1. Introduction

Following the increased popularity of P2P, came a corre-
sponding increase in the amount of research on the lookup
problem. Yet, the common method being used for the data
transfer between peers still relies on traditional client-server
techniques and ignore the unique characters of P2P net-
works. We noticed a significant difference in download rate
stability on the client side as it downloads from P2P peers
compared to downloading from a server. In a home ma-
chine the throughput of the internet connection is directly
affected by the user’s behavior - running different band-
width and cpu demanding tasks in an unpredictable man-
ner resulting in frequently sudden changes in the effective
throughput and instability in the download rate.

In this paper we address the problem of throughput sta-
bility in P2P networks. We discuss the causes for such in-
stability and offer a design that can be easily adapted to any

P2P network for creating a much more stable download rate
and respectively gain higher throughput. Instability of the
download rate stems from several reasons, which we cat-
egorize as network related, P2P network design and user
behavior aspects.

Network infrastructure aspects that affect the stability of
a peer are not under the control of the user. Large delay vari-
ation (jitter), excessive packet delays and round trip time re-
duce the ability to ensure a stable connection. Packet loss
might also contribute to the download rate instability espe-
cially between different regions. In addition, ISP enforced
policy controlled by traffic shapers downgrade P2P down-
load rate at peak hours [6].

P2P network design aspects are connected to how the
client searches for potential peers. In many networks, ping
RTT measurements are used as a metric for better sources.
However our experiments showed that this technique does
not produce a stable behavior. Also, if a client has a tech-
nique for finding peers with maximal available upload rate,
it does not guarantee that those peers are stable and the re-
sulting throughput to be higher. Moreover, when such a
source is heavily used, the disruption in case of a failure dur-
ing the download session is much higher. In addition, P2P
networks embed fairness rules for preventing free riders.
This might affect the stability during the download phase
as there is a certain ratio between the download rate and the
amount of data a source uploads.

Yet, the aspect that we found having the greatest im-
pact on download rate stability is the behavior of users at
source peers. More specifically, actions that the user of the
uploading peer machine occasionally takes might directly
affect the upload rate of the machine. The most obvious
occurrence is the case where the user at the source peer in-
vokes applications that heavily use bandwidth such as Email
clients, online games or other P2P applications. By doing
so, the bandwidth available for the client connected to that
machine may be drastically reduced and becomes signifi-
cantly unstable.

In this paper we present Collabory, a collaboration tool
utilizing helper peers for stabilizing P2P clients’ download

rates. Helper peers are peers that voluntarily participate in
the file download by pre-fetching and caching parts of the
file for the client. The idea of utilizing helper peers was
mentioned in [12, 4, 7, 11], however, they all offered us-
ing helper peers (in addition to normal source peers) for
bypassing the limitations of fairness rules that are embed-
ded in P2P networks [3, 1]. Moreover, the helpers selection
criteria in these papers does not guarantee better stability
compared to the stability of normal source peers i.e., the
fluctuational rate of the sources and helpers is still reflected
in the rate of the client. Therefore, the client is still exposed
to stability problems due to network infrastructure, P2P net-
work design and user behavior aspects.

Existing P2P protocols tend to ignore source peers that
have relatively low bandwidth to offer. This dramatically
reduces the amount of available sources and eventually
the downloading peer ends up with insufficient available
sources to maximize its throughput. Our solution enables
utilizing extremely unstable peers and low bandwidth peers
for maximizing the final throughput of the downloading
client without being exposed to the sources instability. The
above problems motivate the need for a new data transfer
approach, adjusted to the P2P network characteristics and
the behavior pattern of end users.

Collabory employs a helper-like architecture. Unlike
previous works, it intentionally selects the helpers to be op-
timal for availability and throughput stability with the client
by constantly measuring stability factors. We will term such
helpers as feeder peers. The Feeders negotiate with poten-
tial source peers and aggregate the downloads from multiple
unstable sources into a single, stable stream served to the
downloading peer. The Feeders are employed exclusively
as a means of delivering data to the client.

For estimating the level of fitness of a potential feeder
we first optimize the availability of a feeder by matching a
client with feeders that share similar online periods yet dis-
similar in activity periods. This way we reduce the chance
that feeders will disconnect intentionally while the client is
downloading. Among the feeders that match, we will prefer
those that are most predictable i.e., have repetitive overlap-
ping online sessions with high probability. Furthermore, we
strive to match feeders that have good network connectiv-
ity with the client. We constantly measure the jitter, RTT
and packet losses and accordingly select those with the best
connectivity measurements. In addition, we place a high
priority on the effect of user behavior on the stability of a
potential feeder. Thus we would prefer feeders with a fair
amount of predictable spare bandwidth and if possible, low
CPU usage. The incentive for serving as a feeder is by con-
tributing machine resources in return to a higher throughput
when one wishes to download.

To evaluate the concept, we built a test suite that moni-
tors the download rate and its stability given different sce-

narios of network infrastructure problems as well as user
behavior patterns at the source peers. The results of our
experiments confirmed the following contributions of Col-
labory:

1. Ensuring a stable download rate resistant to source
throughput instability with higher probability than in
current techniques;

2. Allowing weak - low bandwidth sources to partici-
pate in the download process without compromising
the client’s download rate stability, thus increasing the
number of potential sources;

3. Ability to locate potential sources and measure their
throughput without compromising the client’s down-
load rate stability.

The remainder of this paper examines these issues both
analytically and empirically and presents Collabory.

2. Related Work

The idea of utilizing helper peers was first introduced by
Wong [12]. Guo et. al. [S] described a trade mechanism
where peers exchange file portions. “2Fast” [4, 7] embeds
helper peers for bypassing fairness rules. Wong offered a
similar solution without the limit of choosing the helpers
out of a social group and [11] recruited helper peers for
increasing the number of sources on BitTorrent [3]. [9]
offered a way to prevent the last chunk problem by cooper-
ating between source peers.

The above papers offered techniques to increase the
download rate of a peer by either bypassing fairness rules
or by sharing fairness credit among a social group of peers.
However, the helpers selection criteria in these papers do
not guarantee better stability compared to the stability of
normal source peers. Thus, the client is still exposed to sta-
bility problems due to network infrastructure, P2P network
design and user behavior aspects. Moreover, the above so-
lutions do not address low rate sources, frequent joins and
leaves and unstable sources - which are characteristic to
P2P networks and ignoring them opens a substantial gap
between theory and reality.

3. The Problem of Throughput Stability in P2P

While performing some throughput tests for various P2P
applications, we encountered a major difference in down-
load rate stability of the client when downloading from
peers using P2P software compared to downloading from
a file server.

In a typical P2P network, the user connects to the net-
work and searches for a file using keywords. Then the P2P

network returns a list of available files according to the key-
words provided earlier. The user selects a file to be down-
loaded and in return, the P2P network provides a list of IP
addresses, L, of peers that share portions of the requested
file (this part is done automatically and is hidden from the
user). Some P2P networks somewhat differ from the above
description, yet provide a list of potential source peers. The
part of the process that was described so far is also known
as the Lookup problem. The Lookup problem was exten-
sively researched and many publications presented innova-
tive techniques for managing a directory of files in a P2P
network [10, 8].

In this paper we will not discuss the mechanisms for cre-
ating the list of sources L. We will focus on various tech-
niques that improve stability for a client that is interested in
a file that is shared by peers listed in L. Obviously, there are
current solutions to complete the download process as soon
as L was created, yet the common techniques being used
today present a download rate instability.

Examining file transfer analytically, we’d like to match
the client with a set of sources that provide a stable and
consistent rate of data. Since current P2P clients download
portions of the file directly from the source peers that share
the file, the stability of the download rate is bounded by the
stability of the most stable sources in L. The source’s sta-
bility might be degraded for many reasons such as packet
loss, jitter, excessive delays or any other concurrently run-
ning software that compete on the same bandwidth and CPU
resources.

Another issue that might affect the download rate of the
client is the availability of sources. A source might become
unstable or unavailable and might increase the total time re-
quired to download the file. Existing file transfer systems
limit the probability to find stable sources even more, as
they manage fairness rules to prevent selfish free-riders in
addition to using queueing techniques; thus, in such sys-
tems L is much smaller than its theoretical potential size of
all peers that share the file. In systems that allow down-
loading from sources that received only portions of the file,
as in eDonkey [1], the client might need to generate sev-
eral requests until the missing file portions are found; this
increases the total time required to download the file.

In systems where peers can serve packets also before
completing the download of the file [3, 1], the excessive
use of upload bandwidth will not only harm the download
performance of the source peer, but will also have an effect
on P2P uploads, since the peer will not be able to down-
load new content at a satisfying rate. In addition, in some
ISPs [2] P2P sources are subject to traffic shaping rules [6],
which again degrade the throughput.

All of the above issues are typical to P2P based file trans-
fer stem from the direct link between the potential source
available upload rate and the user’s behavior; This moti-

Supplier Supplier Supplier Supplier Supplier
of file of file of file of file of file

17

parts 13

Consumer
peer

Figure 1. A one-level feeding structure

vates the need for a new data transfer approach, adjusted to
the characteristics of P2P networks and the behavior pattern
of the end user.

4. Collabory

Feeding Networks Model:

We present a model where the file transfer rate for sub-
scribers is higher and the consumed bandwidth is more sta-
ble. Since we provide a generic solution it can be easily
embedded in other works that present social groups or other
bartering techniques such as tit-for-tat.

In our basic model, a peer that shares files (source) is
called a supplier peer; a peer that requests files from sup-
plier peers is called a consumer peer. Each consumer holds
a list of feeders, which is a group of peers that can download
the requested packets from supplier peers or other feeder
peers and transfer them to the consumer peer. In general,
when a consumer peer wishes to download a file, it will ask
each of his feeder peers to supply him with different parts
of that file. Each feeder will open one or more connections
with supplier peers that share the requested file (see Fig-
ure 1).

The list of feeder peers for each consumer can be built
manually or automatically by tracing the stability metrics
between the feeder and the consumer during past network
activities. There are three major parameters used in or-
der to analyze the compatibility of a potential feeder to a
given consumer peer: availability, capability and infrastruc-
ture properties.

Availability: We’d like the potential feeder peers to be
online and have limited network and CPU consumption
when the consumer is about to start a new download pro-
cess. Therefore, we look for feeders that have a matching
pattern of availability, meaning that they are likely to stay
online and have low network and CPU consumption while
the consumer is downloading. We’ll use the term fif to ad-
dress the above demands.

In order to find fitting feeders, we log feeders’ online
periods (sessions) and the relevant network use and CPU
utilization measurements within these sessions.

We term Feedability as the ability of a feeder to feed a
consumer peer at a specific point in time i.e., the feeder is
online and has low network use and CPU consumption.

Denote a Feedability function F'A of feeder f, in session
s at time ¢ (time units after session initiation time) as:

1 fouyu (&) < Thepu N fsp, (t) < Thiw

FAyps(t) = { 0 othper<w)ise. ' el

where fe,, (t) and fy,, (t) are the measurements of cpu uti-
lization and consumed upload bandwidth at after ¢ time
units from the beginning of session s (when the feeder went
online). T'hcp, and Thy,, are the thresholds of cpu utiliza-
tion and consumed bandwidth enabling the feeder to serve
a consumer peer.

A potential feeder p is the most fitting feeder to a con-
sumer peer (among all online feeders that have small RTT
and low jitter with the consumer peer) if the average of its
Feedability function F'Ay ,(t) over all of its sessions and
a given time period starting now (when the consumer re-
quested to start a new download) is maximized over all other
feeders:

t+k "f
FAjp(t
pzargmax/ E 7f’(),
f t -

where n; is the number of sessions that were logged by
feeder f. We choose k as the length of a minimal time pe-
riod for feeding before looking for alternative feeders.

Capability: We would prefer to choose feeders with
lower bandwidth consumption and low CPU utilization as
this gives us higher confidence in their ability to supply the
client’s network demands. Furthermore, we limit the band-
width provided by the feeder to its consumer in order to in-
crease our immunity to unexpected bandwidth consuming
events at the feeder.

For measuring these parameters, we offer to embed a
special agent software that constantly logs the bandwidth
consumed by different processes as well as the relative CPU
utilization. We can use the same agent to alert consumer
peers when an unpredicted resource consuming task was
initiated - threatening the stability of the throughput be-
tween the feeder and the consumer peer. In this scenario,
the consumer will replace the feeder with a different one.

Infrastructure: Network infrastructure aspects that af-
fect the stability of a peer are not under the control of the
user. Large delay variation (jitter), excessive packet delays
and round trip time reduce the ability of TCP to ensure a
stable connection. Packet loss might also contribute to the
download rate instability especially between different re-
gions. Our proposed agent software will log the round trip
time and jitter parameters of each feeder it connects to. In
time, it will construct a list of potential feeders that have the
most stable download rate.

Cregular

Regular

m sources

Feeder based

2m sources, m feeders
Figure 2. Schematic view of the general case

In addition, as some ISPs employ traffic shapers that [6]
downgrade P2P download rate for external connections, by
preferring feeder peers that reside in the same ISP as the
consumer, it is possible to bypass the traffic policy and in-
crease the throughput.

Analysis:

In Figure 2, C)eguiar represents the case of normal file
transfer - downloading from m sources, each supplying
%bps, where MaxD is the maximum download rate
of the client peer.

In Cteeder—basea however, the client downloads a file
from m feeders, each of them dowloads from two sources:
the 1st source supplies %bps and the second source
supplies up to € bps. We use the sources that supply € as
for short-term caching to ensure that the feeder peer can al-
ways supply %bps for its client.

In a working system, ¢ will dynamically change during
the download process depending on the bandwidth supplied
by the source peer. Following is the analysis of the simple
model described above, comparing the Effective Download
Rate (EDR) of each case, where p,, is the probability that
a peer x (source or feeder) will deliver packets at full speed
- the capacity of the modem:

EDR(Cregular) =
m - (EUB of each source) =

m - ps - (capacity of each source) =
MaxD
m

m - pg - =ps - MaxD ,

where EU B is the effective upload bandwidth.

EDR(Cyecder—based) =
m - (EUB of each feeder) =

m - (py - (UB of feeder depended on its’ sources)) =

MaxD

m
min (pgMaxD,pspsMaxD + mpypse) ,

m - (pymin (, ZEUB (feeder’s sources))) =

T
c1

Figure 3. Collabory test suite
where U B is the upload bandwidth and EU B is the effec-
tive upload bandwidth. Thus:

EDR(Cfeederfbased)
EDR(OT'egulur) B
min (pfMaxD,psps MaxD +mpspge)
psMaxD B
Py

. mpfe
] + = ’
mm(ps Pr+ 3D

meaning that C'yeeder—pased Will download at higher speed
than Creguiar if s + 9228 > 1= ¢ > UmpMazD

m

tice that as m grows, a smaller e will satisfy %[)lj;e benefit of
the feeder-based solution. Likewise, if we allow a bigger e,
we can use less feeders to gain the same results. This shows
a great benefit of the feeder-based model over the regular
model as it is possible to move the “risk” of a non-stable
download bandwidth from the client to the feeder - that has
potentially much more available download bandwidth than
the client. Upon selecting stable feeders it is possible to
reach better download stability while using even less stable
sources, since the feeder has available download bandwidth
that can be used for short-term caching - meaning that we
use a bigger e to make sure that the feeder will be able to
supply the requested bandwidth to the supplier. The asym-
metric upload and download bandwidth does not affect our
solution, since a feeder can theoretically download at full
download speed to ensure the small upload bandwidth that
it should supply the source.

Since we can adjust € dynamically during the download
phase, we can afford using extremely weak and unstable
sources from the P2P network and still not influence the sta-
bility of the download rate at the client, as long as the feeder
manages to gather enough cache to be able to provide the re-
quested rate by the consumer. Since it’s possible to employ
weak sources we estimate that Collabory enhances existing
networks’ scalability as it increases the total number of po-
tential sources because nowadays existing P2P applications
tend to neglect weak sources.

For reinforcing feeders’ redundancy, at the beginning of
the download process we initiate an extra feeder that down-
loads packets from the end of the file and does not de-
liver them to the consumer until either the consumer already

0-

downloaded the rest of the file or in case a feeder has failed.

5. Results

Test Suite:

For conducting our tests, we built a special test suite that
allows defining structures of connections between 3 types
of nodes: source peers, feeders and clients. The suite is
composed of a monitoring utility and a set of agents that
can emulate the behavior of any of the 3 types of nodes.
The agents may run in different machines and submit their
performance metrics to the monitoring utility.

As can be seen in Figure 3 the test suite is configured to
compare the feeder based model with the regular one.The
client/consumer peer C'1 is connected to 2 feeders F'1 and
F'2 and each feeder is connected to 2 sources, marked with
S. The client C2 represents the regular case thus it is only
connected to 2 sources. The graphs attached to each feeder
and client peers shows the download rate measured at that
peer. In this specific experiment we examined burst sce-
narios i.e., we set all source peers to behave in a repeating
pattern of sending at 50% of their maximal upload band-
width for 10 seconds followed by additional 10 seconds of
sending at full speed. It can be noticed that the download
rate at the feeders and at C2 behave the same, due to us-
ing sources with the same behavior. However the client that
downloads from the feeders C'1 gained a stable and higher
download rate.

Measurements:

We conducted our tests in two different settings. In the first
one we set the maximum download throughput of peers to
920Kb/Sec - common to broadband. Upload is limited to
460Kb/Sec. Packet loss is set to 1 to 20 for all source peers.
By employing the behavior of 50% mentioned above we
received 866Kb/Sec at C'1 (feeder based) and 648Kb/Sec
at C2 (regular). Notice Figure 4 for the results of 80%,
50% and 0% (full transmission for 10 seconds on and off)
where the extreme behavioral settings of the sources had
only slight effect on the download rate of C'1 compared to a
major decrease in C2. The rest of the results are shown for
the setting where we set the maximum download through-
put of all peers to 20Kb/Sec and the upload is bounded by
10Kb/Sec. This was chosen to show the benefit of Col-
labory on extremely weak peers that are hardly being used
in existing networks because of their unstable nature and
low bandwidth.

In Figure 5 we examine different values of € to see how
it affects the performance of feeders. All sources in the sys-
tem are set to the 80% settings of the previous test, includ-
ing the sources that transmit € which means that they will
repeatedly transmit 0.8 eKb/Sec for 10 seconds and then
eKb/Sec for the following 10 seconds. Given larger values
of e allows the feeders to hold a cache for a longer period of

1000

) ——
2 I\

a9 700 Feeders
) \.\

~ 600

8 -
M 500

o \. Regular
L 400

=

g 300

[0}

o 200

80% 50% 0%

Source Behavior
Figure 4. Varying source behavior
195

19

05 A—_‘_,———0—-—_——---—0 o

2
a / Feeders
2o
jg 175 -
& Regular
o ¢
2
@ 105 - - = = =
]
2

155

15

01 1 16 18 22
€ Selected

Figure 5. Different ¢ values

time and this way be able to transmit the cache content to
C1 accordingly. Notice that when we set € to 2.2 the cache
content was increasing consistently thus allows the feeder
to transmit C'1 as if it was a stable source. In this scenario
C'1 received stable download rate of 18.9Kb/Sec.

We also tested the case of using weak source peers for the

feeder (Figure 6). For the regular method we set 2 sources
of 10Kb/Sec with the behavior of 80% mentioned above.
For the feeder method we set the following different test
settings- A: 4 sources of 6.0Kb/Sec under 80% behavior. B:
8 sources of 3.0Kb/Sec under 80% behavior. C: 8 sources
of 4.0Kb/Sec under 50% behavior. In all of our tests we
gained stable increased rate in the feeder case compared to
unstable rate in the regular case.
eMule/eDonkey Hooking Experiment:
We implemented our solution on a set of 3 machines con-
nected to ADSL broadband connection through different
ISPs using 1.5 Mbps ADSL links. Two computers served
as feeders for the third machine. We managed to hook into
eMule by providing it a set of file portions and generating
on-demand maps of the portions we wanted to be down-
loaded (.part.met files), allowing us to “order” any piece of
file we wanted at any period of time. Each feeder managed
multiple copies of eMule, and opened multiple requests for
specific file portions on demand.

We let the experiment run for 10 periods of 4 hours at
different parts of the day covering peak hours as well. We
constantly logged the download rate of the client. Every
30 minutes, we switched the experiment between Collabory
and the normal eMule client. As shown in Figure 7, We
measured an average of 1.41 Mbps for the Collabory sup-

-
Feeders

-~
Regular

Receive Rate (Kbps)

A B 4
Weak Source Setting

Figure 6. Different settings of weak sources

1600

1400

1200

1000

Receive Rate (Kbps)

NormaleMule

Collabory Supported

Figure 7. Collabory on eMule

ported client and an average of 0.92 Mbps for the normal
eMule client.

References

[1] Emule web site. http://www.emule-project.net.
[2] A list of isps that use traffic shapers for limiting azureus p2p

client. http://www.azureuswiki.com/index.php/bad_isps.
[3] B. Cohen. Incentives Build Robustness in BitTorrent. Work-

shop on Economics of Peer-to-Peer Systems, 6, 2003.
[4] P. Garbacki, A. Iosup, D. Epema, and M. van Steen. 2fast:

Collaborative downloads in p2p networks. p2p, 2006.
[5] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.

Measurements, Analysis, and Modeling of BitTorrent-like

Systems. Internet Measurement Conference, 2005.
[6] A.Halme. Peer-to-peer Traffic: Impact on ISPs and Evalua-

tion of Traffic Management Tools.
[7] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. To-

sup, D. Epema, M. Reinders, M. van Steen, and H. Sips. Tri-

bler: A social-based peer-to-peer system. /PTPS06.
[8] A.Rowstron and P. Druschel. Pastry: Scalable, decentralized

object location, and routing for large-scale peer-to-peer sys-

tems. Lecture Notes in Computer Science, 2218:329, 2001.
[9] D. Schlosser, T. Hossfeld, and K. Tutschku. Comparison

of Robust Cooperation Strategies for P2P Content Distribu-
tion Networks with Multiple Source Download. Proceedings
of the Sixth IEEE International Conference on Peer-to-Peer

Computing, pages 31-38, 2006.
[10] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable Peer-To-Peer lookup service
for internet applications. In Proceedings of the 2001 ACM

SIGCOMM Conference, pages 149-160, 2001.
[11] J. Wang, C. Yeo, V. Prabhakaran, and K. Ramchandran. On

the role of helpers in peer-to-peer file download systems: De-

sign, analysis and simulation. /PTPS07.
[12] J. Wong. Enhancing collaborative content delivery with

helpers. Master’s thesis, Univ of British Columbia, 2004.

